Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 846
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 150(6): 1196-208, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22980980

RESUMO

The mTOR Complex 1 (mTORC1) pathway regulates cell growth in response to numerous cues, including amino acids, which promote mTORC1 translocation to the lysosomal surface, its site of activation. The heterodimeric RagA/B-RagC/D GTPases, the Ragulator complex that tethers the Rags to the lysosome, and the v-ATPase form a signaling system that is necessary for amino acid sensing by mTORC1. Amino acids stimulate the binding of guanosine triphosphate to RagA and RagB but the factors that regulate Rag nucleotide loading are unknown. Here, we identify HBXIP and C7orf59 as two additional Ragulator components that are required for mTORC1 activation by amino acids. The expanded Ragulator has nucleotide exchange activity toward RagA and RagB and interacts with the Rag heterodimers in an amino acid- and v-ATPase-dependent fashion. Thus, we provide mechanistic insight into how mTORC1 senses amino acids by identifying Ragulator as a guanine nucleotide exchange factor (GEF) for the Rag GTPases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/metabolismo , Drosophila/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Dados de Sequência Molecular , Complexos Multiproteicos , Serina-Treonina Quinases TOR
2.
Proc Natl Acad Sci U S A ; 121(39): e2413100121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39292747

RESUMO

The adenosine di-phosphate (ADP) ribosylation factor (Arf) small guanosine tri-phosphate (GTP)ases function as molecular switches to activate signaling cascades that control membrane organization in eukaryotic cells. In Arf1, the GDP/GTP switch does not occur spontaneously but requires guanine nucleotide exchange factors (GEFs) and membranes. Exchange involves massive conformational changes, including disruption of the core ß-sheet. The mechanisms by which this energetically costly switch occurs remain to be elucidated. To probe the switch mechanism, we coupled pressure perturbation with nuclear magnetic resonance (NMR), Fourier Transform infra-red spectroscopy (FTIR), small-angle X-ray scattering (SAXS), fluorescence, and computation. Pressure induced the formation of a classical molten globule (MG) ensemble. Pressure also favored the GDP to GTP transition, providing strong support for the notion that the MG ensemble plays a functional role in the nucleotide switch. We propose that the MG ensemble allows for switching without the requirement for complete unfolding and may be recognized by GEFs. An MG-based switching mechanism could constitute a pervasive feature in Arfs and Arf-like GTPases, and more generally, the evolutionarily related (Ras-like small GTPases) Rags and Gα GTPases.


Assuntos
Fator 1 de Ribosilação do ADP , Guanosina Difosfato , Guanosina Trifosfato , Guanosina Difosfato/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Fator 1 de Ribosilação do ADP/química , Fator 1 de Ribosilação do ADP/genética , Guanosina Trifosfato/metabolismo , Humanos , Espalhamento a Baixo Ângulo , Difração de Raios X , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Modelos Moleculares
3.
Nat Rev Mol Cell Biol ; 15(5): 357-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24739740

RESUMO

The Dishevelled, EGL-10 and pleckstrin (DEP) domain is a globular protein domain that is present in about ten human protein families with well-defined structural features. A picture is emerging that DEP domains mainly function in the spatial and temporal control of diverse signal transduction events by recruiting proteins to the plasma membrane. DEP domains can interact with various partners at the membrane, including phospholipids and membrane receptors, and their binding is subject to regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfoproteínas/metabolismo , Proteínas RGS/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Proteínas Desgrenhadas , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas RGS/química , Proteínas RGS/genética
4.
J Biol Chem ; 300(4): 107197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508314

RESUMO

Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB. This strategy enabled us to generate mutations of individual MglB protomers (MglB1 or MglB2 linked to MglA) and delineate their role in GEF and GAP activities. We establish that the C-terminal helix of MglB1, but not MglB2, stimulates nucleotide exchange through a site away from the nucleotide-binding pocket, confirming an allosteric mechanism. Interaction between the N-terminal ß-strand of MglB1 and ß0 of MglA is essential for the optimal GEF activity of MglB. Specific residues of MglB2, which interact with Switch-I of MglA, partially contribute to its GAP activity. Thus, the role of the MglB2 protomer in the GAP activity of MglB is limited to restricting the conformation of MglA active site loops. The direct demonstration of the allosteric mechanism of GEF action provides us new insights into the regulation of small Ras-like GTPases, a feature potentially present in many uncharacterized GEFs.


Assuntos
Proteínas de Bactérias , Proteínas Ativadoras de GTPase , Myxococcus xanthus , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ativação Enzimática , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/enzimologia , Multimerização Proteica , Modelos Moleculares , Estrutura Quaternária de Proteína
5.
J Biol Chem ; 300(7): 107459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857861

RESUMO

The dedicator of cytokinesis (DOCK)/engulfment and cell motility (ELMO) complex serves as a guanine nucleotide exchange factor (GEF) for the GTPase Rac. RhoG, another GTPase, activates the ELMO-DOCK-Rac pathway during engulfment and migration. Recent cryo-EM structures of the DOCK2/ELMO1 and DOCK2/ELMO1/Rac1 complexes have identified closed and open conformations that are key to understanding the autoinhibition mechanism. Nevertheless, the structural details of RhoG-mediated activation of the DOCK/ELMO complex remain elusive. Herein, we present cryo-EM structures of DOCK5/ELMO1 alone and in complex with RhoG and Rac1. The DOCK5/ELMO1 structure exhibits a closed conformation similar to that of DOCK2/ELMO1, suggesting a shared regulatory mechanism of the autoinhibitory state across DOCK-A/B subfamilies (DOCK1-5). Conversely, the RhoG/DOCK5/ELMO1/Rac1 complex adopts an open conformation that differs from that of the DOCK2/ELMO1/Rac1 complex, with RhoG binding to both ELMO1 and DOCK5. The alignment of the DOCK5 phosphatidylinositol (3,4,5)-trisphosphate binding site with the RhoG C-terminal lipidation site suggests simultaneous binding of RhoG and DOCK5/ELMO1 to the plasma membrane. Structural comparison of the apo and RhoG-bound states revealed that RhoG facilitates a closed-to-open state conformational change of DOCK5/ELMO1. Biochemical and surface plasmon resonance (SPR) assays confirm that RhoG enhances the Rac GEF activity of DOCK5/ELMO1 and increases its binding affinity for Rac1. Further analysis of structural variability underscored the conformational flexibility of the DOCK5/ELMO1/Rac1 complex core, potentially facilitating the proximity of the DOCK5 GEF domain to the plasma membrane. These findings elucidate the structural mechanism underlying the RhoG-induced allosteric activation and membrane binding of the DOCK/ELMO complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fatores de Troca do Nucleotídeo Guanina , Proteínas rac1 de Ligação ao GTP , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Ligação Proteica , Conformação Proteica , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/química
6.
EMBO J ; 40(12): e107607, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018207

RESUMO

The GTPase Rab1 is a master regulator of the early secretory pathway and is critical for autophagy. Rab1 activation is controlled by its guanine nucleotide exchange factor, the multisubunit TRAPPIII complex. Here, we report the 3.7 Å cryo-EM structure of the Saccharomyces cerevisiae TRAPPIII complex bound to its substrate Rab1/Ypt1. The structure reveals the binding site for the Rab1/Ypt1 hypervariable domain, leading to a model for how the complex interacts with membranes during the activation reaction. We determined that stable membrane binding by the TRAPPIII complex is required for robust activation of Rab1/Ypt1 in vitro and in vivo, and is mediated by a conserved amphipathic α-helix within the regulatory Trs85 subunit. Our results show that the Trs85 subunit serves as a membrane anchor, via its amphipathic helix, for the entire TRAPPIII complex. These findings provide a structural understanding of Rab activation on organelle and vesicle membranes.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Proteínas rab de Ligação ao GTP/química , Microscopia Crioeletrônica , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Proteínas de Transporte Vesicular/ultraestrutura , Proteínas rab de Ligação ao GTP/ultraestrutura
7.
EMBO J ; 40(12): e107608, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018214

RESUMO

The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo-EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII-specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease-causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur-TRAPP.


Assuntos
Proteínas de Drosophila/química , Proteínas de Transporte Vesicular/química , Proteínas rab1 de Ligação ao GTP/química , Microscopia Crioeletrônica , Proteínas de Drosophila/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Conformação Proteica , Proteínas de Transporte Vesicular/ultraestrutura , Proteínas rab1 de Ligação ao GTP/ultraestrutura
8.
Annu Rev Cell Dev Biol ; 27: 25-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21801011

RESUMO

Integral membrane proteins of the cell surface and most intracellular compartments of eukaryotic cells are assembled at the endoplasmic reticulum. Two highly conserved and parallel pathways mediate membrane protein targeting to and insertion into this organelle. The classical cotranslational pathway, utilized by most membrane proteins, involves targeting by the signal recognition particle followed by insertion via the Sec61 translocon. A more specialized posttranslational pathway, employed by many tail-anchored membrane proteins, is composed of entirely different factors centered around a cytosolic ATPase termed TRC40 or Get3. Both of these pathways overcome the same biophysical challenges of ferrying hydrophobic cargo through an aqueous milieu, selectively delivering it to one among several intracellular membranes and asymmetrically integrating its transmembrane domain(s) into the lipid bilayer. Here, we review the conceptual and mechanistic themes underlying these core membrane protein insertion pathways, the complexities that challenge our understanding, and future directions to overcome these obstacles.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Retículo Endoplasmático/química , Retículo Endoplasmático/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Membranas Intracelulares/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Canais de Translocação SEC , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo
9.
Mol Cell ; 68(5): 835-846.e3, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29107538

RESUMO

The lysosomal membrane is the locus for sensing cellular nutrient levels, which are transduced to mTORC1 via the Rag GTPases and the Ragulator complex. The crystal structure of the five-subunit human Ragulator at 1.4 Å resolution was determined. Lamtor1 wraps around the other four subunits to stabilize the assembly. The Lamtor2:Lamtor3 dimer stacks upon Lamtor4:Lamtor5 to create a platform for Rag binding. Hydrogen-deuterium exchange was used to map the Rag binding site to the outer face of the Lamtor2:Lamtor3 dimer and to the N-terminal intrinsically disordered region of Lamtor1. EM was used to reconstruct the assembly of the full-length RagAGTP:RagCGDP dimer bound to Ragulator at 16 Å resolution, revealing that the G-domains of the Rags project away from the Ragulator core. The combined structural model shows how Ragulator functions as a platform for the presentation of active Rags for mTORC1 recruitment, and might suggest an unconventional mechanism for Rag GEF activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Microscopia Eletrônica , Simulação de Acoplamento Molecular , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
10.
Cell Mol Life Sci ; 81(1): 283, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963422

RESUMO

Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.


Assuntos
AMP Cíclico , Fatores de Troca do Nucleotídeo Guanina , Sumoilação , Enzimas de Conjugação de Ubiquitina , Proteínas rap1 de Ligação ao GTP , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , AMP Cíclico/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Células HEK293 , Simulação de Dinâmica Molecular , Complexo Shelterina/metabolismo , Transdução de Sinais , Proteínas de Ligação a Telômeros/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Resposta ao Choque Térmico , Sequência de Aminoácidos , Ligação Proteica
11.
Biochemistry ; 63(7): 880-892, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501608

RESUMO

Ras-related nuclear protein (Ran) is a member of the Ras superfamily of small guanosine triphosphatases (GTPases) and a regulator of multiple cellular processes. In healthy cells, the GTP-bound form of Ran is concentrated at chromatin, creating a Ran•GTP gradient that provides the driving force for nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation. The Ran•GTP gradient is maintained by the regulator of chromatin condensation 1 (RCC1), a guanine nucleotide exchange factor that accelerates GDP/GTP exchange in Ran. RCC1 interacts with nucleosomes, which are the fundamental repeating units of eukaryotic chromatin. Here, we present a cryo-EM analysis of a trimeric complex composed of the nucleosome core particle (NCP), RCC1, and Ran. While the contacts between RCC1 and Ran in the complex are preserved compared with a previously determined structure of RCC1-Ran, our study reveals that RCC1 and Ran interact dynamically with the NCP and undergo rocking motions on the nucleosome surface. Furthermore, the switch 1 region of Ran, which plays an important role in mediating conformational changes associated with the substitution of GDP and GTP nucleotides in Ras family members, appears to undergo disorder-order transitions and forms transient contacts with the C-terminal helix of histone H2B. Nucleotide exchange assays performed in the presence and absence of NCPs are not consistent with an active role for nucleosomes in nucleotide exchange, at least in vitro. Instead, the nucleosome stabilizes RCC1 and serves as a hub that concentrates RCC1 and Ran to promote efficient Ran•GDP to Ran•GTP conversion.


Assuntos
Cromatina , Nucleossomos , Proteína ran de Ligação ao GTP , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Guanosina Trifosfato/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Nucleotídeos/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Humanos , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo
12.
Mol Pharmacol ; 106(3): 117-128, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38902036

RESUMO

Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.


Assuntos
Carcinogênese , Fatores de Troca do Nucleotídeo Guanina , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , Animais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Carcinogênese/metabolismo , Carcinogênese/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais
13.
Biochem Soc Trans ; 52(4): 1849-1860, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39023851

RESUMO

Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by ∼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain. The specificity of GEF activity, and consequently GTPase activity, lies in the regulation and structures of the GEFs themselves. Dbl GEFs contain various accessory domains that regulate GEF activity by controlling subcellular localisation, protein interactions, and often autoinhibition. This review focuses on the two phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)-dependent Rac exchangers (P-Rex), particularly the structural basis of P-Rex1 autoinhibition and synergistic activation. First, we discuss structures that highlight the conservation of P-Rex catalytic and phosphoinositide binding activities. We then explore recent breakthroughs in uncovering the structural basis for P-Rex1 autoinhibition and detail the proposed minimal two-step model of how PI(3,4,5)P3 and Gßγ synergistically activate P-Rex1 at the membrane. Additionally, we discuss the further layers of P-Rex regulation provided by phosphorylation and P-Rex2-PTEN coinhibitory complex formation, although these mechanisms remain incompletely understood. Finally, we leverage the available data to infer how cancer-associated mutations in P-Rex2 destabilise autoinhibition and evade PTEN coinhibitory complex formation, leading to increased P-Rex2 GEF activity and driving cancer progression and metastasis.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Animais , Ligação Proteica , Fosfatos de Fosfatidilinositol/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/química , Proteínas rho de Ligação ao GTP/metabolismo
14.
Nucleic Acids Res ; 50(W1): W159-W164, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609983

RESUMO

Protein-ligand blind docking is a powerful method for exploring the binding sites of receptors and the corresponding binding poses of ligands. It has seen wide applications in pharmaceutical and biological researches. Previously, we proposed a blind docking server, CB-Dock, which has been under heavy use (over 200 submissions per day) by researchers worldwide since 2019. Here, we substantially improved the docking method by combining CB-Dock with our template-based docking engine to enhance the accuracy in binding site identification and binding pose prediction. In the benchmark tests, it yielded the success rate of ∼85% for binding pose prediction (RMSD < 2.0 Å), which outperformed original CB-Dock and most popular blind docking tools. This updated docking server, named CB-Dock2, reconfigured the input and output web interfaces, together with a highly automatic docking pipeline, making it a particularly efficient and easy-to-use tool for the bioinformatics and cheminformatics communities. The web server is freely available at https://cadd.labshare.cn/cb-dock2/.


Assuntos
Algoritmos , Proteínas , Sítios de Ligação , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química , Software , Proteínas Ativadoras de GTPase/química , Fatores de Troca do Nucleotídeo Guanina/química
15.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33597305

RESUMO

Ephexin family guanine nucleotide exchange factors (GEFs) transfer signals from Eph tyrosine kinase receptors to Rho GTPases, which play critical roles in diverse cellular processes, as well as cancers and brain disorders. Here, we elucidate the molecular basis underlying inhibition and activation of Ephexin family RhoGEFs. The crystal structures of partially and fully autoinhibited Ephexin4 reveal that the complete autoinhibition requires both N- and C-terminal inhibitory modes, which can operate independently to impede Ras homolog family member G (RhoG) access. This double inhibition mechanism is commonly employed by other Ephexins and SGEF, another RhoGEF for RhoG. Structural, enzymatic, and cell biological analyses show that phosphorylation of a conserved tyrosine residue in its N-terminal inhibitory domain and association of PDZ proteins with its C-terminal PDZ-binding motif may respectively relieve the two autoinhibitory modes in Ephexin4. Our study provides a mechanistic framework for understanding the fine-tuning regulation of Ephexin4 GEF activity and offers possible clues for its pathological dysfunction.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação , Domínios PDZ , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Fosforilação , Conformação Proteica
16.
J Biol Chem ; 298(8): 102209, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779635

RESUMO

Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio1284-1959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Proteínas Serina-Treonina Quinases/química , Fatores de Troca de Nucleotídeo Guanina Rho/química , Animais , Microscopia Crioeletrônica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Neoplasias Uveais , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
17.
Am J Hum Genet ; 106(3): 338-355, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109419

RESUMO

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Estudos de Coortes , Feminino , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Masculino , Fenótipo , Proteínas Serina-Treonina Quinases/química , Homologia de Sequência de Aminoácidos
18.
Cell ; 133(7): 1141-3, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18585348

RESUMO

TRAPPI is a multisubunit protein complex on the Golgi that activates the small GTPase Ypt1p to facilitate the receipt of transport vesicles inbound from the endoplasmic reticulum. Cai et al. (2008) now present structural and biochemical analyses of yeast TRAPPI in a complex with Ypt1p revealing a unique mechanism by which TRAPPI catalyzes guanine nucleotide exchange.


Assuntos
Nucleotídeos de Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Complexo de Golgi , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas rab de Ligação ao GTP/química
19.
Cell ; 133(7): 1202-13, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18585354

RESUMO

The multimeric membrane-tethering complexes TRAPPI and TRAPPII share seven subunits, of which four (Bet3p, Bet5p, Trs23p, and Trs31p) are minimally needed to activate the Rab GTPase Ypt1p in an event preceding membrane fusion. Here, we present the structure of a heteropentameric TRAPPI assembly complexed with Ypt1p. We propose that TRAPPI facilitates nucleotide exchange primarily by stabilizing the nucleotide-binding pocket of Ypt1p in an open, solvent-accessible form. Bet3p, Bet5p, and Trs23p interact directly with Ypt1p to stabilize this form, while the C terminus of Bet3p invades the pocket to participate in its remodeling. The Trs31p subunit does not interact directly with the GTPase but allosterically regulates the TRAPPI interface with Ypt1p. Our findings imply that TRAPPII activates Ypt1p by an identical mechanism. This view of a multimeric membrane-tethering assembly complexed with a Rab provides a framework for understanding events preceding membrane fusion at the molecular level.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Modelos Moleculares , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/química
20.
Proc Natl Acad Sci U S A ; 117(48): 30380-30390, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184172

RESUMO

Rho family GTPases regulate an array of cellular processes and are often modulated by pathogens to promote infection. Here, we identify a cryptic guanine nucleotide exchange factor (GEF) domain in the OtDUB protein encoded by the pathogenic bacterium Orientia tsutsugamushi A proteomics-based OtDUB interaction screen identified numerous potential host interactors, including the Rho GTPases Rac1 and Cdc42. We discovered a domain in OtDUB with Rac1/Cdc42 GEF activity (OtDUBGEF), with higher activity toward Rac1 in vitro. While this GEF bears no obvious sequence similarity to known GEFs, crystal structures of OtDUBGEF alone (3.0 Å) and complexed with Rac1 (1.7 Å) reveal striking convergent evolution, with a unique topology, on a V-shaped bacterial GEF fold shared with other bacterial GEF domains. Structure-guided mutational analyses identified residues critical for activity and a mechanism for nucleotide displacement. Ectopic expression of OtDUB activates Rac1 preferentially in cells, and expression of the OtDUBGEF alone alters cell morphology. Cumulatively, this work reveals a bacterial GEF within the multifunctional OtDUB that co-opts host Rac1 signaling to induce changes in cytoskeletal structure.


Assuntos
Proteínas de Bactérias/química , Fatores de Troca do Nucleotídeo Guanina/química , Modelos Moleculares , Orientia tsutsugamushi , Sítios de Ligação , Cristalografia por Raios X , Complexos Multiproteicos , Orientia tsutsugamushi/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Tifo por Ácaros/microbiologia , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA