RESUMO
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria enhance plant tolerance to abiotic stress and promote plant growth in contaminated soil. However, the interaction mechanism between rhizosphere microbial communities under chromium (Cr) stress remains unclear. This study conducted a greenhouse pot experiment and metagenomics analysis to reveal the comprehensive effects of the interaction between AMF (Rhizophagus intraradices) and nitrogen-N metabolizing plant growth promoters on the growth of Iris tectorum. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum in contaminated soil and decreased the content of Cr in the soil. Metagenomics analysis revealed that the structure and composition of the rhizosphere microbial community involved in nitrogen metabolism changed significantly after inoculation with AMF under Cr stress. Functional genes related to soil nitrogen mineralization (gltB, gltD, gdhA, ureC, and glnA), nitrate reduction to ammonium (nirB, nrfA, and nasA), and soil nitrogen assimilation (NRT, nrtA, and nrtC) were up-regulated in the N-metabolizing microbial community. In contrast, the abundance of functional genes involved in denitrification (nirK and narI) was down-regulated. In addition, the inoculation of AMF regulates the synergies between the N-metabolic rhizosphere microbial communities and enhances the complexity and stability of the rhizosphere ecological network. This study provides a basis for improving plant tolerance to heavy metal stress by regulating the functional abundance of N-metabolizing plant growth-promoting bacteria through AMF inoculation. It helps to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil.
Assuntos
Gênero Iris , Micorrizas , Micorrizas/metabolismo , Cromo/metabolismo , Gênero Iris/genética , Plantas , Bactérias , Solo/química , Nitrogênio/metabolismo , Raízes de Plantas , FungosRESUMO
Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160⯵M) and Zn (800⯵M) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160⯵M + 200⯵M) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160⯵M + 800⯵M) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.
Assuntos
Gênero Iris , Metais Pesados , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Zinco/toxicidade , Desenvolvimento Vegetal , Poluentes do Solo/toxicidadeRESUMO
INTRODUCTION: Deep eutectic solvents (DESs) are promising extractants with tuneable properties. However, there is a lack of reports about the influence of the nature of the original DES on obtaining the metabolomic profile of a plant. OBJECTIVE: The aim of this study is to investigate the possibility of obtaining Iris sibirica L. chromatographical profiles with DESs based on various hydrogen bond donors and acceptors as extraction solvents. METHODOLOGY: DESs were prepared by mixing choline chloride or tetrabutylammonium bromide with various hydrogen bond donors and investigated for the extraction of bioactive substances from biotechnological raw materials of I. sibirica L. The obtained extracts were analysed by HPLC with diode array detector (DAD) and Q-MS. RESULTS: Chromatographic profiles for I. sibirica L. extracts by eight choline chloride DESs and six tetrabutylammonium DESs have been obtained. It has been found that selective recovery of bioactive substances can be achieved by varying the composition of DESs. Eleven phenolic compounds were identified in I. sibirica L. using HPLC-MS. Phase separation was observed with acetonitrile for four DESs. New flavonoid derivatives have been found in DES extracts compared with methanol extracts. CONCLUSION: The results showed the possibility of DES usage for extraction without water addition. Selectivity of DESs varies depending on the chemical composition of hydrogen bond donors and acceptors. Choline chloride is a more suitable hydrogen bond acceptor for the flavonoid extraction. Choline chloride-lactic acid (1:1) DES has demonstrated a metabolic profile that was the closest to the methanol one and enhanced the extraction up to 2.6-fold.
Assuntos
Solventes Eutéticos Profundos , Gênero Iris , Metanol , Solventes/química , Flavonoides , Extratos Vegetais/química , Colina/química , Compostos FitoquímicosRESUMO
The role of bHLH transcription factors in plant response to abiotic stress and regulation of flavonoid metabolism is well documented. However, to date, the bHLH transcription factor family in Iris domestica remains unreported, impeding further research on flavonoid metabolism in this plant. To address this knowledge gap, we employed bioinformatics to identify 39 IdbHLH genes and characterised their phylogenetic relationships and gene expression patterns under both drought and copper stress conditions. Our evolutionary tree analysis classified the 39 IdbHLHs into 17 subfamilies. Expression pattern analysis revealed that different IdbHLH transcription factors had distinct expression trends in various organs, suggesting that they might be involved in diverse biological processes. We found that IdbHLH36 was highly expressed in all organs (Transcripts Per Million (TPM) > 10), while only 12 IdbHLH genes in the rhizome and four in the root were significantly upregulated under drought stress. Of these, four genes (IdbHLH05, -37, -38, -39) were co-upregulated in both the rhizome and root, indicating their potential role in drought resistance. With regards to copper stress, we found that only 12 genes were upregulated. Further co-expression analysis revealed that most bHLH genes were significantly correlated with key enzyme genes involved in isoflavone biosynthesis. Thereinto, IdbHLH06 showed a significant positive correlation with IdC4H1 and Id4CL1 (p < 0.05). Furthermore, a transient expression assay confirmed that the IdbHLH06 protein was localised in the nucleus. Our findings provide new insights into the molecular basis and regulatory mechanisms of bHLH transcription factors in isoflavone biosynthesis in I. domestica.
Assuntos
Gênero Iris , Isoflavonas , Transcriptoma , Cobre/metabolismo , Gênero Iris/genética , Filogenia , Secas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estresse Fisiológico/genética , Flavonoides , Regulação da Expressão Gênica de PlantasRESUMO
Iris taxa are sources of valuable essential oils obtained from aged rhizomes used by various industries, including pharmacy, cosmetic, perfume, and food industry, in which irones are the most important aroma components. In this study, volatile organic compounds (VOCs) obtained from dried rhizomes of three endemics from Croatia, Iris pseudopallida, I. illyrica, and I. adriatica, were studied. The VOCs were isolated by three different methods: headspace solid-phase microextraction (HS-SPME) using divinylbenzene/carboxene/polydimethylsiloxane (DVB/CAR/PDMS) fiber or polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber, and hydrodistillation (HD). The samples were analyzed by gas chromatography-mass spectrometry (GC-MS). In five out of six samples, the main compounds detected by HS-SPME were perilla aldehyde, butan-2,3-diol, acetic acid, 2-phenylethanol, benzyl alcohol, hexanal, and nonanal, while 6-methylhept-5-en-2-one, trans-caryophyllene, and ethanol were common for all studied samples. The former VOCs were absent from the oldest, irone-rich I. pseudopallida sample, mainly characterized by cis-α-irone (43.74-45.76%). When using HD, its content was reduced (24.70%), while docosane prevailed (45.79%). HD yielded predominantly fatty acids, including myristic, common for all studied taxa (4.20-97.01%), and linoleic (40.69%) and palmitic (35.48%) as the major VOCs of I. adriatica EO. The performed GC-MS analyses of EOs, in combination with HS-SPME/GC-MS, proved to be useful for gaining a better insight into Iris VOCs.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Gênero Iris , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação , Microextração em Fase Sólida/métodos , Gênero Iris/química , Destilação , Óleos Voláteis/química , Óleos Voláteis/análise , Rizoma/químicaRESUMO
BACKGROUND: Flower color plays a crucial role in attracting pollinators and facilitating environmental adaptation. Investigating the causes of flower color polymorphism and understanding their potential effects on both ecology and genetics can enhance our understanding of flower color polymorphism in wild plant. RESULTS: In this study, we examined the differences of potential male and female fitness between purple- and yellow- flower individuals in Iris potaninii on the Qinghai-Tibet Plateau, and screened key genes and positively selective genes involved in flower color change. Our results showed that yellow flower exhibited a higher pollen-to-ovule ratio. Yellow flowers were derived from purple flowers due to the loss of anthocyanins, and F3H could be an essential gene affecting flower color variation though expression regulation and sequence polymorphism in this species. Furthermore, our findings suggest that genes positively selected in yellow-flowered I. potaninii might be involved in nucleotide excision repair and plant-pathogen interactions. CONCLUSIONS: These results suggest that F3H induces the flower color variation of Iris potaninii, and the subsequent ecological and additive positive selection on yellow flowers may further enhance plant adaptations to alpine environments.
Assuntos
Gênero Iris , Humanos , Gênero Iris/genética , Gênero Iris/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Tibet , Polimorfismo Genético , Flores/genética , Flores/metabolismo , Cor , Pigmentação/genéticaRESUMO
BACKGROUND: Iris lactea var. chinensis, a perennial herbaceous species, is widely distributed and has good drought tolerance traits. However, there is little information in public databases concerning this herb, so it is difficult to understand the mechanism underlying its drought tolerance. RESULTS: In this study, we used Illumina sequencing technology to conduct an RNA sequencing (RNA-seq) analysis of I. lactea var. chinensis plants under water-stressed conditions and rehydration to explore the potential mechanisms involved in plant drought tolerance. The resulting de novo assembled transcriptome revealed 126,979 unigenes, of which 44,247 were successfully annotated. Among these, 1187 differentially expressed genes (DEGs) were identified from a comparison of the water-stressed treatment and the control (CK) treatment (T/CK); there were 481 upregulated genes and 706 downregulated genes. Additionally, 275 DEGs were identified in the comparison of the rehydration treatment and the water-stressed treatment (R/T). Based on Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) analysis, the expression levels of eight randomly selected unigenes were consistent with the transcriptomic data under water-stressed and rehydration treatment, as well as in the CK. According to Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, proline metabolism-related DEGs, including those involved in the 'proline catabolic process', the 'proline metabolic process', and 'arginine and proline metabolism', may play important roles in plant drought tolerance. Additionally, these DEGs encoded 43 transcription factors (TFs), 46 transporters, and 22 reactive oxygen species (ROS)-scavenging system-related proteins. Biochemical analysis and histochemical detection showed that proline and ROS were accumulated under water-stressed conditions, which is consistent with the result of the transcriptomic analysis. CONCLUSIONS: In summary, our transcriptomic data revealed that the drought tolerance of I. lactea var. chinensis depends on proline metabolism, the action of TFs and transporters, and a strong ROS-scavenging system. The related genes found in this study could help us understand the mechanisms underlying the drought tolerance of I. lactea var. chinensis.
Assuntos
Gênero Iris , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Gênero Iris/genética , Gênero Iris/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistência à Seca , Estresse Fisiológico/genética , Transcriptoma , Perfilação da Expressão Gênica , Desidratação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Água/metabolismo , Regulação da Expressão Gênica de Plantas , SecasRESUMO
PREMISE: Almost nothing is known about what happens to pollen grains once they attach to pollinators, although some have postulated that pollen from different donors may form complex, two- or three-dimensional landscapes (e.g., layers or mosaics) that can facilitate male-male competition. For example, pollen that is already on pollinators may preclude the deposition of subsequent pollen grains. METHODS: Using quantum dots to mark the pollen of individual flowers, we explored the possibilities of layering and preclusion in a fly-pollinated iris, Moraea lurida. RESULTS AND CONCLUSIONS: The proportion of labeled pollen from the last flower visited diminished in sequential pollen samples taken from the top to the bottom of the pollen load, representing the first empirical evidence for pollen layering. However, the consequences in terms of pollen preclusion were equivocal: Although the pre-existing pollen load size was not a good predictor of new pollen receipt, labeled pollen loads from the last flower visited were significantly smaller than pollen loads from the previous flower visited. Thus, pollen from the previous flower may preclude pollen placement from a subsequently visited flower, and pollen from different flowers may compete for space on pollinators.
Assuntos
Gênero Iris , Pontos Quânticos , Polinização , Pólen , FloresRESUMO
Iris lactea var. chinensis (Fisch.) Koidz has a unique floral fragrance that differs from that of other Iris spp.; however, its characteristic aroma composition remains unknown. This study aimed to identify the floral fragrance components of I. lactea var. chinensis during different flowering stages using headspace solid-phase microextraction in conjunction with gas chromatography mass spectrometry, electronic nose, and sensory evaluation. During the three flowering phases (bud stage, bloom stage, and decay stage), 70 volatile organic compounds (VOCs), including 13 aldehydes, 13 esters, 11 alcohols, 10 alkanes, 8 ketones, 7 terpenes, 7 benzenoids, and 1 nitrogenous compound, were identified. According to principal component analysis, the primary VOCs were (-)-pinene, ß-irone, methyl heptenone, phenylethanol, hexanol, and 2-pinene. A comparison of the differential VOCs across the different flowering stages using orthogonal partial least squares discriminant analysis and hierarchical clustering analysis revealed that 3-carene appeared only in the bud stage, whereas hexanol, ethyl caprate, ethyl caproate, linalool, (-)-pinene, and 2-pinene appeared or were present at significantly increased levels during the bloom stage. The phenylethanol, methyl heptenone, 3-methylheptane, and ß-irone reached a peak in the decay stage. The odor activity value and sensory evaluation suggested that "spicy" is the most typical odor of I. lactea var. chinensis, mainly due to 2-methoxy-3-sec-butylpyrazine, which is rare in floral fragrances.
Assuntos
Gênero Iris , Álcool Feniletílico , Compostos Orgânicos Voláteis , Gênero Iris/química , Odorantes/análise , Norisoprenoides , HexanóisRESUMO
Dried Iris rhizomes have been used in Chinese and European traditional medicine for the treatment of various diseases such as bacterial infections, cancer, and inflammation, as well as for being astringent, laxative, and diuretic agents. Eighteen phenolic compounds including some rare secondary metabolites, such as irisolidone, kikkalidone, irigenin, irisolone, germanaism B, kaempferol, and xanthone mangiferin, were isolated for the first time from Iris aphylla rhizomes. The hydroethanolic Iris aphylla extract and some of its isolated constituents showed protective effects against influenza H1N1 and enterovirus D68 and anti-inflammatory activity in human neutrophils. The promising anti-influenza effect of apigenin (13: , almost 100% inhibition at 50 µM), kaempferol (14: , 92%), and quercetin (15: , 48%) were further confirmed by neuraminidase inhibitory assay. Irisolidone (1: , almost 100% inhibition at 50 µM), kikkalidone (5: , 93%), and kaempferol (14: , 83%) showed promising anti-enterovirus D68 activity in vitro. The identified compounds were plotted using ChemGPS-NP to correlate the observed activity of the isolated phenolic compounds with the in-house database of anti-influenza and anti-enterovirus agents. Our results indicated that the hydroethanolic Iris aphylla extract and Iris phenolics hold the potential to be developed for the management of seasonal pandemics of influenza and enterovirus infections.
Assuntos
Flavonas , Vírus da Influenza A Subtipo H1N1 , Gênero Iris , Humanos , Quempferóis , Extratos Vegetais/farmacologia , Rizoma/química , Antivirais/farmacologia , Relação Estrutura-Atividade , Fenóis/análise , Anti-Inflamatórios/farmacologiaRESUMO
Chromium (Cr) is a toxic heavy element that interferes with plant metabolite biosynthesis and modifies the plant rhizosphere microenvironment, affecting plant growth. However, the interactions and response mechanisms between plants and rhizosphere bacteria under Cr stress still need to be fully understood. In this study, we used Iris tectorum as a research target and combined physiology, metabolomics, and microbiology to reveal the stress response mechanism of I. tectorum under heavy metal chromium stress. The results showed that Cr stress-induced oxidative stress inhibited plant growth and development and increased malondialdehyde and oxygen free radicals content. Also, it increased ascorbate peroxidase, peroxidase activity, and superoxide dismutase activity, as well as glutathione and soluble sugar content. Microbiome analysis showed that Cr stress changed the rhizosphere bacterial community diversity index by 33.56%. Proteobacteria, Actinobacteriota, and Chloroflexi together accounting for 71.21% of the total sequences. Meanwhile, the abundance of rhizosphere dominant and plant-promoting bacteria increased significantly with increasing time of Cr stress. The improvement of the soil microenvironment and the recruitment of bacteria by I. tectorum root secretions were significantly enhanced. By metabolomic analysis, five vital metabolic pathways were identified, involving 89 differentially expressed metabolites, divided into 15 major categories. In summary, a multi-omics approach was used in this study to reveal the interaction and stress response mechanisms between I. tectorum and rhizosphere bacterial communities under Cr stress, which provided theoretical basis for plant-microbial bioremediation of Cr-contaminated soils in constructed wetlands. This may provide more valuable information for wetland remediation of heavy metal pollution.
Assuntos
Gênero Iris , Metais Pesados , Microbiota , Poluentes do Solo , Cromo/toxicidade , Cromo/metabolismo , Gênero Iris/metabolismo , Rizosfera , Microbiologia do Solo , Metais Pesados/toxicidade , Bactérias/metabolismo , Solo , Poluentes do Solo/análiseRESUMO
Tequila vinasse has a high contaminating capacity due to its physicochemical characteristics. Efficient and low-cost alternative treatments are required to reduce and control the environmental impacts caused by raw vinasse discharges, mainly from micro and small factories. One option is wetland technologies in which vegetation plays an important role in the proper functioning of the system; thus, the species to be used must be properly selected based on their resistance and tolerance to the toxic effects of vinasse. Therefore, this study aims to evaluate the resistance of four macrophyte species to tequila vinasse in wetland microcosms that is, Canna indica, Cyperus papyrus, Iris sibirica, and Typha latifolia which were exposed to 5, 7, 10, 12, and 15% of vinasse diluted with domestic wastewater. The control parameters (relative content, evapotranspiration, pH, electrical conductivity, and apparent color) showed that the plants in general developed stress symptoms. However, statistical analysis revealed a significant difference (p < 0.05) between plant species and vinasse treatments, further evidencing that I. sibirica is the species with the greatest potential to be used as emergent vegetation in treatment wetlands for the purification of tequila vinasse.
The novelty of this study lies in the fact that different species of macrophytes have been evaluated to find those with the capacity to resist the physicochemical characteristics of tequila vinasses; corroborating that there are more appropriate species than others. I. sibirica stood out mainly based on its better physiological response to the Relative Chlorophyll Content, which is the most important parameter for the evaluation of plant health. In this way, the results of this study will allow the evaluation of different types of constructed wetlands for the treatment of tequila vinasse. The knowledge generated is useful for treating other distillery stillages around the world with wetland technology.
Assuntos
Cyperus , Gênero Iris , Typhaceae , Zingiberales , Áreas Alagadas , Biodegradação Ambiental , Eliminação de Resíduos LíquidosRESUMO
The anthocyanin biosynthetic pathway is the main pathway regulating floral coloration in Iris germanica, a well-known ornamental plant. We investigated the transcriptome profiles and targeted metabolites to elucidate the relationship between genes and metabolites in anthocyanin biosynthesis in the bitone flower cultivar 'Clarence', which has a deep blue outer perianth and nearly white inner perianth. In this study, delphinidin-, pelargonidin-, and cyanidin-based anthocyanins were detected in the flowers. The content of delphinidin-based anthocyanins increased with the development of the flower. At full bloom (stage 3), delphinidin-based anthocyanins accounted for most of the total anthocyanin metabolites, whereas the content of pelargonidin- and cyanidin-based anthocyanins was relatively low. Based on functional annotations, a number of novel genes in the anthocyanin pathway were identified, which included early biosynthetic genes IgCHS, IgCHI, and IgF3H and late biosynthetic genes Ig F3'5'H, IgANS, and IgDFR. The expression of key structural genes encoding enzymes, such as IgF3H, Ig F3'5'H, IgANS, and IgDFR, was significantly upregulated in the outer perianth compared to the inner perianth. In addition, most structural genes exhibited their highest expression at the half-color stage rather than at the full-bloom stage, which indicates that these genes function ahead of anthocyanins synthesis. Moreover, transcription factors (TFs) of plant R2R3-myeloblastosis (R2R3-MYB) related to the regulation of anthocyanin biosynthesis were identified. Among 56 R2R3-MYB genes, 2 members belonged to subgroup 4, with them regulating the expression of late biosynthetic genes in the anthocyanin biosynthetic pathway, and 4 members belonged to subgroup 7, with them regulating the expression of early biosynthetic genes in the anthocyanin biosynthetic pathway. Quantitative real-time PCR (qRT-PCR) analysis was used to validate the data of RNA sequencing (RNA-Seq). The relative expression profiles of most candidate genes were consistent with the FPKM of RNA-seq. This study identified the key structural genes encoding enzymes and TFs that affect anthocyanin biosynthesis, which provides a basis and reference for the regulation of plant anthocyanin biosynthesis in I. germanica.
Assuntos
Gênero Iris , Transcriptoma , Antocianinas , Gênero Iris/genética , Gênero Iris/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Drought and high salinity greatly affect plant growth and development. WRKY transcription factors play a key role in plant tolerance to abiotic stress, but the functions of WRKYs in the ornamental monocotyledon Iris laevigata remain largely unexplored. In this study, we cloned IlWRKY70 and found that it is a Group III WRKY localized in the nucleus. The expression of IlWRKY70 was induced by NaCl and PEG-6000, which reached peaks (4.38 and 5.65 times) after 3 h and 1 h, respectively. The exogenous overexpression of IlWRKY70 in N. tabacum significantly improved the resistance under NaCl and drought treatments, as evidenced by higher germination rates, longer root lengths, and increased fresh weights compared to those of control plants. In addition, transgenic seedlings showed significantly reduced wilting, higher photosynthetic performance, higher Fv/Fm and chlorophyll content, and lower stomatal conductance. Moreover, transgenic lines showed higher antioxidant enzymatic activities, lower reactive oxygen species (ROS), and lower malondialdehyde contents. Accordingly, we also found higher expressions of antioxidant defense genes, including SOD, CAT, and POD, in transgenic lines compared to controls under salt and drought stresses. Thus, IlWRKY70 enhances the abilities of salt and drought tolerances in plants, at least partially, via ROS regulation and can be used for breeding I. laevigata possessing enhanced salt and drought resistances.
Assuntos
Gênero Iris , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nicotiana/metabolismo , Gênero Iris/genética , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Cloreto de Sódio/farmacologia , Secas , Tolerância ao Sal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Estresse Fisiológico/genéticaRESUMO
Environmentally sustainable remediation is needed to protect freshwater resources which are deteriorating due to severe industrial, mining, and agricultural activities. Treatment by floating wetlands could be a sustainable solution to remediate water bodies. The study aimed to examine the effects of Cd on Phragmites australis and Iris pseudacorus growth (height, biomass, root length and chlorophyll contents), anatomy, Cd accumulation in their biomass and their ability to remove Cd, N and P. Seedlings of both plants were grown in a greenhouse for 50 days in artificially prepared stormwater amended with Cd, N, and P. The treatments were: control (Cd _0), Cd_1, Cd_2, and Cd_4 mg L-1. N and P contents were 4 mg L-1 and 1.8 mg L-1, respectively. In the case of P. australis, the maximum plant height, root length, and total dry biomass production was increased in medium dose (Cd_2) treatment while the chlorophyll index (CCI) increased in high dose (Cd_4) treatment as compared to all treatments. For I. pseudacorus, the maximum plant height and total dry biomass production, root length and CCI values were improved in low dose (Cd_1) and high dose (Cd_4) treatments, respectively among all treatments. Results showed that P. australis accumulated 10.94-1821.59 µg · (0.05 m2)-1 in roots and 2.45-334.65 µg · (0.05 m2)-1 in shoots under Cd_0, Cd_1 and Cd_4 treatments. I. pseudacorus accumulated the highest Cd in roots up to 5.84-4900 µg · (0.05 m2)-1 and 3.40-609 µg · (0.05 m2)-1 in shoots under Cd_0, Cd_1 and Cd_4 treatments. The translocation factor was observed as <1 and the bioconcentration factor >1 for both species, which indicates their phytostabilization potential. Results demonstrate that P. australis and I. pseudacorus are suitable for use in floating wetlands to remediate contaminated sites.
Assuntos
Cádmio , Gênero Iris , Cádmio/farmacologia , Áreas Alagadas , Biodegradação Ambiental , Plantas , Poaceae , Biomassa , Raízes de Plantas/químicaRESUMO
Four compounds (1, 5, 7, and 8) were first isolated from the genus Belamcanda Adans. nom. conserv., and six known compounds (2-4, 6, 9, and 10) were isolated from the rhizome of Belamcanda chinensis (L.) DC. Their structures were confirmed by spectroscopic data. Herein, compounds 1-10 were rhapontigenin, trans-resveratrol, 5,7,4'-trihydroxy-6,3',5'-trimethoxy-isoflavone, irisflorentin, 6-hydroxybiochannin A, iridin S, pinoresinol, 31-norsysloartanol, isoiridogermanal, and iristectorene B, respectively. All compounds were evaluated for their antiproliferative effects against five tumor cell lines (BT549, 4T1, MCF7, MDA-MB-231, and MDA-MB-468). Among them, compound 9 (an iridal-type triterpenoid) showed the highest activity against 4T1 and MDA-MB-468 cells. Further studies displayed that compound 9 inhibited cell metastasis, induced cells cycle arrest in the G1 phase, exhibited significant mitochondrial damage in 4T1 and MDA-MB-468 cells including excess reactive oxygen species, decreased mitochondrial membrane potential, and induced 4T1 and MDA-MB-468 cell apoptosis for the first time. In summary, these findings demonstrate that compound 9 exerts promising potential for triple-negative breast cancer treatment and deserves further evaluation.
Assuntos
Antineoplásicos , Neoplasias da Mama , Gênero Iris , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular , Apoptose , Linhagem Celular Tumoral , Proliferação de CélulasRESUMO
Iris tectorum Maxim. is an important plant that plays a very crucial role in the ecological welfare of wetlands. In this study, the effects of different intensities of UV-B radiation on the growth, photosynthetic pigment content, chlorophyll fluorescence characteristics, chloroplast ultrastructure, and gas exchange parameters of Iris tectorum Maxim. were studied. The results showed that enhanced UV-B radiation had a significant influence on the above-mentioned parameters of iris. Compared with the control, enhanced UV-B radiation caused certain damage to the leaf appearance. With the increasing intensity of radiation, the apparent damage degree became more serious. Enhanced UV-B radiation significantly decreased leaf chlorophyll contents, and the effect accumulated with the exposure time. Enhanced UV-B radiation increased Fo, significantly increased the non-photochemical quenching coefficient NPQ, reduced PSII and Qp, and significantly decreased the Fm, Fv/Fm, and Fv/Fo in leaves. The effect of UV-B radiation on PSII destruction of Iris tectorum Maxim. increased as the radiation intensity increased and the exposure time prolonged. The chloroplast structure was damaged under the enhanced UV-B radiation. More specifically, thylakoid lamellae were distorted, swelling and even blurred, and a large number of starch granules appeared. The effect of the high intensity of radiation on chloroplast ultrastructure was greater than that of lower intensity. Enhanced UV-B radiation reduced significantly the net photosynthetic rate, stomatal conductance, and transpiration rate, and the degree of degradation increased with the increasing irradiation intensity. However, the intercellular CO2 content increased, which suggests that the main reason for the decrease of photosynthetic rate was the non-stomatal factors.
Assuntos
Gênero Iris , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Gênero Iris/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Amido/metabolismoRESUMO
Winter dormancy (WD) is a crucial strategy for plants coping with potentially deadly environments. In recent decades, this process has been extensively studied in economically important perennial eudicots due to changing climate. However, in evergreen monocots with no chilling requirements, dormancy processes are so far a mystery. In this study, we compared the WD process in closely related evergreen (Iris japonica) and deciduous (I. tectorum) iris species across crucial developmental time points. Both iris species exhibit a 'temporary' WD process with distinct durations, and could easily resume growth under warm conditions. To decipher transcriptional changes, full-length sequencing for evergreen iris and short read RNA sequencing for deciduous iris were applied to generate respective reference transcriptomes. Combining results from a multipronged approach, SHORT VEGETATIVE PHASE and FRUITFULL (FUL) from MADS-box was associated with a dormancy- and a growth-related module, respectively. They were co-expressed with genes involved in phytohormone signaling, carbohydrate metabolism, and environmental adaptation. Also, gene expression patterns and physiological changes in the above pathways highlighted potential abscisic acid and jasmonic acid antagonism in coordinating growth and stress responses, whereas differences in carbohydrate metabolism and reactive oxygen species scavenging might lead to species-specific WD durations. Moreover, a detailed analysis of MIKCCMADS-box in irises revealed common features described in eudicots as well as possible new roles for monocots during temporary WD, such as FLOWERING LOCUS C and FUL. In essence, our results not only provide a portrait of temporary WD in perennial monocots but also offer new insights into the regulatory mechanism underlying WD in plants.
Assuntos
Gênero Iris , Proteínas de Domínio MADS , Flores , Regulação da Expressão Gênica de Plantas , Gênero Iris/genética , Gênero Iris/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
PREMISE: Understanding recruitment processes of invasive species is central to conservation and management strategies. Iris pseudacorus, an emergent macrophyte, has established invasive populations across a broad global range, and reduces biodiversity in wetland ecosystems. Climate change is altering germination cues, yet studies on the invasion of wetland macrophytes often ignore germination ecology despite its importance to their establishment and spread. METHODS: We explored germination of seeds from invasive I. pseudacorus populations in California in response to seed coat presence or absence, and several environmental factors. Using experimental results in a thermal time model, we derived germination temperature thresholds. RESULTS: Germination of I. pseudacorus seeds did not require cold or warm stratification, and was not affected by seed coat presence or absence. Germination occurred in the dark, although germinability was two- to threefold times greater under light. At constant temperature, thermal time model estimates included 18.3 ± 1.8°C base germination temperature (Tb$({T}_{b}$ ); 28.2 ± 0.5°C optimal temperature (To$({T}_{o}$ ); and 41.0 ± 1.7°C ceiling temperature (Tc$({T}_{c}$ ). Seeds exposed to 36.0°C achieved over 10% germination, and embryos of ungerminated seeds presented 76% viability. Overall, germinability remained relatively low at constant temperatures (≤25%) but was close to 90% under alternating daily temperatures. CONCLUSIONS: Exposure to diurnally fluctuating temperatures is essential for this species to achieve high germination rates. Our study reveals that I. pseudacorus has a broad germination niche supporting its establishment in a relatively wide range of environments, including at high temperatures more frequent with climate change.
Assuntos
Germinação , Gênero Iris , Sementes , California , Ecossistema , Germinação/fisiologia , Aquecimento Global , Espécies Introduzidas , Sementes/fisiologia , TemperaturaRESUMO
The circadian clock can entrain to forced light-dark cycles by adjusting the phases and periods of flower opening and closing in ephemeral flowers. The responses of circadian rhythms to the same light conditions differ from species. However, the differences in internal genetic mechanisms underlying the different responses between species remain unclear. Iris domestica and I. dichotoma have ephemeral flowers and significantly divergent flower opening and closing times. The effects of different photoperiods (continuous darkness, 4L20D, 8L16D, 12L12D, 16L8D, 20L4D and continuous white light) on flower opening and closing, and expression patterns of seven genes (CRYPTOCHROME 1, PHYTOCHROME B, LATE ELONGATED HYPOCOTYL, PSEUDO RESPONSE REGULATOR 95, PHYTOCHROME INTERACTING FACTOR 4-like, SMUX AUXIN UP RNA 64-like and senescence-associated gene 39-like) involved in the circadian regulation of flower opening and closing were compared between I. domestica and I. dichotoma. Flower opening and closing in the two species exhibited circadian rhythms under continuous darkness (DD), but showed arrhythmia in continuous white light (LL). In the two species, keeping robust rhythms, strong synchronicity, rapid progressions of flower opening and closing and reaching full opening stage required a dark period longer than 4 h. In light-dark cycles with dark periods longer than 4 h, flower opening and closing times of the two species delayed with the delay of dawn, and the degree to which flower opening time varies with the time of dawn was greater in I. dichotoma than in I. domestica. The arrhythmia of flower opening and closing under 20L4D and LL would result from the arrhythmic output signals rather than arrhythmia of oscillators and photoreceptors. The different responses of the two species to the change of photoperiods would be caused by the transcriptional differences of genes in the output pathway of circadian clock system rather than in the input pathway or oscillators.