Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 72: 105103, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33516932

RESUMO

Photoinitiators (PIs) are widely used for photopolymerization in industrial area and recently paid close attention to in biomedical field. However, there are few reports on their toxicity to human health. Here we explored cytotoxicity and cytocompatibilty of seven commercial and industrial-used PIs for developing their potential clinical application. Phenylbis(acyl) phosphine oxides (BAPO), 2-Benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone (369), 4,4'-Bis(diethylamino) benzophenone (EMK), Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO), and 2-Isopropylthioxanthone (ITX) caused different extent cytotoxicities to four tissue types of cells at the concentrations of 1 to 50 µM under a non-irradiation condition, of which the BAPO cytotoxicity was the highest, whereas Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPOL) and Methyl benzoylformate (MBF) displayed the lowest cellular toxicity. The cell lines and primary cells appeared highly sensitive to BAPO toxicity, the primary lymphocytes relatively to photoinitiator 369 (369) and EMK toxicities, LO2 cells to EMK and TPO toxicities, the primary lymphocytes and HUVEC-12 cells to MBF toxicity, but only HEK293T cells not to 369 toxicity. Furthermore, these PIs led to increasing cytotoxicity to different extents after exposure to 455 nm blue light, which is consistent with non-irradiation tendency. All the cells presented low sensitivity to TPOL and MBF, of which TPOL-triggered polymer is dramatically superior in its cytocompatibility to MBF, and in its transparency to clinically exclusively-used camphorquinone (CQ). The novel findings indicate that BAPO is the most toxic among the seven PIs, but TPOL and MBF are the least toxic, directing their development and application. Combined their triggered polymer cytocompatibility and color with reported deep curing efficiency, TPOL is more promising to be applied especially to clinical practice.


Assuntos
Benzofenonas/toxicidade , Butirofenonas/toxicidade , Óxidos N-Cíclicos/toxicidade , Luz , Fosfinas/toxicidade , Fotoiniciadores Dentários/toxicidade , Polímeros/toxicidade , Tioxantenos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Polimerização
2.
Dent Mater ; 34(12): 1783-1796, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30340767

RESUMO

OBJECTIVES: Phenylbis(acyl) phosphine oxide (BAPO) and diphenyl(acyl) phosphine oxide (TPO) are alternative photoinitiators to camphorquinone (CQ) in dental resinous materials. Aim of this study was to investigate their cytotoxic/genotoxic potential in human oral keratinocytes (OKF6/Tert2) and Chinese hamster lung fibroblasts (V79) in comparison to CQ. METHODS: Cells were exposed to different concentrations of BAPO and TPO (1-50µM). Cytotoxicity was evaluated using H33342 and MTT assay, cell proliferation by BrdU proliferation assay and microscopy. Effects on cellular redox homeostasis were assessed by detecting intracellular levels of reactive oxygen/nitrogen species (ROS/RNS) using the DCFH2 assay and by quantification of mRNA expression of oxidatively regulated, cyto-protective enzymes. Genotoxic potential was determined by use of micronucleus (MN) assay. RESULTS: BAPO and TPO induced a concentration-dependent decrease of cell number. BAPO and TPO showed 50- to 250-fold higher cytotoxicity than CQ. In contrast to CQ, both photoinitiators revealed no increase of intracellular ROS/RNS. However, BAPO (10µM) at least significantly induced mRNA-expression of redox-regulated proteins after 24h similar to 2.5mM CQ. Additionally, BAPO significantly raised the number of micronuclei, but only in V79 cells (10µM: 12±1, 2.5mM CQ: 15±1, medium control: 6±3). However, it also significantly decreased proliferation of these cells (10µM BAPO: 19.8%±7.3% compared to controls). SIGNIFICANCE: BAPO and TPO revealed concentration-dependent cytotoxic effects in human oral keratinocytes and V79 cells. However, in contrast to CQ, no generation of intracellular ROS/RNS was found. Only BAPO induced genotoxicity in V79 cells.


Assuntos
Óxidos N-Cíclicos/toxicidade , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Fotoiniciadores Dentários/toxicidade , Animais , Cânfora/análogos & derivados , Cânfora/toxicidade , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cricetulus , Humanos , Técnicas In Vitro , Pulmão/citologia , Teste de Materiais , Testes para Micronúcleos , Testes de Mutagenicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio
3.
Dent Mater ; 31(8): 916-27, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26026799

RESUMO

OBJECTIVES: The photoinitiator diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) is more reactive than a camphorquinone/amine (CQ) system, and TPO-based adhesives obtained a higher degree of conversion (DC) with fewer leached monomers. The hypothesis tested here is that a TPO-based adhesive is less toxic than a CQ-based adhesive. METHODS: A CQ-based adhesive (SBU-CQ) (Scotchbond Universal, 3M ESPE) and its experimental counterpart with TPO (SBU-TPO) were tested for cytotoxicity in human pulp-derived cells (tHPC). Oxidative stress was analyzed by the generation of reactive oxygen species (ROS) and by the expression of antioxidant enzymes. A dentin barrier test (DBT) was used to evaluate cell viability in simulated clinical circumstances. RESULTS: Unpolymerized SBU-TPO was significantly more toxic than SBU-CQ after a 24h exposure, and TPO alone (EC50=0.06mM) was more cytotoxic than CQ (EC50=0.88mM), EDMAB (EC50=0.68mM) or CQ/EDMAB (EC50=0.50mM). Cultures preincubated with BSO (l-buthionine sulfoximine), an inhibitor of glutathione synthesis, indicated a minor role of glutathione in cytotoxic responses toward the adhesives. Although the generation of ROS was not detected, a differential expression of enzymatic antioxidants revealed that cells exposed to unpolymerized SBU-TPO or SBU-CQ are subject to oxidative stress. Polymerized SBU-TPO was more cytotoxic than SBU-CQ under specific experimental conditions only, but no cytotoxicity was detected in a DBT with a 200µm dentin barrier. SIGNIFICANCE: Not only DC and monomer-release determine the biocompatibility of adhesives, but also the cytotoxicity of the (photo-)initiator should be taken into account. Addition of TPO rendered a universal adhesive more toxic compared to CQ; however, this effect could be annulled by a thin dentin barrier.


Assuntos
Cânfora/análogos & derivados , Polpa Dentária/citologia , Cura Luminosa de Adesivos Dentários/instrumentação , Fosfinas/toxicidade , Fotoiniciadores Dentários/toxicidade , Cimentos de Resina/toxicidade , Antioxidantes/metabolismo , Cânfora/toxicidade , Humanos , Teste de Materiais , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
J Endod ; 39(1): 57-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23228258

RESUMO

INTRODUCTION: Camphorquinone (CQ) is a photoinitiator that triggers polymerization of light-curing materials such as dental adhesives and composites. CQ does not become a part of the polymer network, suggesting that CQ can be leached out into surrounding environment including dental pulp and exert adversary effects on tissues. In order to understand the mechanisms of CQ-induced side effects, we investigated the effect of CQ on cell viability, cytokine secretion, and odontogenic differentiation of dental pulp stem cells in vitro. METHODS: Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after CQ exposure. Western blotting was performed for p16(INK4A), p21(WAF1), and p53. Secretory cytokines were evaluated using the membrane-enzyme-linked immunosorbent assay as well as conventional and quantitative reverse-transcription polymerase chain reaction. The effects of CQ on odontogenic differentiation were evaluated using alkaline phosphatase and alizarin red S staining methods. RESULTS: CQ treatment suppressed the proliferation of DPSCs and induced the expression of p16(INK4A), p21(WAF1), and p53. Levels of proinflammatory cytokines (eg, interleukin 6, interleukin 8, and matrix metalloproteinase-3 [MMP3]) were increased by CQ treatment. CQ also inhibited odontogenic differentiation and mineralization capacities of DPSC and MC3T3-E1 cells. CONCLUSIONS: Our study showed that CQ may trigger pulpal inflammation by inducing proinflammatory cytokine production from the pulpal cells and may impair odontogenic differentiation of dental pulp cells, resulting in pulpal irritation and inflammation.


Assuntos
Cânfora/análogos & derivados , Citocinas/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Odontogênese/efeitos dos fármacos , Fotoiniciadores Dentários/toxicidade , Células 3T3 , Fosfatase Alcalina/análise , Animais , Antraquinonas , Western Blotting , Cânfora/toxicidade , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Corantes , Inibidor p16 de Quinase Dependente de Ciclina/análise , Inibidor de Quinase Dependente de Ciclina p21/análise , Citocinas/metabolismo , Materiais Dentários/toxicidade , Polpa Dentária/citologia , Humanos , Interleucina-6/análise , Interleucina-8/análise , Teste de Materiais , Metaloproteinase 3 da Matriz/análise , Metacrilatos/toxicidade , Camundongos , Sais de Tetrazólio , Tiazóis , Calcificação de Dente/efeitos dos fármacos , Proteína Supressora de Tumor p53/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA