Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.656
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 81(1): 8-9, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417856

RESUMO

Travis et al. (2020) reveal how Francisella tularensis uses stress-induced ppGpp to activate its virulent pathogenesis program by tethering an αCTD-DNA organizer (PigR) to a σ-organizing heterodimer (MglA-SspA), highlighting the remarkable diversity of transcriptional mechanisms in under-studied bacteria.


Assuntos
Francisella tularensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Francisella tularensis/genética , Francisella tularensis/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato , Fator sigma/genética , Virulência
2.
Mol Cell ; 81(1): 139-152.e10, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33217319

RESUMO

The bacterium Francisella tularensis (Ft) is one of the most infectious agents known. Ft virulence is controlled by a unique combination of transcription regulators: the MglA-SspA heterodimer, PigR, and the stress signal, ppGpp. MglA-SspA assembles with the σ70-associated RNAP holoenzyme (RNAPσ70), forming a virulence-specialized polymerase. These factors activate Francisella pathogenicity island (FPI) gene expression, which is required for virulence, but the mechanism is unknown. Here we report FtRNAPσ70-promoter-DNA, FtRNAPσ70-(MglA-SspA)-promoter DNA, and FtRNAPσ70-(MglA-SspA)-ppGpp-PigR-promoter DNA cryo-EM structures. Structural and genetic analyses show MglA-SspA facilitates σ70 binding to DNA to regulate virulence and virulence-enhancing genes. Our Escherichia coli RNAPσ70-homodimeric EcSspA structure suggests this is a general SspA-transcription regulation mechanism. Strikingly, our FtRNAPσ70-(MglA-SspA)-ppGpp-PigR-DNA structure reveals ppGpp binding to MglA-SspA tethers PigR to promoters. PigR in turn recruits FtRNAP αCTDs to DNA UP elements. Thus, these studies unveil a unique mechanism for Ft pathogenesis involving a virulence-specialized RNAP that employs two (MglA-SspA)-based strategies to activate virulence genes.


Assuntos
RNA Polimerases Dirigidas por DNA , Francisella tularensis , Regiões Promotoras Genéticas , Fator sigma , Fatores de Virulência , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Francisella tularensis/genética , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidade , Fator sigma/genética , Fator sigma/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Nat Immunol ; 16(5): 467-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25774715

RESUMO

Inflammasomes are critical for mounting host defense against pathogens. The molecular mechanisms that control activation of the AIM2 inflammasome in response to different cytosolic pathogens remain unclear. Here we found that the transcription factor IRF1 was required for activation of the AIM2 inflammasome during infection with the Francisella tularensis subspecies novicida (F. novicida), whereas engagement of the AIM2 inflammasome by mouse cytomegalovirus (MCMV) or transfected double-stranded DNA did not require IRF1. Infection of F. novicida detected by the DNA sensor cGAS and its adaptor STING induced type I interferon-dependent expression of IRF1, which drove the expression of guanylate-binding proteins (GBPs); this led to intracellular killing of bacteria and DNA release. Our results reveal a specific requirement for IRF1 and GBPs in the liberation of DNA for sensing by AIM2 depending on the pathogen encountered by the cell.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Francisella tularensis/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Inflamassomos/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Tularemia/imunologia , Animais , Bacteriólise/genética , Células Cultivadas , DNA/imunologia , DNA Bacteriano/genética , Regulação da Expressão Gênica/genética , Fator Regulador 1 de Interferon/genética , Interferon Tipo I/metabolismo , Camundongos , Camundongos Knockout , Nucleotidiltransferases/metabolismo
4.
Nat Immunol ; 16(5): 476-484, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25774716

RESUMO

The AIM2 inflammasome detects double-stranded DNA in the cytosol and induces caspase-1-dependent pyroptosis as well as release of the inflammatory cytokines interleukin 1ß (IL-1ß) and IL-18. AIM2 is critical for host defense against DNA viruses and bacteria that replicate in the cytosol, such as Francisella tularensis subspecies novicida (F. novicida). The activation of AIM2 by F. novicida requires bacteriolysis, yet whether this process is accidental or is a host-driven immunological mechanism has remained unclear. By screening nearly 500 interferon-stimulated genes (ISGs) through the use of small interfering RNA (siRNA), we identified guanylate-binding proteins GBP2 and GBP5 as key activators of AIM2 during infection with F. novicida. We confirmed their prominent role in vitro and in a mouse model of tularemia. Mechanistically, these two GBPs targeted cytosolic F. novicida and promoted bacteriolysis. Thus, in addition to their role in host defense against vacuolar pathogens, GBPs also facilitate the presentation of ligands by directly attacking cytosolic bacteria.


Assuntos
Bacteriólise , Proteínas de Ligação a DNA/metabolismo , Francisella tularensis/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Inflamassomos/metabolismo , Tularemia/imunologia , Animais , Células Cultivadas , Citosol/microbiologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Proteínas de Ligação ao GTP/genética , Humanos , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética
5.
Mol Microbiol ; 121(4): 798-813, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38284496

RESUMO

Small multidrug resistance transporters efflux toxic compounds from bacteria and are a minimal system to understand multidrug transport. Most previous studies have focused on EmrE, the model SMR from Escherichia coli, finding that EmrE has a broader substrate profile than previously thought and that EmrE may perform multiple types of transport, resulting in substrate-dependent resistance or susceptibility. Here, we performed a broad screen to identify potential substrates of three other SMRs: PAsmr from Pseudomonas aeruginosa; FTsmr from Francisella tularensis; and SAsmr from Staphylococcus aureus. This screen tested metabolic differences in E. coli expressing each transporter versus an inactive mutant, for a clean comparison of sequence and substrate-specific differences in transporter function, and identified many substrates for each transporter. In general, resistance compounds were charged, and susceptibility substrates were uncharged, but hydrophobicity was not correlated with phenotype. Two resistance hits and two susceptibility hits were validated via growth assays and IC50 calculations. Susceptibility is proposed to occur via substrate-gated proton leak, and the addition of bicarbonate antagonizes the susceptibility phenotype, consistent with this hypothesis.


Assuntos
Proteínas de Escherichia coli , Francisella tularensis , Escherichia coli/genética , Francisella tularensis/metabolismo , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Escherichia coli/metabolismo , Antiporters/genética , Proteínas de Membrana Transportadoras/metabolismo , Resistência a Múltiplos Medicamentos
6.
J Immunol ; 210(5): 618-627, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602520

RESUMO

Innate lymphoid cells (ILCs) are capable of rapid response to a wide variety of immune challenges, including various respiratory pathogens. Despite this, their role in the immune response against the lethal intracellular bacterium Francisella tularensis is not yet known. In this study, we demonstrate that infection of the airways with F. tularensis results in a significant reduction in lung type 2 ILCs (ILC2s) in mice. Conversely, the expansion of ILC2s via treatment with the cytokine IL-33, or by adoptive transfer of ILC2s, resulted in significantly enhanced bacterial burdens in the lung, liver, and spleen, suggesting that ILC2s may favor severe infection. Indeed, specific reduction of ILC2s in a transgenic mouse model results in a reduction in lung bacterial burden. Using an in vitro culture system, we show that IFN-γ from the live vaccine strain-infected lung reduces ILC2 numbers, suggesting that this cytokine in the lung environment is mechanistically important in reducing ILC2 numbers during infection. Finally, we show Ab-mediated blockade of IL-5, of which ILC2s are a major innate source, reduces bacterial burden postinfection, suggesting that IL-5 production by ILC2s may play a role in limiting protective immunity. Thus, overall, we highlight a negative role for ILC2s in the control of infection with F. tularensis. Our work therefore highlights the role of ILC2s in determining the severity of potentially fatal airway infections and raises the possibility of interventions targeting innate immunity during infection with F. tularensis to benefit the host.


Assuntos
Francisella tularensis , Animais , Camundongos , Imunidade Inata , Linfócitos , Interleucina-5 , Citocinas
7.
Genes Dev ; 31(15): 1549-1560, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28864445

RESUMO

Francisella tularensis, the etiological agent of tularemia, is one of the most infectious bacteria known. Because of its extreme pathogenicity, F. tularensis is classified as a category A bioweapon by the US government. F. tularensis virulence stems from genes encoded on the Francisella pathogenicity island (FPI). An unusual set of Francisella regulators-the heteromeric macrophage growth locus protein A (MglA)-stringent starvation protein A (SspA) complex and the DNA-binding protein pathogenicity island gene regulator (PigR)-activates FPI transcription and thus is essential for virulence. Intriguingly, the second messenger, guanosine-tetraphosphate (ppGpp), which is produced during infection, is also involved in coordinating Francisella virulence; however, its role has been unclear. Here we identify MglA-SspA as a novel ppGpp-binding complex and describe structures of apo- and ppGpp-bound MglA-SspA. We demonstrate that MglA-SspA, which binds RNA polymerase (RNAP), also interacts with the C-terminal domain of PigR, thus anchoring the (MglA-SspA)-RNAP complex to the FPI promoter. Furthermore, we show that MglA-SspA must be bound to ppGpp to mediate high-affinity interactions with PigR. Thus, these studies unveil a novel pathway different from those described previously for regulation of transcription by ppGpp. The data also indicate that F. tularensis pathogenesis is controlled by a highly interconnected molecular circuitry in which the virulence machinery directly senses infection via a small molecule stress signal.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Francisella tularensis/patogenicidade , Ilhas Genômicas/genética , Guanosina Tetrafosfato/metabolismo , Tularemia/microbiologia , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Bioterrorismo/prevenção & controle , Células Cultivadas , Cristalografia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/genética , Humanos , Macrófagos/metabolismo , Conformação Proteica , Transcrição Gênica , Virulência/genética
8.
Proteins ; 92(6): 693-704, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38179877

RESUMO

Human acyl protein thioesterases (APTs) catalyze the depalmitoylation of S-acylated proteins attached to the plasma membrane, facilitating reversible cycles of membrane anchoring and detachment. We previously showed that a bacterial APT homologue, FTT258 from the gram-negative pathogen Francisella tularensis, exists in equilibrium between a closed and open state based on the structural dynamics of a flexible loop overlapping its active site. Although the structural dynamics of this loop are not conserved in human APTs, the amino acid sequence of this loop is highly conserved, indicating essential but divergent functions for this loop in human APTs. Herein, we investigated the role of this loop in regulating the catalytic activity, ligand binding, and protein folding of human APT1, a depalmitoylase connected with cancer, immune, and neurological signaling. Using a combination of substitutional analysis with kinetic, structural, and biophysical characterization, we show that even in its divergent structural location in human APT1 that this loop still regulates the catalytic activity of APT1 through contributions to ligand binding and substrate positioning. We confirmed previously known roles for multiple residues (Phe72 and Ile74) in substrate binding and catalysis while adding new roles in substrate selectivity (Pro69), in catalytic stabilization (Asp73 and Ile75), and in transitioning between the membrane binding ß-tongue and substrate-binding loops (Trp71). Even conservative substitution of this tryptophan (Trp71) fulcrum led to complete loss of catalytic activity, a 13°C decrease in total protein stability, and drastic drops in ligand affinity, indicating that the combination of the size, shape, and aromaticity of Trp71 are essential to the proper structure of APT1. Mixing buried hydrophobic surface area with contributions to an exposed secondary surface pocket, Trp71 represents a previously unidentified class of essential tryptophans within α/ß hydrolase structure and a potential allosteric binding site within human APTs.


Assuntos
Domínio Catalítico , Ligação Proteica , Dobramento de Proteína , Tioléster Hidrolases , Humanos , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Ligantes , Modelos Moleculares , Sequência de Aminoácidos , Cinética , Sequência Conservada , Estabilidade Enzimática , Francisella tularensis/enzimologia , Francisella tularensis/metabolismo , Francisella tularensis/química , Cristalografia por Raios X , Especificidade por Substrato
9.
Clin Infect Dis ; 78(Suppl 1): S64-S66, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294112

RESUMO

A male patient with distant history of extensive rabbit contact and pulmonary nodules for 6 years developed empyema. Francisella tularensis holarctica was isolated from thoracentesis fluid. Retrospective immunohistochemical examination of a pulmonary nodule, biopsied 3 years prior, was immunoreactive for F. tularensis. These findings suggest the potential for chronic tularemia.


Assuntos
Francisella tularensis , Nódulos Pulmonares Múltiplos , Tularemia , Animais , Humanos , Masculino , Coelhos , Tularemia/diagnóstico , Nebraska , Estudos Retrospectivos
10.
Clin Infect Dis ; 78(Suppl 1): S71-S75, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294113

RESUMO

Tularemia is a disease caused by Francisella tularensis, a highly infectious bacteria that can be transmitted to humans by direct contact with infected animals. Because of the potential for zoonotic transmission of F. tularensis, veterinary occupational risk is a concern. Here, we report on a human case of tularemia in a veterinarian after an accidental needlestick injury during abscess drainage in a sick dog. The veterinarian developed ulceroglandular tularemia requiring hospitalization but fully recovered after abscess drainage and a course of effective antibiotics. To systematically assess veterinary occupational transmission risk of F. tularensis, we conducted a survey of veterinary clinical staff after occupational exposure to animals with confirmed tularemia. We defined a high-risk exposure as direct contact to the infected animal's body fluids or potential aerosol inhalation without use of standard personal protective equipment (PPE). Survey data included information on 20 veterinary occupational exposures to animals with F. tularensis in 4 states. Veterinarians were the clinical staff most often exposed (40%), followed by veterinarian technicians and assistants (30% and 20%, respectively). Exposures to infected cats were most common (80%). Standard PPE was not used during 80% of exposures; a total of 7 exposures were categorized as high risk. Transmission of F. tularensis in the veterinary clinical setting is possible but overall risk is likely low. Veterinary clinical staff should use standard PPE and employ environmental precautions when handling sick animals to minimize risk of tularemia and other zoonotic infections; postexposure prophylaxis should be considered after high-risk exposures to animals with suspected or confirmed F. tularensis infection to prevent tularemia.


Assuntos
Francisella tularensis , Exposição Ocupacional , Tularemia , Humanos , Animais , Cães , Tularemia/microbiologia , Tularemia/veterinária , Abscesso , Zoonoses/microbiologia
11.
Clin Infect Dis ; 78(Suppl 1): S15-S28, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294108

RESUMO

BACKGROUND: Francisella tularensis, the causative agent of tularemia, is endemic throughout the Northern Hemisphere and requires as few as 10 organisms to cause disease, making this potential bioterrorism agent one of the most infectious bacterial pathogens known. Aminoglycosides, tetracyclines, and, more recently, fluoroquinolones are used for treatment of tularemia; however, data on the relative effectiveness of these and other antimicrobial classes are limited. METHODS: Nine databases, including Medline, Global Health, and Embase, were systematically searched for articles containing terms related to tularemia. Articles with case-level data on tularemia diagnosis, antimicrobial treatment, and patient outcome were included. Patient demographics, clinical findings, antimicrobial administration, and outcome (eg, intubation, fatality) were abstracted using a standardized form. RESULTS: Of the 8878 publications identified and screened, 410 articles describing 870 cases from 1993 to 2023 met inclusion criteria. Cases were reported from 35 countries; more than half were from the United States, Turkey, or Spain. The most common clinical forms were ulceroglandular, oropharyngeal, glandular, and pneumonic disease. Among patients treated with aminoglycosides (n = 452 [52%]), fluoroquinolones (n = 339 [39%]), or tetracyclines (n = 419 [48%]), the fatality rate was 0.7%, 0.9%, and 1.2%, respectively. Patients with pneumonic disease who received ciprofloxacin had no fatalities and the lowest rates of thoracentesis/pleural effusion drainage and intubation compared to those who received aminoglycosides and tetracyclines. CONCLUSIONS: Aminoglycosides, fluoroquinolones, and tetracyclines are effective antimicrobials for treatment of tularemia, regardless of clinical manifestation. For pneumonic disease specifically, ciprofloxacin may have slight advantages compared to other antimicrobials.


Assuntos
Francisella tularensis , Tularemia , Humanos , Tularemia/diagnóstico , Tularemia/tratamento farmacológico , Tularemia/epidemiologia , Antibacterianos/uso terapêutico , Ciprofloxacina/uso terapêutico , Aminoglicosídeos/uso terapêutico , Tetraciclinas/uso terapêutico
12.
Clin Infect Dis ; 78(Suppl 1): S55-S63, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294117

RESUMO

BACKGROUND: Neuroinvasive infection with Francisella tularensis, the causative agent of tularemia, is rare. Establishing clinical suspicion is challenging if risk factors or clinical features classically associated with tularemia are absent. Tularemia is treatable with antibiotics; however, there are limited data to inform management of potentially fatal neuroinvasive infection. METHODS: We collected epidemiologic and clinical data on 2 recent US cases of neuroinvasive F. tularensis infection, and performed a literature review of cases of neuroinvasive F. tularensis infection published after 1950. RESULTS: One patient presented with focal neurologic deficits and brain lesions; broad-range molecular testing on resected brain tissue detected F. tularensis. The other patient presented with meningeal signs; tularemia was suspected based on animal exposure, and F. tularensis grew in cerebrospinal fluid (CSF) culture. Both patients received combination antibiotic therapy and recovered from infection. Among 16 published cases, tularemia was clinically suspected in 4 cases. CSF often displayed lymphocytic pleocytosis. Among cases with available data, CSF culture was positive in 13 of 16 cases, and F. tularensis antibodies were detected in 11 of 11 cases. Treatment typically included an aminoglycoside combined with either a tetracycline or a fluoroquinolone. Outcomes were generally favorable. CONCLUSIONS: Clinicians should consider neuroinvasive F. tularensis infection in patients with meningitis and signs suggestive of tularemia or compatible exposures, lymphocyte-predominant CSF, unrevealing standard microbiologic workup, or lack of response to empiric bacterial meningitis treatment. Molecular testing, culture, and serologic testing can reveal the diagnosis. Favorable outcomes can be achieved with directed antibiotic treatment.


Assuntos
Francisella tularensis , Meningite , Tularemia , Animais , Humanos , Tularemia/diagnóstico , Tularemia/tratamento farmacológico , Tularemia/microbiologia , Antibacterianos/uso terapêutico , Aminoglicosídeos/uso terapêutico
13.
Clin Infect Dis ; 78(Suppl 1): S7-S14, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294111

RESUMO

BACKGROUND: The incidence of pneumonic tularemia is very low; therefore, it is not feasible to conduct clinical efficacy testing of tularemia medical countermeasures (MCMs) in humans. The US Food and Drug Administration's Animal Model Qualification Program under the Drug Development Tools Program is a regulatory pathway for animal models used in MCM efficacy testing and approval under the Animal Rule. The National Institute of Allergy and Infectious Diseases and Biomedical Advanced Research and Development Authority worked together to qualify the cynomolgus macaque model of pneumonic tularemia. METHODS: Using the model parameters and end points defined in the qualified model, efficacy of the antibiotics doxycycline and ciprofloxacin was evaluated in separate studies. Antibiotic administration, aimed to model approved human dosing, was initiated at time points of 24 hours or 48 hours after onset of fever as an indicator of disease. RESULTS: Upon aerosol exposure (target dose of 1000 colony-forming units) to Francisella tularensis SchuS4, 80% of vehicle-treated macaques succumbed or were euthanized. Ciprofloxacin treatment led to 10 of 10 animals surviving irrespective of treatment time. Doxycycline administered at 48 hours post-fever led to 10 of 10 animals surviving, while 9/10 animals survived in the group treated with doxycycline 24 hours after fever. Selected surviving animals in both the placebo and doxycycline 48-hour group showed residual live bacteria in peripheral tissues, while there were no bacteria in tissues from ciprofloxacin-treated macaques. CONCLUSIONS: Both doxycycline and ciprofloxacin were efficacious in treatment of pneumonic tularemia, although clearance of bacteria may be different between the 2 drugs.


Assuntos
Francisella tularensis , Tularemia , Animais , Humanos , Tularemia/tratamento farmacológico , Tularemia/microbiologia , Ciprofloxacina/uso terapêutico , Doxiciclina/uso terapêutico , Modelos Animais de Doenças , Antibacterianos/uso terapêutico , Febre/tratamento farmacológico , Macaca
14.
Clin Infect Dis ; 78(Suppl 1): S47-S54, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294114

RESUMO

BACKGROUND: Tularemia is caused by the gram-negative bacterium Francisella tularensis. Although rare, tularemia during pregnancy has been associated with pregnancy complications; data on efficacy of recommended antimicrobials for treatment are limited. We performed a systematic literature review to characterize clinical manifestations of tularemia during pregnancy and examine maternal, fetal, and neonatal outcomes with and without antimicrobial treatment. METHODS: We searched 9 databases, including Medline, Embase, Global Health, and PubMed Central, using terms related to tularemia and pregnancy. Articles reporting cases of tularemia with ≥1 maternal or fetal outcome were included. RESULTS: Of 5891 articles identified, 30 articles describing 52 cases of tularemia in pregnant patients met inclusion criteria. Cases were reported from 9 countries, and oropharyngeal and ulceroglandular tularemia were the most common presenting forms. A plurality (46%) of infections occurred in the second trimester. Six complications were observed: lymph node aspiration, lymph node excision, maternal bleeding, spontaneous abortion, intrauterine fetal demise, and preterm birth. No deaths among mothers were reported. Of 28 patients who received antimicrobial treatment, 1 pregnancy loss and 1 fetal death were reported. Among 24 untreated patients, 1 pregnancy loss and 3 fetal deaths were reported, including one where F. tularensis was detected in placental and fetal tissues. CONCLUSIONS: Pregnancy loss and other complications have been reported among cases of tularemia during pregnancy. However, risk of adverse outcomes may be lower when antimicrobials known to be effective are used. Without treatment, transplacental transmission appears possible. These data underscore the importance of prompt recognition and treatment of tularemia during pregnancy.


Assuntos
Aborto Espontâneo , Anti-Infecciosos , Francisella tularensis , Nascimento Prematuro , Tularemia , Humanos , Feminino , Recém-Nascido , Gravidez , Tularemia/complicações , Tularemia/diagnóstico , Tularemia/tratamento farmacológico , Placenta , Anti-Infecciosos/uso terapêutico
15.
Clin Infect Dis ; 78(Suppl 1): S67-S70, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294110

RESUMO

Tularemia is caused by the highly infectious bacterium Francisella tularensis, which is recognized as a Tier 1 bioterrorism agent. Tularemia has a range of recognized clinical manifestations, but fewer than 20 bone or joint infections from 6 countries have been reported in the literature to date. This series includes 13 cases of F. tularensis septic arthritis or osteomyelitis in the United States during 2004-2023 and describes exposures, clinical presentation, diagnosis, and outcomes for this rare but severe form of tularemia. Clinicians should consider F. tularensis in patients with compatible exposures or a history of joint replacement or immunosuppression.


Assuntos
Artrite Infecciosa , Francisella tularensis , Tularemia , Humanos , Estados Unidos/epidemiologia , Tularemia/diagnóstico , Tularemia/epidemiologia , Tularemia/microbiologia , Artrite Infecciosa/diagnóstico , Artrite Infecciosa/epidemiologia
16.
Clin Infect Dis ; 78(Suppl 1): S29-S37, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294115

RESUMO

BACKGROUND: Tularemia, a potentially fatal zoonosis caused by Francisella tularensis, has been reported from nearly all US states. Information on relative effectiveness of various antimicrobials for treatment of tularemia is limited, particularly for newer classes such as fluoroquinolones. METHODS: Data on clinical manifestations, antimicrobial treatment, and illness outcome of patients with tularemia are provided voluntarily through case report forms to the US Centers for Disease Control and Prevention by state and local health departments. We summarized available demographic and clinical information submitted during 2006-2021 and evaluated survival according to antimicrobial treatment. We grouped administered antimicrobials into those considered effective for treatment of tularemia (aminoglycosides, fluoroquinolones, and tetracyclines) and those with limited efficacy. Logistic regression models with a bias-reduced estimation method were used to evaluate associations between antimicrobial treatment and survival. RESULTS: Case report forms were available for 1163 US patients with tularemia. Francisella tularensis was cultured from a clinical specimen (eg, blood, pleural fluid) in approximately half of patients (592; 50.9%). Nearly three-quarters (853; 73.3%) of patients were treated with a high-efficacy antimicrobial. A total of 27 patients (2.3%) died. After controlling for positive culture as a proxy for illness severity, use of aminoglycosides, fluoroquinolones, and tetracyclines was independently associated with increased odds of survival. CONCLUSIONS: Most US patients with tularemia received high-efficacy antimicrobials; their use was associated with improved odds of survival regardless of antimicrobial class. Our findings provide supportive evidence that fluoroquinolones are an effective option for treatment of tularemia.


Assuntos
Anti-Infecciosos , Francisella tularensis , Tularemia , Humanos , Tularemia/tratamento farmacológico , Tularemia/epidemiologia , Tularemia/prevenção & controle , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Fluoroquinolonas/uso terapêutico , Aminoglicosídeos/uso terapêutico , Tetraciclinas/uso terapêutico
17.
Clin Infect Dis ; 78(Suppl 1): S38-S46, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294118

RESUMO

BACKGROUND: Fluoroquinolones lack approval for treatment of tularemia but have been used extensively for milder illness. Here, we evaluated fluoroquinolones for severe illness. METHODS: In an observational study, we identified case-patients with respiratory tularemia from July to November 2010 in Jämtland County, Sweden. We defined severe tularemia by hospitalization for >24 hours and severe bacteremic tularemia by Francisella tularensis subsp. holarctica growth in blood or pleural fluid. Clinical data and drug dosing were retrieved from electronic medical records. Chest images were reexamined. We used Kaplan-Meier curves to evaluate time to defervescence and hospital discharge. RESULTS: Among 67 case-patients (median age, 66 years; 81% males) 30-day mortality was 1.5% (1 of 67). Among 33 hospitalized persons (median age, 71 years; 82% males), 23 had nonbacteremic and 10 had bacteremic severe tularemia. Subpleural round consolidations, mediastinal lymphadenopathy, and unilateral pleural fluid were common on chest computed tomography. Among 29 hospitalized persons with complete outcome data, ciprofloxacin/levofloxacin (n = 12), ciprofloxacin/levofloxacin combinations with doxycycline and/or gentamicin (n = 11), or doxycycline as the single drug (n = 6) was used for treatment. One disease relapse occurred with doxycycline treatment. Treatment responses were rapid, with median fever duration 41.0 hours in nonbacteremic and 115.0 hours in bacteremic tularemia. Increased age-adjusted Charlson comorbidity index predicted severe bacteremic tularemia (odds ratio, 2.7 per score-point; 95% confidence interval, 1.35-5.41). A 78-year-old male with comorbidities and delayed ciprofloxacin/gentamicin treatment died. CONCLUSIONS: Fluoroquinolone treatment is effective for severe tularemia. Subpleural round consolidations and mediastinal lymphadenopathy were typical findings on computed tomography among case-patients in this study.


Assuntos
Bacteriemia , Francisella tularensis , Francisella , Linfadenopatia , Tularemia , Masculino , Humanos , Idoso , Feminino , Tularemia/tratamento farmacológico , Doxiciclina/uso terapêutico , Fluoroquinolonas/uso terapêutico , Fluoroquinolonas/farmacologia , Levofloxacino/uso terapêutico , Ciprofloxacina/uso terapêutico , Resultado do Tratamento , Bacteriemia/tratamento farmacológico , Gentamicinas/uso terapêutico
18.
Clin Infect Dis ; 78(5): 1222-1231, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38393822

RESUMO

BACKGROUND: Tularemia is an important reemerging disease with a multimodal transmission pattern. Treatment outcomes of current recommended antibiotic regimens (including ciprofloxacin and doxycycline) remain unclear. In this retrospective cohort study, we report clinical, laboratory, geographical, and treatment outcomes of laboratory-confirmed tularemia cases over an 11-year period in Northern Sweden. METHODS: Data from reported tularemia cases (aged >10 years at time of study) in Norrbotten county between 2011 and 2021 were collected through review of electronic medical records and participant questionnaires; 415 of 784 accepted participation (52.9%). Of these, 327 were laboratory-confirmed cases (serology and/or polymerase chain reaction). A multivariable logistic regression model was used to investigate variables associated with retreatment. RESULTS: Median age of participants was 54 years (interquartile range [IQR], 41.5-65) and 49.2% were female. Although ulceroglandular tularemia was the predominant form (n = 215, 65.7%), there were several cases of pulmonary tularemia (n = 40; 12.2%). Inflammatory markers were largely nonspecific, with monocytosis frequently observed (n = 36/75; 48%). Tularemia was often misdiagnosed on presentation (n = 158, 48.3%), with 65 (19.9%) receiving initial inappropriate antibiotics and 102 (31.2%) retreated. Persistent lymphadenopathy was infrequent (n = 22, 6.7%), with 10 undergoing surgical interventions. In multivariable analysis of variables associated with retreatment, we highlight differences in time until receiving appropriate antibiotics (8 [IQR, 3.25-20.75] vs 7 [IQR, 4-11.25] days; adjusted P = .076), and doxycycline-based treatment regimen (vs ciprofloxacin; adjusted P = .084), although this was not significant after correction for multiple comparisons. CONCLUSIONS: We comprehensively summarize clinical, laboratory, and treatment outcomes of type B tularemia. Targeting tularemia requires clinical awareness, early diagnosis, and timely commencement of treatment for an appropriate duration.


Assuntos
Antibacterianos , Doxiciclina , Tularemia , Humanos , Tularemia/tratamento farmacológico , Tularemia/diagnóstico , Tularemia/epidemiologia , Suécia/epidemiologia , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Antibacterianos/uso terapêutico , Masculino , Adulto , Idoso , Resultado do Tratamento , Doxiciclina/uso terapêutico , Francisella tularensis/isolamento & purificação , Ciprofloxacina/uso terapêutico , Adulto Jovem
19.
Clin Infect Dis ; 78(Suppl 1): S4-S6, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294116

RESUMO

Francisella tularensis is the causative agent of tularemia. We tested the susceptibility of 278 F. tularensis isolates from the United States received during 2009-2018 to 8 antimicrobial drugs (ciprofloxacin, levofloxacin, doxycycline, tetracycline, gentamicin, streptomycin, chloramphenicol, and erythromycin). All isolates were susceptible to all tested drugs.


Assuntos
Francisella tularensis , Tularemia , Humanos , Estados Unidos/epidemiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tularemia/epidemiologia , Tularemia/tratamento farmacológico , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico
20.
Microbiology (Reading) ; 170(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421161

RESUMO

Two clinically important subspecies, Francisella tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B) are responsible for most tularaemia cases, but these isolates typically form a weak biofilm under in vitro conditions. Phase variation of the F. tularensis lipopolysaccharide (LPS) has been reported in these subspecies, but the role of variation is unclear as LPS is crucial for virulence. We previously demonstrated that a subpopulation of LPS variants can constitutively form a robust biofilm in vitro, but it is unclear whether virulence was affected. In this study, we show that biofilm-forming variants of both fully virulent F. tularensis subspecies were highly attenuated in the murine tularaemia model by multiple challenge routes. Genomic sequencing was performed on these strains, which revealed that all biofilm-forming variants contained a lesion within the wbtJ gene, a formyltransferase involved in O-antigen synthesis. A ΔwbtJ deletion mutant recapitulated the biofilm, O-antigen and virulence phenotypes observed in natural variants and could be rescued through complementation with a functional wbtJ gene. Since the spontaneously derived biofilm-forming isolates in this study were a subpopulation of natural variants, reversion events to the wbtJ gene were detected that eliminated the phenotypes associated with biofilm variants and restored virulence. These results demonstrate a role for WbtJ in biofilm formation, LPS variation and virulence of F. tularensis.


Assuntos
Francisella tularensis , Francisella , Hidroximetil e Formil Transferases , Tularemia , Animais , Camundongos , Francisella tularensis/genética , Antígenos O/genética , Lipopolissacarídeos , Hidroximetil e Formil Transferases/genética , Variação de Fase , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA