Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.209
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673932

RESUMO

Platinum-containing chemotherapeutic drugs are efficacious in many forms of cancer but are dose-restricted by serious side effects, of which peripheral neuropathy induced by oxidative-nitrosative-stress-mediated chain reactions is most disturbing. Recently, hope has been raised regarding the catalytic antioxidants mangafodipir (MnDPDP) and calmangafodipir [Ca4Mn(DPDP)5; PledOx®], which by mimicking mitochondrial manganese superoxide dismutase (MnSOD) may be expected to overcome oxaliplatin-associated chemotherapy-induced peripheral neuropathy (CIPN). Unfortunately, two recent phase III studies (POLAR A and M trials) applying Ca4Mn(DPDP)5 in colorectal cancer (CRC) patients receiving multiple cycles of FOLFOX6 (5-FU + oxaliplatin) failed to demonstrate efficacy. Instead of an anticipated 50% reduction in the incidence of CIPN in patients co-treated with Ca4Mn(DPDP)5, a statistically significant increase of about 50% was seen. The current article deals with confusing differences between early and positive findings with MnDPDP in comparison to the recent findings with Ca4Mn(DPDP)5. The POLAR failure may also reveal important mechanisms behind oxaliplatin-associated CIPN itself. Thus, exacerbated neurotoxicity in patients receiving Ca4Mn(DPDP)5 may be explained by redox interactions between Pt2+ and Mn2+ and subtle oxidative-nitrosative chain reactions. In peripheral sensory nerves, Pt2+ presumably leads to oxidation of the Mn2+ from Ca4Mn(DPDP)5 as well as from Mn2+ in MnSOD and other endogenous sources. Thereafter, Mn3+ may be oxidized by peroxynitrite (ONOO-) into Mn4+, which drives site-specific nitration of tyrosine (Tyr) 34 in the MnSOD enzyme. Conformational changes of MnSOD then lead to the closure of the superoxide (O2•-) access channel. A similar metal-driven nitration of Tyr74 in cytochrome c will cause an irreversible disruption of electron transport. Altogether, these events may uncover important steps in the mechanism behind Pt2+-associated CIPN. There is little doubt that the efficacy of MnDPDP and its therapeutic improved counterpart Ca4Mn(DPDP)5 mainly depends on their MnSOD-mimetic activity when it comes to their potential use as rescue medicines during, e.g., acute myocardial infarction. However, pharmacokinetic considerations suggest that the efficacy of MnDPDP on Pt2+-associated neurotoxicity depends on another action of this drug. Electron paramagnetic resonance (EPR) studies have demonstrated that Pt2+ outcompetes Mn2+ and endogenous Zn2+ in binding to fodipir (DPDP), hence suggesting that the previously reported protective efficacy of MnDPDP against CIPN is a result of chelation and elimination of Pt2+ by DPDP, which in turn suggests that Mn2+ is unnecessary for efficacy when it comes to oxaliplatin-associated CIPN.


Assuntos
Antineoplásicos , Manganês , Oxaliplatina , Doenças do Sistema Nervoso Periférico , Platina , Humanos , Antineoplásicos/efeitos adversos , Ácido Edético/análogos & derivados , Manganês/efeitos adversos , Estresse Nitrosativo/efeitos dos fármacos , Oxaliplatina/efeitos adversos , Oxaliplatina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Platina/efeitos adversos , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Fosfato de Piridoxal/metabolismo , Superóxido Dismutase/metabolismo , Ensaios Clínicos Fase III como Assunto
2.
Mol Microbiol ; 116(4): 1232-1240, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34498310

RESUMO

YggS is a pyridoxal 5'-phosphate (PLP)-binding protein of the conserved COG0325 family. Despite a connection with vitamin B6 homeostasis in many species, neither a precise biochemical activity nor the molecular mechanism of how YggS contributes to cellular function has been described. In a transposon mutagenesis screen, we found that insertions in aspC (encoding a PLP-dependent aspartate aminotransferase, EC 2.6.1.1) in a Salmonella enterica strain lacking yggS caused a synthetic growth defect, which could be rescued by the addition of exogenous aspartate. Characterization of spontaneous suppressors which improved the growth of the yggS aspC double mutant suggested that this synthetic aspartate limitation was dependent on TyrB, a PLP-dependent aromatic amino acid aminotransferase (EC 2.6.1.57). Genetic and biochemical data were consistent with the hypothesis that TyrB activity was inhibited by accumulated pyridoxine 5'-phosphate and α-keto acids caused by a yggS mutation. This study provides data consistent with a working model implicating YggS in modulating concentrations of B6 vitamers via transamination.


Assuntos
Ácido Aspártico/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Transaminases/metabolismo , Cetoácidos/metabolismo , Mutagênese , Mutagênese Insercional , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Infecções por Salmonella/microbiologia , Vitamina B 6/metabolismo
3.
Mol Microbiol ; 113(1): 270-284, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677193

RESUMO

The YggS/Ybl036c/PLPBP family includes conserved pyridoxal 5'-phosphate (PLP)-binding proteins that play a critical role in the homeostasis of vitamin B6 and amino acids. Disruption of members of this family causes pleiotropic effects in many organisms by unknown mechanisms. In Escherichia coli, conditional lethality of the yggS and glyA (encoding serine hydroxymethyltransferase) has been described, but the mechanism of lethality was not determined. Strains lacking yggS and serA (3-phosphoglycerate dehydrogenase) were conditionally lethality in the M9-glucose medium supplemented with Gly. Analyses of vitamin B6 pools found the high-levels of pyridoxine 5'-phosphate (PNP) in the two yggS mutants. Growth defects of the double mutants could be eliminated by overexpressing PNP/PMP oxidase (PdxH) to decrease the PNP levels. Further, a serA pdxH strain, which accumulates PNP in the presence of yggS, exhibited similar phenotype to serA yggS mutant. Together these data suggested the inhibition of the glycine cleavage (GCV) system caused the synthetic lethality. Biochemical assays confirmed that PNP disrupts the GCV system by competing with PLP in GcvP protein. Our data are consistent with a model in which PNP-dependent inhibition of the GCV system causes the conditional lethality observed in the glyA yggS or serA yggS mutants.


Assuntos
Aminoácido Oxirredutases/genética , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexos Multienzimáticos/genética , Fosfato de Piridoxal/análogos & derivados , Transferases/genética , Proteínas de Transporte/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Fosfato de Piridoxal/metabolismo , Mutações Sintéticas Letais
4.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33218995

RESUMO

Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6, essential for cellular function in all domains of life. In many organisms, such as Salmonella enterica serovar Typhimurium and Escherichia coli, this cofactor can be synthesized de novo or salvaged from B6 vitamers in the environment. Unexpectedly, S. enterica strains blocked in PLP biosynthesis were able to use exogenous PLP and pyridoxine 5'-phosphate (PNP) as the source of this required cofactor, while E. coli strains of the same genotype could not. Transposon mutagenesis found that phoN was essential for the salvage of PLP and PNP under the conditions tested. phoN encodes a class A nonspecific acid phosphatase (EC 3.1.3.2) that is transcriptionally regulated by the PhoPQ two-component system. The periplasmic location of PhoN was essential for PLP and PNP salvage, and in vitro assays confirmed PhoN has phosphatase activity with PLP and PNP as substrates. The data suggest that PhoN dephosphorylates B6 vitamers, after which they enter the cytoplasm and are phosphorylated by kinases of the canonical PLP salvage pathway. The connection of phoN with PhoPQ and the broad specificity of the gene product suggest S. enterica is exploiting a moonlighting activity of PhoN for PLP salvage.IMPORTANCE Nutrient salvage is a strategy used by species across domains of life to conserve energy. Many organisms are unable to synthesize all required metabolites de novo and must rely exclusively on salvage. Others supplement de novo synthesis with the ability to salvage. This study identified an unexpected mechanism present in S. enterica that allows salvage of phosphorylated B6 vitamers. In vivo and in vitro data herein determined that the periplasmic phosphatase PhoN can facilitate the salvage of PLP and PNP. We suggest a mechanistic working model of PhoN-dependent utilization of PLP and PNP and discuss the general role of promiscuous phosphatases and kinases in organismal fitness.


Assuntos
Proteínas de Bactérias/metabolismo , Periplasma/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Fosfato de Piridoxal/análogos & derivados , Salmonella enterica/enzimologia , Escherichia coli/genética , Fosfato de Piridoxal/metabolismo , Salmonella enterica/genética
5.
Clin Sci (Lond) ; 135(3): 495-513, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33463682

RESUMO

Graft-versus-host disease (GVHD) is a severe inflammatory response arising from allogeneic haematopoietic stem cell transplantation. Previous studies revealed that antagonism of the P2X7 receptor with Brilliant Blue G (BBG) reduced liver GVHD but did not alter clinical GVHD in a humanised mouse model. Therefore, the present study aimed to trial a modified injection regime using more frequent dosing of BBG to improve outcomes in this model of GVHD. NOD-scid IL2Rγnull (NSG) mice were injected intraperitoneally (i.p.) with 10 × 106 human peripheral blood mononuclear cells (hPBMCs) (day 0), then daily with BBG (50 mg/kg) or saline (days 0-10). BBG significantly reduced clinical score, mortality and histological GVHD compared with saline treatment (endpoint). BBG significantly increased proportions of human regulatory T cells (Tregs) and human B cells and reduced serum human interferon-γ compared with saline treatment prior to development of clinical GVHD (day 21). To confirm the therapeutic benefit of P2X7 antagonism, NSG mice were injected i.p. with 10 × 106 hPBMCs (day 0), then daily with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (300 mg/kg) or saline (days 0-10). PPADS increased human Treg proportions compared with saline treatment (day 21), but potential clinical benefits were confounded by increased weight loss with this antagonist. To investigate the role of P2X7 antagonism on Treg survival, hPBMCs were cultured in reduced serum conditions to promote cell death. BBG increased proportions of Tregs (and B cells) compared with saline under these conditions. In conclusion, P2X7 antagonism reduces clinical and histological GVHD in a humanised mouse model corresponding to an increase in human Tregs.


Assuntos
Doença Enxerto-Hospedeiro/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Corantes de Rosanilina/farmacologia , Adulto , Animais , Linfócitos B , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucócitos Mononucleares , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Fosfato de Piridoxal/administração & dosagem , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Corantes de Rosanilina/administração & dosagem , Linfócitos T Reguladores/efeitos dos fármacos
6.
Biol Pharm Bull ; 44(3): 458-460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642556

RESUMO

The functional role of ATP released from sympathetic nerve terminals was examined in isolated guinea pig ventricular papillary muscles. The contractile force of papillary muscles was increased by field electrical stimulation of sympathetic nerve endings. This increase was attenuated by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) or suramin, blockers of the P2X receptor, and was abolished by propranolol and prazosin. PPADS, suramin, and ATP affected neither the basal contractile force nor the positive inotropic effect of noradrenaline. These results provide functional evidence that ATP released from sympathetic nerve terminals enhances noradrenaline release and contributes to sympathetic nerve-induced inotropy.


Assuntos
Trifosfato de Adenosina/fisiologia , Retroalimentação Fisiológica , Músculos Papilares/fisiologia , Sistema Nervoso Simpático , Função Ventricular , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Cobaias , Ventrículos do Coração , Masculino , Contração Muscular , Norepinefrina/fisiologia , Prazosina/farmacologia , Propranolol/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Suramina/farmacologia
7.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769443

RESUMO

Several variants of the enzyme pyridox(am)ine 5'-phosphate oxidase (PNPO), responsible for a rare form of vitamin B6-dependent neonatal epileptic encephalopathy known as PNPO deficiency (PNPOD), have been reported. However, only a few of them have been characterised with respect to their structural and functional properties, despite the fact that the knowledge of how variants affect the enzyme may clarify the disease mechanism and improve treatment. Here, we report the characterisation of the catalytic, allosteric and structural properties of recombinantly expressed D33V, R161C, P213S, and E50K variants, among which D33V (present in approximately 10% of affected patients) is one of the more common variants responsible for PNPOD. The D33V and E50K variants have only mildly altered catalytic properties. In particular, the E50K variant, given that it has been found on the same chromosome with other known pathogenic variants, may be considered non-pathogenic. The P213S variant has lower thermal stability and reduced capability to bind the FMN cofactor. The variant involving Arg161 (R161C) largely decreases the affinity for the pyridoxine 5'-phosphate substrate and completely abolishes the allosteric feedback inhibition exerted by the pyridoxal 5'-phosphate product.


Assuntos
Encefalopatias Metabólicas/genética , Epilepsia/genética , Hipóxia-Isquemia Encefálica/genética , Mutação , Fosfato de Piridoxal/análogos & derivados , Piridoxaminafosfato Oxidase/deficiência , Piridoxaminafosfato Oxidase/genética , Convulsões/genética , Vitamina B 6/metabolismo , Encefalopatias Metabólicas/metabolismo , Encefalopatias Metabólicas/patologia , Epilepsia/metabolismo , Epilepsia/patologia , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Recém-Nascido , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Fosfato de Piridoxal/metabolismo , Piridoxaminafosfato Oxidase/metabolismo , Convulsões/metabolismo , Convulsões/patologia , Relação Estrutura-Atividade
8.
J Bacteriol ; 202(22)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900833

RESUMO

YggS (COG0325) is a pyridoxal 5'-phosphate (PLP)-binding protein proposed to be involved in homeostasis of B6 vitamers. In Salmonella enterica, lack of yggS resulted in phenotypes that were distinct and others that were similar to those of a yggS mutant of Escherichia coli Like other organisms, yggS mutants of S. enterica accumulate endogenous pyridoxine 5'-phosphate (PNP). Data herein show that strains lacking YggS accumulated ∼10-fold more PLP in growth medium than a parental strain. The deoxyxylulose 5-phosphate-dependent biosynthetic pathway for PLP and the PNP/pyridoxamine 5'-phosphate (PMP) oxidase credited with interconverting B6 vitamers were replaced with a single PLP synthase from Saccharomyces cerevisiae The impact of a yggS deletion on the intracellular and extracellular levels of B6 vitamers in this restructured strain supported a role for PdxH in PLP homeostasis and led to a general model for YggS function in PLP-PMP cycling. Our findings uncovered broader consequences of a yggS mutation than previously reported and suggest that the accumulation of PNP is not a direct effect of lacking YggS but rather a downstream consequence.IMPORTANCE Pyridoxal 5'-phosphate (PLP) is an essential cofactor for enzymes in all domains of life. Perturbations in PLP or B6 vitamer content can be detrimental, notably causing B6-dependent epilepsy in humans. YggS homologs are broadly conserved and have been implicated in altered levels of B6 vitamers in multiple organisms. The biochemical activity of YggS, expected to be conserved across domains, is not yet known. Herein, a simplified heterologous pathway minimized metabolic variables and allowed the dissection of this system to generate new metabolic knowledge that will be relevant to understanding YggS.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Liases/metabolismo , Proteínas de Transporte/metabolismo , Fosfato de Piridoxal/análogos & derivados , Proteínas de Saccharomyces cerevisiae/metabolismo , Salmonella enterica/metabolismo , Vitamina B 6/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Carbono-Nitrogênio Liases/genética , Proteínas de Transporte/genética , Homeostase , Mutação , Fosfato de Piridoxal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Salmonella enterica/genética
9.
J Bacteriol ; 202(12)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32253339

RESUMO

Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and an essential cofactor in all organisms. In Escherichia coli, PLP is synthesized via the deoxyxylulose 5-phosphate (DXP)-dependent pathway that includes seven enzymatic steps and generates pyridoxine 5'-phosphate as an intermediate. Additionally, E. coli is able to salvage pyridoxal, pyridoxine, and pyridoxamine B6 vitamers to produce PLP using kinases PdxK/PdxY and pyridox(am)ine phosphate oxidase (PdxH). We found that E. coli strains blocked in PLP synthesis prior to the formation of pyridoxine 5'-phosphate (PNP) required significantly less exogenous pyridoxal (PL) than strains lacking pdxH and identified the conversion of PL to pyridoxine (PN) during cultivation to be the cause. Our data showed that PdxI, shown to have PL reductase activity in vitro, was required for the efficient salvage of PL in E. coli The pdxI+E. coli strains converted exogenous PL to PN during growth, while pdxI mutants did not. In total, the data herein demonstrated that PdxI is a critical enzyme in the salvage of PL by E. coliIMPORTANCE The biosynthetic pathway of pyridoxal 5'-phosphate (PLP) has extensively been studied in Escherichia coli, yet limited information is available about the vitamin B6 salvage pathway. We show that the protein PdxI (YdbC) is the primary pyridoxal (PL) reductase in E. coli and is involved in the salvage of PL. The orthologs of PdxI occur in a wide range of bacteria and plants, suggesting that PL reductase in the B6 salvage pathway is more widely distributed than previously expected.


Assuntos
Escherichia coli/enzimologia , Oxirredutases/metabolismo , Piridoxal/biossíntese , Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases/genética , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo
10.
J Struct Biol ; 212(3): 107645, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045383

RESUMO

Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6 and a cofactor for more than 140 enzymes. This coenzyme plays a pivotal role in catalysis of various enzymatic reactions that are critical for the survival of organisms. Entamoeba histolytica depends on the uptake of pyridoxal (PL), a B6 vitamer from the external environment which is then phosphorylated by pyridoxal kinase (EhPLK) to form PLP via the salvage pathway. E. histolytica cannot synthesise vitamin B6de-novo, and also lacks pyridoxine 5'-phosphate oxidase, a salvage pathway enzyme required to produce PLP from pyridoxine phosphate (PNP) and pyridoxamine phosphate (PMP). Analysing the importance of PLK in E. histolytica, we have determined the high-resolution crystal structures of the dimeric pyridoxal kinase in apo, ADP-bound, and PLP-bound states. These structures provided a snapshot of the transition state and help in understanding the reaction mechanism in greater detail. The EhPLK structure significantly differed from the human homologue at its PLP binding site, and the phylogenetic study also revealed its divergence from human PLK. Further, gene regulation of EhPLK using sense and antisense RNA showed that any change in optimal level is harmful to the pathogen. Biochemical and in vivo studies unveiled EhPLK to be essential for this pathogen, while the molecular differences with human PLK structure can be exploited for the structure-guided design of EhPLK inhibitors.


Assuntos
Entamoeba histolytica/metabolismo , Piridoxal Quinase/metabolismo , Sítios de Ligação/fisiologia , Catálise , Fosforilação/fisiologia , Filogenia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Piridoxamina/análogos & derivados , Piridoxamina/metabolismo , Piridoxaminafosfato Oxidase/metabolismo , Vitamina B 6/metabolismo
11.
J Biol Chem ; 294(43): 15593-15603, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31484724

RESUMO

In Escherichia coli, the synthesis of pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, takes place through the so-called deoxyxylulose 5-phosphate-dependent pathway, whose last step is pyridoxine 5'-phosphate (PNP) oxidation to PLP, catalyzed by the FMN-dependent enzyme PNP oxidase (PNPOx). This enzyme plays a pivotal role in controlling intracellular homeostasis and bioavailability of PLP. PNPOx has been proposed to undergo product inhibition resulting from PLP binding at the active site. PLP has also been reported to bind tightly at a secondary site, apparently without causing PNPOx inhibition. The possible location of this secondary site has been indicated by crystallographic studies as two symmetric surface pockets present on the PNPOx homodimer, but this site has never been verified by other experimental means. Here, we demonstrate, through kinetic measurements, that PLP inhibition is actually of a mixed-type nature and results from binding of this vitamer at an allosteric site. This interpretation was confirmed by the characterization of a mutated PNPOx form, in which substrate binding at the active site is heavily hampered but PLP binding is preserved. Structural and functional connections between the active site and the allosteric site were indicated by equilibrium binding experiments, which revealed different PLP-binding stoichiometries with WT and mutant PNPOx forms. These observations open up new horizons on the mechanisms that regulate E. coli PNPOx, which may have commonalities with the mechanisms regulating human PNPOx, whose crucial role in vitamin B6 metabolism and epilepsy is well-known.


Assuntos
Escherichia coli/enzimologia , Retroalimentação Fisiológica , Piridoxaminafosfato Oxidase/antagonistas & inibidores , Regulação Alostérica , Sítios de Ligação , Biocatálise , Cinética , Modelos Moleculares , Oxirredução , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Piridoxaminafosfato Oxidase/química , Piridoxaminafosfato Oxidase/metabolismo , Análise Espectral
12.
Cereb Cortex ; 29(8): 3363-3379, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30169554

RESUMO

Subplate (SP) neurons exhibit spontaneous plateau depolarizations mediated by connexin hemichannels. Postnatal (P1-P6) mice show identical voltage pattern and drug-sensitivity as observed in slices from human fetal cortex; indicating that the mouse is a useful model for studying the cellular physiology of the developing neocortex. In mouse SP neurons, spontaneous plateau depolarizations were insensitive to blockers of: synaptic transmission (glutamatergic, GABAergic, or glycinergic), pannexins (probenecid), or calcium channels (mibefradil, verapamil, diltiazem); while highly sensitive to blockers of gap junctions (octanol), hemichannels (La3+, lindane, Gd3+), or glial metabolism (DLFC). Application of La3+ (100 µM) does not exert its effect on electrical activity by blocking calcium channels. Intracellular application of Gd3+ determined that Gd3+-sensitive pores (putative connexin hemichannels) reside on the membrane of SP neurons. Immunostaining of cortical sections (P1-P6) detected connexins 26, and 45 in neurons, but not connexins 32 and 36. Vimentin-positive glial cells were detected in the SP zone suggesting a potential physiological interaction between SP neurons and radial glia. SP spontaneous activity was reduced by blocking glial metabolism with DFLC or by blocking purinergic receptors by PPADS. Connexin hemichannels and ATP release from vimentin-positive glial cells may underlie spontaneous plateau depolarizations in the developing mammalian cortex.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Potenciais de Ação , Animais , Bicuculina/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Citratos , Conexina 26 , Conexinas/metabolismo , Células Ependimogliais/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Gadolínio/farmacologia , Junções Comunicantes/metabolismo , Glicinérgicos/farmacologia , Hexaclorocicloexano/farmacologia , Lantânio/farmacologia , Camundongos , Neurônios/metabolismo , Octanóis/farmacologia , Técnicas de Patch-Clamp , Probenecid/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Quinoxalinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Estricnina/farmacologia , Valina/análogos & derivados , Valina/farmacologia , Vimentina/metabolismo , Proteína beta-1 de Junções Comunicantes , Proteína delta-2 de Junções Comunicantes
13.
J Biol Chem ; 293(33): 12820-12831, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29997254

RESUMO

ATP is the native agonist for cell-surface ligand-gated P2X receptor (P2XR) cation channels. The seven mammalian subunits (P2X1-7) form homo- and heterotrimeric P2XRs having significant physiological and pathophysiological roles. Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) is an effective antagonist at most mammalian P2XRs. Lys-249 in the extracellular domain of P2XR has previously been shown to contribute to PPADS action. To map this antagonist site, we generated human P2X1R cysteine substitutions within a circle centered at Lys-249 (with a radius of 13 Å equal to the length of PPADS). We hypothesized that cysteine substitutions of residues involved in PPADS binding would (i) reduce cysteine accessibility (measured by MTSEA-biotinylation), (ii) exhibit altered PPADS affinity, and (iii) quench the fluorescence of cysteine residues modified with MTS-TAMRA. Of the 26 residues tested, these criteria were met by only four (Lys-70, Asp-170, Lys-190, and Lys-249), defining the antagonist site, validating molecular docking results, and thereby providing the first experimentally supported model of PPADS binding. This binding site overlapped with the ATP-binding site, indicating that PPADS sterically blocks agonist access. Moreover, PPADS induced a conformational change at the cysteine-rich head (CRH) region adjacent to the orthosteric ATP-binding pocket. The importance of this movement was confirmed by demonstrating that substitution introducing positive charge present in the CRH of the hP2X1R causes PPADS sensitivity at the normally insensitive rat P2X4R. This study provides a template for developing P2XR subtype selectivity based on the differences among the mammalian subunits around the orthosteric P2XR-binding site and the CRH.


Assuntos
Modelos Moleculares , Antagonistas do Receptor Purinérgico P2X/química , Fosfato de Piridoxal/análogos & derivados , Receptores Purinérgicos P2X1/química , Animais , Sítios de Ligação , Humanos , Fosfato de Piridoxal/química , Ratos , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Xenopus laevis
14.
Glia ; 67(5): 915-934, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30632636

RESUMO

Optogenetics has been widely expanded to enhance or suppress neuronal activity and it has been recently applied to glial cells. Here, we have used a new approach based on selective expression of melanopsin, a G-protein-coupled photopigment, in astrocytes to trigger Ca2+ signaling. Using the genetically encoded Ca2+ indicator GCaMP6f and two-photon imaging, we show that melanopsin is both competent to stimulate robust IP3-dependent Ca2+ signals in astrocyte fine processes, and to evoke an ATP/Adenosine-dependent transient boost of hippocampal excitatory synaptic transmission. Additionally, under low-frequency light stimulation conditions, melanopsin-transfected astrocytes can trigger long-term synaptic changes. In vivo, melanopsin-astrocyte activation enhances episodic-like memory, suggesting melanopsin as an optical tool that could recapitulate the wide range of regulatory actions of astrocytes on neuronal networks in behaving animals. These results describe a novel approach using melanopsin as a precise trigger for astrocytes that mimics their endogenous G-protein signaling pathways, and present melanopsin as a valuable optical tool for neuron-glia studies.


Assuntos
Astrócitos/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Optogenética/métodos , Opsinas de Bastonetes/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Compostos Azo/farmacologia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/citologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Pirimidinas/farmacologia , Opsinas de Bastonetes/genética , Potenciais Sinápticos/fisiologia , Triazóis/farmacologia , Xantenos/farmacologia
15.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902856

RESUMO

Escherichia coli YggS (COG0325) is a member of the highly conserved pyridoxal 5'-phosphate (PLP)-binding protein (PLPBP) family. Recent studies suggested a role for this protein family in the homeostasis of vitamin B6 and amino acids. The deletion or mutation of a member of this protein family causes pleiotropic effects in many organisms and is causative of vitamin B6-dependent epilepsy in humans. To date, little has been known about the mechanism by which lack of YggS results in these diverse phenotypes. In this study, we determined that the pyridoxine (PN) sensitivity observed in yggS-deficient E. coli was caused by the pyridoxine 5'-phosphate (PNP)-dependent overproduction of Val, which is toxic to E. coli The data suggest that the yggS mutation impacts Val accumulation by perturbing the biosynthetic of Thr from homoserine (Hse). Exogenous Hse inhibited the growth of the yggS mutant, caused further accumulation of PNP, and increased the levels of some intermediates in the Thr-Ile-Val metabolic pathways. Blocking the Thr biosynthetic pathway or decreasing the intracellular PNP levels abolished the perturbations of amino acid metabolism caused by the exogenous PN and Hse. Our data showed that a high concentration of intracellular PNP is the root cause of at least some of the pleiotropic phenotypes described for a yggS mutant of E. coliIMPORTANCE Recent studies showed that deletion or mutation of members of the YggS protein family causes pleiotropic effects in many organisms. Little is known about the causes, mechanisms, and consequences of these diverse phenotypes. It was previously shown that yggS mutations in E. coli result in the accumulation of PNP and some metabolites in the Ile/Val biosynthetic pathway. This work revealed that some exogenous stresses increase the aberrant accumulation of PNP in the yggS mutant. In addition, the current report provides evidence indicating that some, but not all, of the phenotypes of the yggS mutant in E. coli are due to the elevated PNP level. These results will contribute to continuing efforts to determine the molecular functions of the members of the YggS protein family.


Assuntos
Aminoácidos/biossíntese , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfato de Piridoxal/análogos & derivados , Vias Biossintéticas/genética , Proteínas de Transporte/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Técnicas de Inativação de Genes , Redes e Vias Metabólicas/genética , Mutação , Fosfato de Piridoxal/metabolismo , Piridoxina/farmacologia , Transcriptoma , Vitamina B 6/metabolismo
16.
Plant Cell ; 28(2): 439-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26858304

RESUMO

Vitamin B6 comprises a family of compounds that is essential for all organisms, most notable among which is the cofactor pyridoxal 5'-phosphate (PLP). Other forms of vitamin B6 include pyridoxamine 5'-phosphate (PMP), pyridoxine 5'-phosphate (PNP), and the corresponding nonphosphorylated derivatives. While plants can biosynthesize PLP de novo, they also have salvage pathways that serve to interconvert the different vitamers. The selective contribution of these various pathways to cellular vitamin B6 homeostasis in plants is not fully understood. Although biosynthesis de novo has been extensively characterized, the salvage pathways have received comparatively little attention in plants. Here, we show that the PMP/PNP oxidase PDX3 is essential for balancing B6 vitamer levels in Arabidopsis thaliana. In the absence of PDX3, growth and development are impaired and the metabolite profile is altered. Surprisingly, RNA sequencing reveals strong induction of stress-related genes in pdx3, particularly those associated with biotic stress that coincides with an increase in salicylic acid levels. Intriguingly, exogenous ammonium rescues the growth and developmental phenotype in line with a severe reduction in nitrate reductase activity that may be due to the overaccumulation of PMP in pdx3. Our analyses demonstrate an important link between vitamin B6 homeostasis and nitrogen metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Fosfato de Piridoxal/análogos & derivados , Piridoxamina/análogos & derivados , Piridoxaminafosfato Oxidase/metabolismo , Vitamina B 6/metabolismo , Compostos de Amônio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Vias Biossintéticas , Homeostase , Metaboloma , Modelos Biológicos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Piridoxamina/química , Piridoxamina/metabolismo , Piridoxaminafosfato Oxidase/genética , Reprodução , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Análise de Sequência de RNA , Vitamina B 6/química
17.
J Bacteriol ; 200(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30181125

RESUMO

The Rid protein superfamily (YjgF/YER057c/UK114) is found in all domains of life. The archetypal protein, RidA from Salmonella enterica, is a deaminase that quenches the reactive metabolite 2-aminoacrylate (2AA). 2AA deaminase activity is conserved in RidA proteins from humans, plants, yeast, archaea, and bacteria. Mutants of Salmonella enterica, Escherichia coli, and Saccharomyces cerevisiae that lack a functional RidA exhibit growth defects, suggesting that 2AA metabolic stress is similarly conserved. The PubSEED database shows Pseudomonas aeruginosa (PAO1) encodes eight members of the Rid superfamily. Mutants of P. aeruginosa PAO1 lacking each of five Rid proteins were screened, and the mutant phenotypes that arose in the absence of PA5339 were dissected. A PA5339::Tn mutant has growth, motility, and biofilm defects that can all be linked to the accumulation of 2AA. Further, the PA5339 protein was demonstrably a 2AA deaminase in vitro and restored metabolic balance to a S. enterica ridA mutant in vivo The data presented here show that the RidA paradigm in Pseudomonas aeruginosa had similarities to those described in other organisms but was distinct in that deleting only one of multiple homologs generated deficiencies. Based on the collective data presented here in, PA5339 was renamed RidA.IMPORTANCE RidA is a widely conserved protein that prevents endogenous metabolic stress caused by 2-aminoacrylate (2AA) damage to pyridoxal 5'-phosphate (PLP)-dependent enzymes in prokaryotes and eukaryotes. The framework for understanding the accumulation of 2AA and its consequences have largely been defined in Salmonella enterica We show here that in P. aeruginosa (PAO1), 2AA accumulation leads to reduced growth, compromised motility, and defective biofilm formation. This study expands our knowledge how the metabolic architecture of an organism contributes to the consequences of 2AA inactivation of PLP-dependent enzymes and identifies a key RidA protein in P. aeruginosa.


Assuntos
Aminoidrolases/genética , Proteínas de Bactérias/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/genética , Acrilatos/metabolismo , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/enzimologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Estresse Fisiológico
18.
Am J Respir Cell Mol Biol ; 59(1): 87-95, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29393654

RESUMO

We previously described several ionic conductances in human pulmonary fibroblasts, including one activated by two structurally distinct TRPV4 (transient receptor potential, vanilloid-type, subtype 4)-channel agonists: 4αPDD (4α-phorbol-12,13-didecanoate) and GSK1016790A. However, the TRPV4-activated current exhibited peculiar properties: it developed slowly over many minutes, exhibited reversal potentials that could vary by tens of millivolts even within a given cell, and was not easily reversed by subsequent addition of two distinct TRPV4-selective blockers (RN-1734 and HC-067047). In this study, we characterized that conductance more carefully. We found that 4αPDD stimulated a delayed release of ATP into the extracellular space, which was reduced by genetic silencing of pannexin expression, and that the 4αPDD-evoked current could be blocked by apyrase (which rapidly degrades ATP) or by the P2Y purinergic receptor/channel blocker pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), and could be mimicked by exogenous addition of ATP. In addition, we found that the 4αPDD-evoked current was blocked by pretreatment with RN-1734 or HC-067047, by Gd3+ or La3+, or by two distinct blockers of pannexin channels (carbenoxolone and probenecid), but not by a blocker of connexin hemichannels (flufenamic acid). We also found expression of TRPV4- and pannexin-channel proteins. 4αPDD markedly increased calcium flashing in our cells. The latter was abrogated by the P2Y channel blocker PPADS, and the 4αPDD-evoked current was eliminated by loading the cytosol with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or by inhibiting Ca2+/calmodulin-sensitive kinase II using KN93. Altogether, we interpret these findings as suggesting that 4αPDD triggers the release of ATP via pannexin channels, which in turn acts in an autocrine and/or paracrine fashion to stimulate PPADS-sensitive purinergic receptors on human pulmonary fibroblasts.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Fibroblastos/metabolismo , Pulmão/citologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Cátion TRPV/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cálcio/metabolismo , Feminino , Humanos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Ésteres de Forbol/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Fatores de Tempo
19.
Reprod Biol Endocrinol ; 16(1): 106, 2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30368246

RESUMO

BACKGROUND: Given the seriousness of chemotherapy-induced ovarian injury in female cancer patients, the preservation of fertility, including through the use of cryopreservation technology and pharmaceuticals, requires investigation. Previous studies have shown that damage to the ovaries is related to oxidative stress caused by anticancer drugs. Therefore, superoxide dismutase (SOD) may represent a key factor in the pharmacological protection of the ovaries. The aim of our study was to identify the effects of mangafodipir, a manganese chelate and SOD-mimetic, on suppression of apoptosis in granulosa cells and primordial follicle activation induced by anticancer drugs. METHODS: Cell viability assays using methyltrichlorosilane solutions and immunoblotting for cleaved caspase-3 were performed in in vitro experiments with the simultaneous addition of mangafodipir to human non-luteinized granulosa cell line (HGrC) cultures treated with hydrogen peroxide (H2O2), cisplatin, or paclitaxel. Count and morphological analyses of follicles at each developing stage in the ovaries and immunohistochemistry for cleaved caspase-3, Ki67 and 4-hydroxynonenal, a marker for oxidative stress, were also performed using mangafodipir-injected 6-week-old female ICR mice treated with cisplatin or paclitaxel. Further, mangafodipir was injected into 6-week-old female BALB/c mice inoculated with ES-2 to analyze whether mangafodipir inhibits the anti-tumor effects of cisplatin or paclitaxel treatment. RESULTS: Mangafodipir attenuated apoptosis induced by H2O2 and anticancer drugs in vitro. Mangafodipir also decreased the expression of 4-hydroxynonenal and reduced cisplatin- and paclitaxel-induced apoptosis in granulosa cells in vivo. In addition, mangafodipir inhibited the loss of primordial follicles. Tumor xenograft studies in mice showed that mangafodipir did not affect anticancer drug antitumor effects. CONCLUSIONS: Oxidative stress might be one of the mechanisms of cisplatin- and paclitaxel-induced the loss of primordial follicles. Mangafodipir can reduce cisplatin- and paclitaxel-induced apoptosis in granulosa cells and primordial follicle activation partially via its SOD activity. At the same time, mangafodipir might have other potential mechanisms to inhibit the activation of primordial follicles. Further, mangafodipir attenuated the ovarian damage caused by cisplatin and paclitaxel without affecting their antitumor activities. Mangafodipir, therefore, though its efficacy might be limited, may be a new option for the preservation of fertility during anticancer treatment.


Assuntos
Antineoplásicos/farmacologia , Ácido Edético/análogos & derivados , Células da Granulosa/efeitos dos fármacos , Ovário/efeitos dos fármacos , Fosfato de Piridoxal/análogos & derivados , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Meios de Contraste/farmacologia , Ácido Edético/farmacologia , Feminino , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paclitaxel/farmacologia , Substâncias Protetoras/farmacologia , Fosfato de Piridoxal/farmacologia
20.
Exp Physiol ; 103(12): 1679-1691, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242927

RESUMO

NEW FINDINGS: What is the central question of this study? ATP is known to modulate the chemosensitivity of some brain areas. However, whether the ATP contributes specifically to the mechanism of chemoreception in the lateral hypothalamus/perifornical area (LH/PFA) remains to be determined. What is the main finding and its importance? ATP, acting on the LH/PFA, enhances the hypercapnic ventilatory response in rats during wakefulness, in the dark period. Our results highlight the importance of ATP as a modulator of central chemoreception and provide new insight regarding the mechanisms involved in LH/PFA chemosensitivity and the sleep-wake differences in the CO2 /H+ -dependent drive to breathe. ABSTRACT: The lateral hypothalamus/perifornical area (LH/PFA) is a central chemoreceptor site, which acts in an arousal state-dependent manner. It has been shown that purinergic signalling through ATP influences the CO2 /H+ responsiveness of other chemosensitive regions, but it is unknown whether ATP is also involved in the mechanisms that underlie LH/PFA chemoreception. Here, we studied the effects of microdialysis of a P2X-receptor agonist [α,ß-methylene ATP (α,ß-meATP), 10 mm] and a non-selective P2-receptor antagonist [pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS), 1 mm] into the LH/PFA of conscious rats on ventilation in room air and in 7% CO2 . In the dark (active) phase, but not in the light, microdialysis of α,ß-meATP caused an augmented hypercapnic ventilatory response during wakefulness, but not during non-REM sleep (P < 0.001). PPADS caused no change in CO2 ventilatory responses in either the dark period or the light period. Our data suggest that ATP in LH/PFA contributes to the hypercapnic ventilatory response in conscious rats during wakefulness in the dark phase of the diurnal cycle.


Assuntos
Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/metabolismo , Região Hipotalâmica Lateral/metabolismo , Ventilação Pulmonar/fisiologia , Trifosfato de Adenosina/análogos & derivados , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Hipercapnia/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Masculino , Ventilação Pulmonar/efeitos dos fármacos , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Ratos , Ratos Wistar , Respiração/efeitos dos fármacos , Sono/efeitos dos fármacos , Sono/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA