Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 962
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(8): 1889-1906.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503281

RESUMO

Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.


Assuntos
Nucléolo Celular , Proteínas Nucleares , Força Próton-Motriz , Nucléolo Celular/química , Núcleo Celular/química , Proteínas Nucleares/química , RNA/metabolismo , Separação de Fases , Proteínas Intrinsicamente Desordenadas/química , Animais , Xenopus laevis , Oócitos/química , Oócitos/citologia
2.
Annu Rev Biochem ; 84: 843-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25494301

RESUMO

The twin-arginine translocation (Tat) system, found in prokaryotes, chloroplasts, and some mitochondria, allows folded proteins to be moved across membranes. How this transport is achieved without significant ion leakage is an intriguing mechanistic question. Tat transport is mediated by complexes formed from small integral membrane proteins from just two protein families. Atomic-resolution structures have recently been determined for representatives of both these protein families, providing the first molecular-level glimpse of the Tat machinery. I review our current understanding of the mechanism of Tat transport in light of these new structural data.


Assuntos
Transporte Proteico , Sistema de Translocação de Argininas Geminadas/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Células Procarióticas/metabolismo , Força Próton-Motriz , Sistema de Translocação de Argininas Geminadas/química
3.
Nat Rev Mol Cell Biol ; 16(6): 375-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25991374

RESUMO

The mitochondrial respiratory chain, also known as the electron transport chain (ETC), is crucial to life, and energy production in the form of ATP is the main mitochondrial function. Three proton-translocating enzymes of the ETC, namely complexes I, III and IV, generate proton motive force, which in turn drives ATP synthase (complex V). The atomic structures and basic mechanisms of most respiratory complexes have previously been established, with the exception of complex I, the largest complex in the ETC. Recently, the crystal structure of the entire complex I was solved using a bacterial enzyme. The structure provided novel insights into the core architecture of the complex, the electron transfer and proton translocation pathways, as well as the mechanism that couples these two processes.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias , Complexo III da Cadeia de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Força Próton-Motriz/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Estrutura Quaternária de Proteína
4.
Cell ; 151(7): 1406-16, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260134

RESUMO

Harnessing energy as ion gradients across membranes is as universal as the genetic code. We leverage new insights into anaerobe metabolism to propose geochemical origins that account for the ubiquity of chemiosmotic coupling, and Na(+)/H(+) transporters in particular. Natural proton gradients acting across thin FeS walls within alkaline hydrothermal vents could drive carbon assimilation, leading to the emergence of protocells within vent pores. Protocell membranes that were initially leaky would eventually become less permeable, forcing cells dependent on natural H(+) gradients to pump Na(+) ions. Our hypothesis accounts for the Na(+)/H(+) promiscuity of bioenergetic proteins, as well as the deep divergence between bacteria and archaea.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Metabolismo Energético , Fontes Hidrotermais/microbiologia , Bombas de Íon/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Bombas de Íon/química , Osmose , Força Próton-Motriz
5.
PLoS Pathog ; 20(2): e1012033, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421944

RESUMO

The host environment is of critical importance for antibiotic efficacy. By impacting bacterial machineries, stresses encountered by pathogens during infection promote the formation of phenotypic variants that are transiently insensitive to the action of antibiotics. It is assumed that these recalcitrant bacteria-termed persisters-contribute to antibiotic treatment failure and relapsing infections. Recently, we demonstrated that host reactive nitrogen species (RNS) transiently protect persisters against the action of ß-lactam antibiotics by delaying their regrowth within host cells. Here, we discovered that RNS intoxication of persisters also collaterally sensitizing them to fluoroquinolones during infection, explaining the higher efficiency of fluoroquinolones against intramacrophage Salmonella. By reducing bacterial respiration and the proton-motive force, RNS inactivate the AcrAB efflux machinery of persisters, facilitating the accumulation of fluoroquinolones intracellularly. Our work shows that target inactivity is not the sole reason for Salmonella persisters to withstand antibiotics during infection, with active efflux being a major contributor to survival. Thus, understanding how the host environment impacts persister physiology is critical to optimize antibiotics efficacy during infection.


Assuntos
Anormalidades Múltiplas , Antibacterianos , Fissura Palatina , Exoftalmia , Fluoroquinolonas , Microcefalia , Osteosclerose , Antibacterianos/farmacologia , Transporte Biológico , Monobactamas , Força Próton-Motriz
6.
PLoS Pathog ; 19(6): e1011451, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37315106

RESUMO

Both the bacterial flagellum and the evolutionary related injectisome encoded on the Salmonella pathogenicity island 1 (SPI-1) play crucial roles during the infection cycle of Salmonella species. The interplay of both is highlighted by the complex cross-regulation that includes transcriptional control of the flagellar master regulatory operon flhDC by HilD, the master regulator of SPI-1 gene expression. Contrary to the HilD-dependent activation of flagellar gene expression, we report here that activation of HilD resulted in a dramatic loss of motility, which was dependent on the presence of SPI-1. Single cell analyses revealed that HilD-activation triggers a SPI-1-dependent induction of the stringent response and a substantial decrease in proton motive force (PMF), while flagellation remains unaffected. We further found that HilD activation enhances the adhesion of Salmonella to epithelial cells. A transcriptome analysis revealed a simultaneous upregulation of several adhesin systems, which, when overproduced, phenocopied the HilD-induced motility defect. We propose a model where the SPI-1-dependent depletion of the PMF and the upregulation of adhesins upon HilD-activation enable flagellated Salmonella to rapidly modulate their motility during infection, thereby enabling efficient adhesion to host cells and delivery of effector proteins.


Assuntos
Salmonella typhimurium , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Virulência/genética , Ilhas Genômicas/genética , Força Próton-Motriz , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica
7.
Nature ; 567(7748): 341-346, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842654

RESUMO

Cancer-specific inhibitors that reflect the unique metabolic needs of cancer cells are rare. Here we describe Gboxin, a small molecule that specifically inhibits the growth of primary mouse and human glioblastoma cells but not that of mouse embryonic fibroblasts or neonatal astrocytes. Gboxin rapidly and irreversibly compromises oxygen consumption in glioblastoma cells. Gboxin relies on its positive charge to associate with mitochondrial oxidative phosphorylation complexes in a manner that is dependent on the proton gradient of the inner mitochondrial membrane, and it inhibits the activity of F0F1 ATP synthase. Gboxin-resistant cells require a functional mitochondrial permeability transition pore that regulates pH and thus impedes the accumulation of Gboxin in the mitochondrial matrix. Administration of a metabolically stable Gboxin analogue inhibits glioblastoma allografts and patient-derived xenografts. Gboxin toxicity extends to established human cancer cell lines of diverse organ origin, and shows that the increased proton gradient and pH in cancer cell mitochondria is a mode of action that can be targeted in the development of antitumour reagents.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Aloenxertos , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Transplante de Neoplasias , Especificidade de Órgãos , Força Próton-Motriz/efeitos dos fármacos , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Biol Chem ; 299(11): 105286, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742925

RESUMO

The twin arginine translocation (Tat) pathway transports folded protein across the cytoplasmic membrane in bacteria, archaea, and across the thylakoid membrane in plants as well as the inner membrane in some mitochondria. In plant chloroplasts, the Tat pathway utilizes the protonmotive force (PMF) to drive protein translocation. However, in bacteria, it has been shown that Tat transport depends only on the transmembrane electrical potential (Δψ) component of PMF in vitro. To investigate the comprehensive PMF requirement in Escherichia coli, we have developed the first real-time assay to monitor Tat transport utilizing the NanoLuc Binary Technology in E. coli spheroplasts. This luminescence assay allows for continuous monitoring of Tat transport with high-resolution, making it possible to observe subtle changes in transport in response to different treatments. By applying the NanoLuc assay, we report that, under acidic conditions (pH = 6.3), ΔpH, in addition to Δψ, contributes energetically to Tat transport in vivo in E. coli spheroplasts. These results provide novel insight into the mechanism of energy utilization by the Tat pathway.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Sistema de Translocação de Argininas Geminadas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico/fisiologia , Força Próton-Motriz , Medições Luminescentes , Técnicas Bacteriológicas/instrumentação , Técnicas Bacteriológicas/métodos , Metabolismo Energético , Esferoplastos/efeitos dos fármacos , Esferoplastos/metabolismo , Ionóforos/farmacologia
9.
Plant Cell Physiol ; 65(4): 537-550, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38150384

RESUMO

The proton motive force (pmf) generated across the thylakoid membrane rotates the Fo-ring of ATP synthase in chloroplasts. The pmf comprises two components: membrane potential (∆Ψ) and proton concentration gradient (∆pH). Acidification of the thylakoid lumen resulting from ∆pH downregulates electron transport in the cytochrome b6f complex. This process, known as photosynthetic control, is crucial for protecting photosystem I (PSI) from photodamage in response to fluctuating light. To optimize the balance between efficient photosynthesis and photoprotection, it is necessary to regulate pmf. Cyclic electron transport around PSI and pseudo-cyclic electron transport involving flavodiiron proteins contribute to the modulation of pmf magnitude. By manipulating the ratio between the two components of pmf, it is possible to modify the extent of photosynthetic control without affecting the pmf size. This adjustment can be achieved by regulating the movement of ions (such as K+ and Cl-) across the thylakoid membrane. Since ATP synthase is the primary consumer of pmf in chloroplasts, its activity must be precisely regulated to accommodate other mechanisms involved in pmf optimization. Although fragments of information about each regulatory process have been accumulated, a comprehensive understanding of their interactions is lacking. Here, I summarize current knowledge of the network for pmf regulation, mainly based on genetic studies.


Assuntos
Cloroplastos , Força Próton-Motriz , Cloroplastos/metabolismo , Cloroplastos/genética , Fotossíntese/genética , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/genética , Transporte de Elétrons
10.
Anal Chem ; 96(21): 8648-8656, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38716690

RESUMO

Microfluidic analytical tools play an important role in miniaturizing targeted proteomic assays for improved detection sensitivity, throughput, and automation. Microfluidic isoelectric focusing (IEF) can resolve proteoforms in lysate from low-to-single cell numbers. However, IEF assays often use carrier ampholytes (CAs) to establish a pH gradient for protein separation, presenting limitations like pH instability in the form of cathodic drift (migration of focused proteins toward the cathode). Immobilized pH gradient (IPG) gels reduce cathodic drift by covalently immobilizing the pH buffering components to a matrix. To our knowledge, efforts to implement IPG gels at the microscale have been limited to glass microdevices. To adapt IEF using IPGs to widely used microfluidic device materials, we introduce a polydimethylsiloxane (PDMS)-based microfluidic device and compare the microscale pH gradient stability of IEF established with IPGs, CAs, and a hybrid formulation of IPG gels and CAs (mixed-bed IEF). The PDMS-based IPG microfluidic device (µIPG) resolved analytes differing by 0.1 isoelectric point within a 3.5 mm separation lane over a 20 min focusing duration. During the 20 min duration, we observed markedly different cathodic drift velocities among the three formulations: 60.1 µm/min in CA-IEF, 2.5 µm/min in IPG-IEF (∼24-fold reduction versus CA-IEF), and 1.4 µm/min in mixed-bed IEF (∼43-fold reduction versus CA-IEF). Lastly, mixed-bed IEF in a PDMS device resolved green fluorescent protein (GFP) proteoforms from GFP-expressing human breast cancer cell lysate, thus establishing stability in lysate from complex biospecimens. µIPG is a promising and stable technique for studying proteoforms from small volumes.


Assuntos
Dimetilpolisiloxanos , Focalização Isoelétrica , Focalização Isoelétrica/métodos , Humanos , Dimetilpolisiloxanos/química , Concentração de Íons de Hidrogênio , Eletrodos , Técnicas Analíticas Microfluídicas/instrumentação , Força Próton-Motriz , Dispositivos Lab-On-A-Chip , Géis/química
11.
BMC Microbiol ; 24(1): 83, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468200

RESUMO

BACKGROUND: The interplay between gut microbiota (GM) and the metabolization of dietary components leading to the production of short-chain fatty acids (SCFAs) is affected by a range of factors including colonic pH and carbohydrate source. However, there is still only limited knowledge on how the GM activity and metabolite production in the gastrointestinal tract could be influenced by pH and the pH gradient increases along the colon. RESULTS: Here we investigate the effect of pH gradients corresponding to levels typically found in the colon on GM composition and metabolite production using substrates inulin, lactose, galactooligosaccharides (GOS), and fructooligosaccharide (FOS) in an in vitro colon setup. We investigated 3 different pH regimes (low, 5.2 increasing to 6.4; medium, 5.6 increasing to 6.8 and high, 6.0 increasing to 7.2) for each fecal inoculum and found that colonic pH gradients significantly influenced in vitro simulated GM structure, but the influence of fecal donor and substrate was more pronounced. Low pH regimes strongly influenced GM with the decreased relative abundance of Bacteroides spp. and increased Bifidobacterium spp. Higher in vitro simulated colonic pH promoted the production of SCFAs in a donor- and substrate-dependent manner. The butyrate producer Butyricimonas was enriched at higher pH conditions, where also butyrate production was increased for inulin. The relative abundance of Phascolarctobacterium, Bacteroides, and Rikenellaceae also increased at higher colonic pH, which was accompanied by increased production of propionate with GOS and FOS as substrates. CONCLUSIONS: Together, our results show that colonic substrates such as dietary fibres influence GM composition and metabolite production, not only by being selectively utilized by specific microbes, but also because of their SCFA production, which in turn also influences colonic pH and overall GM composition and activity. Our work provides details about the effect of the gradients of rising pH from the proximal to distal colon on fermenting dietary substrates in vitro and highlights the importance of considering pH in GM research.


Assuntos
Inulina , Prebióticos , Prebióticos/análise , Inulina/metabolismo , Força Próton-Motriz , Fermentação , Ácidos Graxos Voláteis/metabolismo , Butiratos/metabolismo , Fezes/microbiologia , Bacteroidetes
12.
NMR Biomed ; 37(5): e5102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38263680

RESUMO

A unique feature of the tumor microenvironment is extracellular acidosis in relation to intracellular milieu. Metabolic reprogramming in tumors results in overproduction of H+ ions (and lactate), which are extruded from the cells to support tumor survival and progression. As a result, the transmembrane pH gradient (ΔpH), representing the difference between intracellular pH (pHi) and extracellular pH (pHe), is posited to be larger in tumors compared with normal tissue. Controlling the transmembrane pH difference has promise as a potential therapeutic target in cancer as it plays an important role in regulating drug delivery into cells. The current study shows successful development of an MRI/MRSI-based technique that provides ΔpH imaging at submillimeter resolution. We applied this technique to image ΔpH in rat brains with RG2 and U87 gliomas, as well as in mouse brains with GL261 gliomas. pHi was measured with Amine and Amide Concentration-Independent Detection (AACID), while pHe was measured with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). The results indicate that pHi was slightly higher in tumors (7.40-7.43 in rats, 7.39-7.47 in mice) compared with normal brain (7.30-7.38 in rats, 7.32-7.36 in mice), while pHe was significantly lower in tumors (6.62-6.76 in rats, 6.74-6.84 in mice) compared with normal tissue (7.17-7.22 in rats, 7.20-7.21 in mice). As a result, ΔpH was higher in tumors (0.64-0.81 in rats, 0.62-0.65 in mice) compared with normal brain (0.13-0.16 in rats, 0.13-0.16 in mice). This work establishes an MRI/MRSI-based platform for ΔpH imaging at submillimeter resolution in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Ratos , Camundongos , Animais , Força Próton-Motriz , Neoplasias Encefálicas/metabolismo , Roedores , Glioma/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Concentração de Íons de Hidrogênio , Microambiente Tumoral
13.
Analyst ; 149(2): 435-441, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099462

RESUMO

Antenna, as a converter, could receive and convert signals from the outside world flexibly. Inspired by the behavior of antennas receiving external signals, we developed a pH-stimulated and aptamer-anchored Y-shaped DNA nanoantenna (termed pH-Apt-YNA) for sensitive and specific sensing of tumor extracellular pH gradients. The nanoantenna consisted of three functional nucleic acid sequences, an I-strand, Apt-Y-R and Y-L-G, where the I-strand endowed the DNA nanoantenna with the ability to receive and convert signals, the Apt-Y-R containing an aptamer fragment gave the DNA nanoantenna the ability to specifically anchor target tumor cells, and the complementarity of Y-L-G with the other two sequences ensured the stability of the DNA nanoantenna. Initially, the DNA nanoantenna was in a "silent" state, and rhodamine green was close to BHQ2, leading to suppressed signal emission. When the DNA nanoantenna anchored on the surface of target cancer cells through the aptamer recognition domain, the I-strand tended to fold into a hairpin-contained i-motif tetramer structure owing to the extracellular low pH stimuli, resulting in the DNA nanoantenna changing into an "active" state. In the meantime, rhodamine green moved far away from BHQ2, resulting in a strong signal output. The results demonstrate that the pH-Apt-YNA presents a sensitive pH sensing capacity within a narrow pH range of 6.2-7.4 and exhibits excellent specificity for the imaging of target cancer cell extracellular pH. Based on these advantages, we therefore anticipate that our facile design of the DNA nanoantenna with sensitive responsiveness provides a new way and great promise in the application of sensing pH-related physiological and pathological processes.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias , Humanos , Força Próton-Motriz , DNA/química , Rodaminas/química , Oligonucleotídeos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos
14.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678002

RESUMO

AIMS: This study aimed to develop an editable structural scaffold for improving drug development, including pharmacokinetics and pharmacodynamics of antibiotics by using synthetic compounds derived from a (hetero)aryl-quinoline hybrid scaffold. METHODS AND RESULTS: In this study, 18 CF3-substituted (hetero)aryl-quinoline hybrid molecules were examined for their potential antibacterial activity against Staphylococcus aureus by determining minimal inhibitory concentrations. These 18 synthetic compounds represent modifications to key regions of the quinoline N-oxide scaffold, enabling us to conduct a structure-activity relationship analysis for antibacterial potency. Among the compounds, 3 m exhibited potency against with both methicillin resistant S. aureus strains, as well as other Gram-positive bacteria, including Enterococcus faecalis and Bacillus subtilis. We demonstrated that 3 m disrupted the bacterial proton motive force (PMF) through monitoring the PMF and conducting the molecular dynamics simulations. Furthermore, we show that this mechanism of action, disrupting PMF, is challenging for S. aureus to overcome. We also validated this PMF inhibition mechanism of 3 m in an Acinetobacter baumannii strain with weaken lipopolysaccharides. Additionally, in Gram-negative bacteria, we demonstrated that 3 m exhibited a synergistic effect with colistin that disrupts the outer membrane of Gram-negative bacteria. CONCLUSIONS: Our approach to developing editable synthetic novel antibacterials underscores the utility of CF3-substituted (hetero)aryl-quinoline scaffold for designing compounds targeting the bacterial proton motive force, and for further drug development, including pharmacokinetics and pharmacodynamics.


Assuntos
Antibacterianos , Indóis , Testes de Sensibilidade Microbiana , Força Próton-Motriz , Quinolinas , Antibacterianos/farmacologia , Antibacterianos/química , Quinolinas/farmacologia , Quinolinas/química , Força Próton-Motriz/efeitos dos fármacos , Indóis/farmacologia , Indóis/química , Relação Estrutura-Atividade , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Simulação de Dinâmica Molecular , Acinetobacter baumannii/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34135124

RESUMO

Phosphate is an indispensable metabolite in a wide variety of cells and is involved in nucleotide and lipid synthesis, signaling, and chemical energy storage. Proton-coupled phosphate transporters within the major facilitator family are crucial for phosphate uptake in plants and fungi. Similar proton-coupled phosphate transporters have been found in different protozoan parasites that cause human diseases, in breast cancer cells with elevated phosphate demand, in osteoclast-like cells during bone reabsorption, and in human intestinal Caco2BBE cells for phosphate homeostasis. However, the mechanism of proton-driven phosphate transport remains unclear. Here, we demonstrate in a eukaryotic, high-affinity phosphate transporter from Piriformospora indica (PiPT) that deprotonation of aspartate 324 (D324) triggers phosphate release. Quantum mechanics/molecular mechanics molecular dynamics simulations combined with free energy sampling have been employed here to identify the proton transport pathways from D324 upon the transition from the occluded structure to the inward open structure and phosphate release. The computational insights so gained are then corroborated by studies of D45N and D45E amino acid substitutions via mutagenesis experiments. Our findings confirm the function of the structurally predicted cytosolic proton exit tunnel and suggest insights into the role of the titratable phosphate substrate.


Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Prótons , Cristalografia por Raios X , Citosol/metabolismo , Proteínas Fúngicas/química , Simulação de Dinâmica Molecular , Mutagênese , Proteínas de Transporte de Fosfato/química , Fosfatos/metabolismo , Conformação Proteica , Força Próton-Motriz
16.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753518

RESUMO

Human mitochondrial ATP synthase is a molecular machine with a rotary action bound in the inner organellar membranes. Turning of the rotor, driven by a proton motive force, provides energy to make ATP from ADP and phosphate. Among the 29 component proteins of 18 kinds, ATP6 and ATP8 are mitochondrial gene products, and the rest are nuclear gene products that are imported into the organelle. The ATP synthase is assembled from them via intermediate modules representing the main structural elements of the enzyme. One such module is the c8-ring, which provides the membrane sector of the enzyme's rotor, and its assembly is influenced by another transmembrane (TMEM) protein, TMEM70. We have shown that subunit c interacts with TMEM70 and another hitherto unidentified mitochondrial transmembrane protein, TMEM242. Deletion of TMEM242, similar to deletion of TMEM70, affects but does not completely eliminate the assembly of ATP synthase, and to a lesser degree the assembly of respiratory enzyme complexes I, III, and IV. Deletion of TMEM70 and TMEM242 together prevents assembly of ATP synthase and the impact on complex I is enhanced. Removal of TMEM242, but not of TMEM70, also affects the introduction of subunits ATP6, ATP8, j, and k into the enzyme. TMEM70 and TMEM242 interact with the mitochondrial complex I assembly (the MCIA) complex that supports assembly of the membrane arm of complex I. The interactions of TMEM70 and TMEM242 with MCIA could be part of either the assembly of ATP synthase and complex I or the regulation of their levels.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Domínio Catalítico , Complexo I de Transporte de Elétrons/química , Deleção de Genes , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/química , Força Próton-Motriz , Rotação
17.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782468

RESUMO

The structure has been determined by electron cryomicroscopy of the adenosine triphosphate (ATP) synthase from Mycobacterium smegmatis This analysis confirms features in a prior description of the structure of the enzyme, but it also describes other highly significant attributes not recognized before that are crucial for understanding the mechanism and regulation of the mycobacterial enzyme. First, we resolved not only the three main states in the catalytic cycle described before but also eight substates that portray structural and mechanistic changes occurring during a 360° catalytic cycle. Second, a mechanism of auto-inhibition of ATP hydrolysis involves not only the engagement of the C-terminal region of an α-subunit in a loop in the γ-subunit, as proposed before, but also a "fail-safe" mechanism involving the b'-subunit in the peripheral stalk that enhances engagement. A third unreported characteristic is that the fused bδ-subunit contains a duplicated domain in its N-terminal region where the two copies of the domain participate in similar modes of attachment of the two of three N-terminal regions of the α-subunits. The auto-inhibitory plus the associated "fail-safe" mechanisms and the modes of attachment of the α-subunits provide targets for development of innovative antitubercular drugs. The structure also provides support for an observation made in the bovine ATP synthase that the transmembrane proton-motive force that provides the energy to drive the rotary mechanism is delivered directly and tangentially to the rotor via a Grotthuss water chain in a polar L-shaped tunnel.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias , Bovinos , Microscopia Crioeletrônica , Hidrólise , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Proteínas/química , Força Próton-Motriz , Tuberculose/microbiologia , Proteína Inibidora de ATPase
18.
Med Res Rev ; 43(4): 1068-1090, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36896761

RESUMO

Novel antibacterial therapies are urgently required to tackle the increasing number of multidrug-resistant pathogens. Identification of new antimicrobial targets is critical to avoid possible cross-resistance issues. Bacterial proton motive force (PMF), an energetic pathway located on the bacterial membrane, crucially regulates various biological possesses such as adenosine triphosphate synthesis, active transport of molecules, and rotation of bacterial flagella. Nevertheless, the potential of bacterial PMF as an antibacterial target remains largely unexplored. The PMF generally comprises electric potential (ΔΨ) and transmembrane proton gradient (ΔpH). In this review, we present an overview of bacterial PMF, including its functions and characterizations, highlighting the representative antimicrobial agents that specifically target either ΔΨ or ΔpH. At the same time, we also discuss the adjuvant potential of bacterial PMF-targeting compounds. Lastly, we highlight the value of PMF disruptors in preventing the transmission of antibiotic resistance genes. These findings suggest that bacterial PMF represents an unprecedented target, providing a comprehensive approach to controlling antimicrobial resistance.


Assuntos
Anti-Infecciosos , Força Próton-Motriz , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana
19.
Plant Cell ; 32(5): 1589-1609, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169961

RESUMO

Protein folding is a complex cellular process often assisted by chaperones, but it can also be facilitated by interactions with lipids. Disulfide bond formation is a common mechanism to stabilize a protein. This can help maintain functionality amid changes in the biochemical milieu, including those relating to energy-transducing membranes. Plastidic Type I Signal Peptidase 1 (Plsp1) is an integral thylakoid membrane signal peptidase that requires an intramolecular disulfide bond for in vitro activity. We have investigated the interplay between disulfide bond formation, lipids, and pH in the folding and activity of Plsp1. By combining biochemical approaches with a genetic complementation assay using Arabidopsis thaliana plants, we provide evidence that interactions with lipids in the thylakoid membrane have reconstitutive chaperoning activity toward Plsp1. Further, the disulfide bridge appears to prevent an inhibitory conformational change resulting from proton motive force-mimicking pH conditions. Broader implications related to the folding of proteins in energy-transducing membranes are discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Membranas Intracelulares/enzimologia , Chaperonas Moleculares/metabolismo , Força Próton-Motriz , Serina Endopeptidases/metabolismo , Tilacoides/enzimologia , Proteínas de Arabidopsis/química , Ritmo Circadiano/efeitos dos fármacos , Cisteína/metabolismo , Dissulfetos/metabolismo , Ditiotreitol/farmacologia , Estabilidade Enzimática , Escherichia coli/metabolismo , Genes Supressores , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Mutação/genética , Oxirredução , Conformação Proteica , Serina Endopeptidases/química
20.
EMBO Rep ; 22(12): e52727, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34595823

RESUMO

The classical view of oxidative phosphorylation is that a proton motive force (PMF) generated by the respiratory chain complexes fuels ATP synthesis via ATP synthase. Yet, under glycolytic conditions, ATP synthase in its reverse mode also can contribute to the PMF. Here, we dissected these two functions of ATP synthase and the role of its inhibitory factor 1 (IF1) under different metabolic conditions. pH profiles of mitochondrial sub-compartments were recorded with high spatial resolution in live mammalian cells by positioning a pH sensor directly at ATP synthase's F1 and FO subunits, complex IV and in the matrix. Our results clearly show that ATP synthase activity substantially controls the PMF and that IF1 is essential under OXPHOS conditions to prevent reverse ATP synthase activity due to an almost negligible ΔpH. In addition, we show how this changes lateral, transmembrane, and radial pH gradients in glycolytic and respiratory cells.


Assuntos
Membranas Mitocondriais , Força Próton-Motriz , Trifosfato de Adenosina/metabolismo , Animais , Mamíferos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA