Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 167(6): 1455-1459, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469095

RESUMO

Despite their widespread distribution, only a single genotype variant of clade 2.3.4.4b H5N1 influenza viruses has been found so far in Europe. Here, we report the detection of a new highly pathogenic avian influenza H5N1 genotype in geese and ducks from a backyard farm in the Czech Republic. Phylogenetic analysis revealed that the Czech H5N1 virus retained the A/Eurasian_Wigeon/Netherlands/1/2020-like backbone with an altered PB2 segment obtained from co-circulating low-pathogenic avian influenza viruses.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Patos/virologia , Europa (Continente)/epidemiologia , Gansos/virologia , Genótipo , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Filogenia
2.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32759314

RESUMO

Members of the Pegivirus genus, family Flaviviridae, widely infect humans and other mammals, including nonhuman primates, bats, horses, pigs, and rodents, but are not associated with disease. Here, we report a new, genetically distinct pegivirus in goose (Anser cygnoides), the first identified in a nonmammalian host species. Goose pegivirus (GPgV) can be propagated in goslings, embryonated goose eggs, and primary goose embryo fibroblasts, and is thus the first pegivirus that can be efficiently cultured in vitro Experimental infection of GPgV in goslings via intravenous injection revealed robust replication and high lymphotropism. Analysis of the tissue tropism of GPgV revealed that the spleen and thymus were the organs bearing the highest viral loads. Importantly, GPgV could promote clinical manifestations of goose parvovirus infection, including reduced weight gain and 7% mortality. This finding contrasts with the lack of pathogenicity that is characteristic of previously reported pegiviruses.IMPORTANCE Members of the Pegivirus genus, family Flaviviridae, widely infect humans and other mammals, but are described as causing persistent infection and lacking pathogenicity. The efficiency of in vitro replication systems for pegivirus is poor, thus limiting investigation into viral replication steps. Because of that, the pathogenesis, cellular tropism, route of transmission, biology, and epidemiology of pegiviruses remain largely uncovered. Here, we report a phylogenetically distinct goose pegivirus (GPgV) that should be classified as a new species. GPgV proliferated in cell culture in a species- and cell-type-specific manner. Animal experiments show GPgV lymphotropism and promote goose parvovirus clinical manifestations. This study provides the first cell culture model for pegivirus, opening new possibilities for studies of pegivirus molecular biology. More importantly, our findings stand in contrast to the lack of identified pathogenicity of previously reported pegiviruses, which sheds lights on the pathobiology of pegivirus.


Assuntos
Doenças das Aves , Infecções por Flaviviridae , Gansos/virologia , Pegivirus , Replicação Viral , Animais , Doenças das Aves/metabolismo , Doenças das Aves/virologia , Linhagem Celular , Infecções por Flaviviridae/metabolismo , Infecções por Flaviviridae/veterinária , Pegivirus/classificação , Pegivirus/fisiologia
3.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999029

RESUMO

The highly pathogenic avian influenza virus (HPAIV) H5N1 A/goose/Guangdong/1996 lineage (Gs/GD) is endemic in poultry across several countries in the world and has caused sporadic lethal infections in humans. Vaccines are important in HPAIV control both for poultry and in prepandemic preparedness for humans. This study assessed inactivated prepandemic vaccine strains in a One Health framework across human and agricultural and wildlife animal health, focusing on the genetic and antigenic diversity of field H5N1 Gs/GD viruses from the agricultural sector and assessing cross-protection in a chicken challenge model. Nearly half (47.92%) of the 48 combinations of vaccine and challenge viruses examined had bird protection of 80% or above. Most vaccinated groups had prolonged mean death times (MDT), and the virus-shedding titers were significantly lower than those of the sham-vaccinated group (P ≤ 0.05). The antibody titers in the prechallenge sera were not predictive of protection. Although vaccinated birds had higher titers of hemagglutination-inhibiting (HI) antibodies against the homologous vaccine antigen, most of them also had lower or no antibody titer against the challenge antigen. The comparison of all parameters and homologous or closely related vaccine and challenge viruses gave the best prediction of protection. Through additional analysis, we identified a pattern of epitope substitutions in the hemagglutinin (HA) of each challenge virus that impacted protection, regardless of the vaccine used. These changes were situated in the antigenic sites and/or reported epitopes associated with virus escape from antibody neutralization. As a result, this study highlights virus diversity, immune response complexity, and the importance of strain selection for vaccine development to control H5N1 HPAIV in the agricultural sector and for human prepandemic preparedness. We suggest that the engineering of specific antigenic sites can improve the immunogenicity of H5 vaccines.IMPORTANCE The sustained circulation of highly pathogenic avian influenza virus (HPAIV) H5N1 A/goose/Guangdong/1996 (Gs/GD) lineage in the agricultural sector and some wild birds has led to the evolution and selection of distinct viral lineages involved in escape from vaccine protection. Our results using inactivated vaccine candidates from the human pandemic preparedness program in a chicken challenge model identified critical antigenic conformational epitopes on H5 hemagglutinin (HA) from different clades that were associated with antibody recognition and escape. Even though other investigators have reported epitope mapping in the H5 HA, much of this information pertains to epitopes reactive to mouse antibodies. Our findings validate changes in antigenic epitopes of HA associated with virus escape from antibody neutralization in chickens, which has direct relevance to field protection and virus evolution. Therefore, knowledge of these immunodominant regions is essential to proactively develop diagnostic tests, improve surveillance platforms to monitor AIV outbreaks, and design more efficient and broad-spectrum agricultural and human prepandemic vaccines.


Assuntos
Proteção Cruzada/imunologia , Gansos/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Variação Antigênica , Galinhas/imunologia , Epitopos , Gansos/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/genética , Vacinação/veterinária , Eliminação de Partículas Virais
4.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967952

RESUMO

Although astroviruses causes enteric diseases and encephalitis in humans and nephritis and hepatitis in poultry, astrovirus infection is thought to be self-limiting. However, little is known about its molecular mechanism. In this study, we found that a novel goose astrovirus (GAstV), GAstV-GD, and its open reading frame 2 (ORF2) could efficiently activate the innate immune response and induce a high level of OASL in vitro and in vivo The truncation assay for ORF2 further revealed that the P2 domain of ORF2 contributed to stimulating OASL, whereas the acidic C terminus of ORF2 attenuated such activation. Moreover, the overexpression and knockdown of OASL could efficiently restrict and promote the viral replication of GAstV-GD, respectively. Our data not only give novel insights for elucidating self-limiting infection by astrovirus but also provide virus and host targets for fighting against astroviruses.IMPORTANCE Astroviruses cause gastroenteritis and encephalitis in human, and nephritis, hepatitis, and gout disease in poultry. However, the host immune response activated by astrovirus is mostly unknown. Here, we found that a novel goose astrovirus, GAstV-GD, and its ORF2 protein could efficiently induce a high level of OASL in vitro and in vivo, which could feed back to restrict the replication of GAstV-GD, revealing novel innate molecules triggered by astroviruses and highlighting that the ORF2 of GAstV-GD and OASL can be potential antiviral targets for astroviruses.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Astroviridae/efeitos dos fármacos , Gansos/virologia , Fases de Leitura Aberta/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/farmacologia , Animais , Astroviridae/genética , Infecções por Astroviridae/imunologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Linhagem Celular , Técnicas de Silenciamento de Genes , Imunidade Inata , Cinética , Fases de Leitura Aberta/fisiologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Transcriptoma , Replicação Viral/fisiologia
5.
Arch Virol ; 166(9): 2495-2504, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34232400

RESUMO

Short beak and dwarfism syndrome (SBDS) emerged in Cherry Valley duck flocks in China in 2015, and novel goose parvovirus (NGPV) was shown to be the etiological agent of SBDS. To date, it is not known whether SBDS-related NGPV isolates possess common molecular characteristics. In this study, three new NGPV strains (namely, SDHT16, SDJN19, and SDLC19) were isolated from diseased ducks showing typical signs of SBDS and successfully passaged in embryonated goose or Cherry Valley duck eggs. The complete genome sequences of these NGPV strains were 98.9%-99.7% identical to each other but showed slightly less similarity (95.2%-96.1% identity) to classical GPV strains. A total of 16 common amino acid substitutions were present in the VP1 proteins of six NGPV strains (SDHT16, SDJN19, SDLC19, QH, JS1, and SDLC01) compared with the classical Chinese GPV strains, nine of which were identical to those found in European GPV strain B. The non-structural protein Rep1 of the six NGPV strains had 12 common amino acid substitutions compared with the classical GPV strains. Phylogenetic analysis indicated that the Chinese NGPV strains clustered with the European SBDS-related NGPV strains, forming a separate branch that was distinct from the group formed by the classical GPV strains. The present study shows the common molecular characteristics of NGPV isolates and suggests that the Chinese NGPV isolates probably share a common ancestor with European SBDS-related NGPV strains.


Assuntos
Nanismo/veterinária , Nanismo/virologia , Parvovirinae/classificação , Parvovirinae/genética , Filogenia , Doenças das Aves Domésticas/virologia , Animais , China , Patos/virologia , Gansos/virologia , Genoma Viral , Infecções por Parvoviridae/virologia , Parvovirus/genética , Alinhamento de Sequência , Sequenciamento Completo do Genoma
6.
Arch Virol ; 166(7): 1931-1942, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33934195

RESUMO

Since its first recognition in the early 1960s, Derzsy's disease has caused significant economic losses in the goose meat industry through the world. Today, Derzsy's disease still maintains its importance for small-scale waterfowl farming, despite not having a significant impact on public health. In the present study, we investigated the distribution of goose parvovirus (GPV) and its potential variants from a 2019 outbreak in Turkey. Tissue samples were obtained from infected eggs and goslings that were raised in distinct farming areas of the various provinces. For this purpose, a novel primer set for amplification of a 630-bp region of VP3 was designed to confirm GPV infection by conventional PCR method. A 4709-base nucleotide sequence including the structural, non-structural, and 5' inverted terminal repeat regions was obtained from three samples from the Central Anatolian region. Multiple sequence comparisons and phylogenetic analysis demonstrated that the field strains clustered with European group 2 and contained a series of unique amino acid substitutions that might affect the virulence of the virus. These results confirmed that European-related field strains caused the outbreak in Asia Minor, and this might assist in understanding the circulation of GPV in Asia and Europe.


Assuntos
Gansos/virologia , Parvovirinae/genética , Parvovirus/genética , Virulência/genética , Substituição de Aminoácidos/genética , Animais , Ásia , Surtos de Doenças , Europa (Continente) , Infecções por Parvoviridae/virologia , Filogenia , Doenças das Aves Domésticas/virologia
7.
Arch Virol ; 166(2): 559-569, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33409548

RESUMO

Marek's disease (MD) is an important disease of avian species and a potential threat to the poultry industry worldwide. In this study, 16 dead commercial chickens from flocks with suspected MD were necropsied immediately after death. Pathological findings were compatible with MD, and gallid alphaherpesvirus 2 was identified in PCR of spleen samples. Virus isolation was performed in primary cell culture, and partial sequencing of the meq gene of the isolate revealed >99% nucleotide sequence identity to virulent and very virulent plus strains from a number of European countries, placing it in the same subclade of clade III as two virulent Italian strains and a very virulent plus Polish strain as well as virulent strains of geese and ducks. The data reported here indicate that a virulent strain of Marek's disease virus is circulating in Turkey and has not been stopped by the current national vaccination programme.


Assuntos
Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/isolamento & purificação , Doença de Marek/virologia , Aves Domésticas/virologia , Animais , Sequência de Bases/genética , Células Cultivadas , Galinhas/virologia , Patos/virologia , Gansos/virologia , Itália , Filogenia , Polônia , Doenças das Aves Domésticas/virologia , Turquia , Virulência/genética
8.
Avian Pathol ; 50(5): 447-452, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34545745

RESUMO

Routine culturing of goose haemorrhagic polyomavirus (GHPV) is cumbersome, and limited data are available about its replication and gene expression profile. In this study, goose embryo fibroblast cells were infected with GHPV for temporal measurement of the viral genome copy number and mRNA levels with quantitative PCR. Accumulation of small and large tumour antigen-encoding mRNAs was detected as early as 9 hours post-infection (hpi), while high level expression of the capsid protein encoding VP1-VP3, and ORF-X mRNAs was first detected at 24 hpi. Elevation of GHPV genome copy number was noted at 48 hpi. The results indicate that the gene expression profile of GHPV is similar to that described for mammalian polyomaviruses.RESEARCH HIGHLIGHTS GHPV was propagated in culture of primary goose embryo fibroblast cells.The transcription commenced before the onset of viral DNA replication.The transcription patterns of GHPV and mammalian polyomaviruses were comparable.


Assuntos
Doenças das Aves/virologia , Gansos/virologia , Infecções por Polyomavirus/veterinária , Polyomavirus , Animais , Replicação do DNA , DNA Viral , Polyomavirus/genética , RNA Mensageiro/genética , Transcriptoma , Replicação Viral
9.
Avian Pathol ; 50(1): 41-51, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33021105

RESUMO

Goose haemorrhagic polyomavirus (GHPV) is the aetiological agent of haemorrhagic nephritis enteritis of geese (HNEG), a fatal disease that impacts geese and has been recorded only in Europe. The present study describes the first clinical cases of HNEG in Taiwan and the phylogenesis of Taiwanese GHPV, and it elucidates the pathogenesis of GHPV infection using in situ hybridization (ISH). The genomes of Taiwanese GHPV were highly similar to the previously reported strains. The diseased geese showed various degrees of vascular damage, especially in the digestive tract. The affected geese in the early stage showed transmural haemorrhagic enteritis in the intestine. In the middle to late stages, the most obvious lesion was hypoxic necrosis of renal tubules around intralobular central veins. Mineralization deposited in the kidney and systemic gout were also found. ISH revealed GHPV DNA in the vascular endothelial cells throughout the body, but not in the parenchymal cells of organs. Accordingly, the pathogenesis of GHPV infection was consistent with viral tropism in the endothelial cells. Specific attack of vascular endothelium by GHPV resulted in endothelial cell necrosis and subsequent increases of blood vessel permeability, as well as secondary circulation disorders, such as oedema, haemorrhage, and ischaemic necrosis in the adjacent parenchyma. RESEARCH HIGHLIGHTS Cell tropism of GHPV is determined by in situ hybridization. The tropism results in vascular dysfunction and subsequent pathobiology. Haemorrhagic nephritis and enteritis of geese described outside Europe for the first time.


Assuntos
Gansos/virologia , Infecções por Polyomavirus/veterinária , Polyomavirus/fisiologia , Doenças das Aves Domésticas/virologia , Animais , Células Endoteliais/patologia , Células Endoteliais/virologia , Enterite/veterinária , Hemorragia/veterinária , Hibridização In Situ/veterinária , Intestinos/patologia , Intestinos/virologia , Rim/patologia , Rim/virologia , Nefrite/veterinária , Filogenia , Polyomavirus/genética , Infecções por Polyomavirus/epidemiologia , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia , Taiwan/epidemiologia , Tropismo Viral
10.
BMC Vet Res ; 17(1): 124, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33740981

RESUMO

BACKGROUND: Influenza viruses are a continuous threat to avian and mammalian species, causing epidemics and pandemics. After the circulation of H5N1 in 2006, 2015, and 2016 in Iraq, an H5N8 influenza virus emerged in domestic geese in Sulaymaniyah Province, Iraq. This study analyzed the genetic characteristics of the Iraqi H5N8 viruses. RESULTS: An HPAI virus subtype H5N8 was identified from domestic backyard geese in the Kurdistan Region, north Iraq. Phylogenic analyses of the hemagglutinin (HA) and neuraminidase (NA) genes indicated that Iraq H5N8 viruses belonged to clade 2.3.4.4 group B and clustered with isolates from Iran, Israel, and Belgium. Genetic analysis of the HA gene indicated molecular markers for avian-type receptors. Characterization of the NA gene showed that the virus had sensitive molecular markers for antiviral drugs. CONCLUSIONS: This is the first study ever on H5N8 in Iraq, and it is crucial to understand the epidemiology of the viruses in Iraq and the Middle East. The results suggest a possible role of migratory birds in the introduction of HPAI subtype H5N8 into Iraq.


Assuntos
Gansos/virologia , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H5N8/patogenicidade , Neuraminidase/genética , Filogenia , Proteínas Virais/genética
11.
Mol Cell Probes ; 52: 101564, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32222526

RESUMO

Goose circovirus (GoCV) is a potential immunosuppressive virus that poses a great hazard to the goose industry and has been shown to be widely distributed throughout China. We have established a fast, sensitive and highly specific TaqMan real-time quantitative PCR detection method for this virus. Specific primers and probes were designed against the conserved regions of the genomic GoCV Rep gene. The results showed that the assay was highly specific and sensitive for GoCV and did not cross-react with other non-targeted waterfowl viruses. The established method will be helpful for epidemiological detection and may be effective in the prevention and control of the disease.


Assuntos
Circovirus/genética , Circovirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Bioensaio , Gansos/virologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Mol Cell Probes ; 49: 101489, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31747564

RESUMO

An unclassified calicivirus (CV) detected in geese was recently reported and proposed as a new member of the family Caliciviridae. There is limited information about the epidemiology, etiology and detection method of goose-origin CV (GCV) to date. In this study, an EvaGreen based fluorescence quantitative real-time RT-PCR assay was developed and optimized for the detection of GCVs. The assay sensitively detected GCV RNA template with a good linear standard curve. We also demonstrated the specificity and reproducibility of the detection method for GCVs. Thus, the method developed in this study will benefit the investigation of possible sporadic outbreaks of CV infections in geese, as well as epidemiological and etiological studies of GCVs.


Assuntos
Caliciviridae/isolamento & purificação , Corantes/química , Gansos/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Caliciviridae/classificação , Caliciviridae/genética , Filogenia
13.
Mol Cell Probes ; 52: 101561, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32173537

RESUMO

Two pairs of primers were designed to bind conserved genomic regions of goose parvovirus (GPV) and goose astrovirus (GAstV) to establish a simple, sensitive, and highly specific duplex quantitative PCR (qPCR) method to simultaneously detect the two viruses. The duplex qPCR can distinguish GPV (melting point: 82.1 °C) and GAstV (melting point: 79.8 °C) by the peaks of their individual melting curves. Mixed testing with other waterfowl viruses produced no nonspecific peaks. The established standard curves showed good linear relationships (R2 > 0.997) and the limits of detection (LOD) for GPV and GAstV were 5.74 × 101 and 6.58 × 101 copies/µL, respectively. Both intra- and inter-assay coefficients of variation were <2%, indicating that the method has good repeatability. Twenty tissue samples from diseased geese were examined with the duplex qPCR assay and conventional PCR. Duplex qPCR showed positive rates of 25% for GPV and 45% for GAstV, and the positive rate for GPV and GAstV coinfection was 15%, slightly higher than the results for conventional PCR. These results indicated that this duplex qPCR method is highly sensitive, specific, and reproducible, and is suitable for epidemiological studies to effectively control the transmission of GPV and GAstV.


Assuntos
Infecções por Astroviridae/diagnóstico , Infecções por Astroviridae/veterinária , Avastrovirus/isolamento & purificação , Benzotiazóis/metabolismo , Diaminas/metabolismo , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/veterinária , Parvovirinae/isolamento & purificação , Quinolinas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Gansos/virologia , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Avian Pathol ; 49(4): 325-334, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32208867

RESUMO

Waterfowl parvoviruses (WPVs) including goose parvovirus (GPV), novel GPV-related virus (NGPV) and Muscovy duck parvovirus (MDPV) cause significant economic losses and epizootic threat to the waterfowl industries, and little is known about the B-cell epitopes of WPVs. In this study, a monoclonal antibody (mAb) 5B5 against the VP3 protein of NGPV was used to identify the possible epitope in the three kinds of WPVs. The mAb 5B5 had neutralizing activities to the three viruses, and reacted with the conserved linear B-cell epitopes of 438LHNPPP443 in VP3 protein of GPV, NGPV and MDPV. To the authors' best knowledge, this is the first report on identification of the common conserved neutralizing linear B-cell epitope on VP3 protein of three different WPVs, which would facilitate the development of a novel immunodiagnostic assay for rapid detection of WPV infection.


Assuntos
Epitopos de Linfócito B/genética , Gansos/virologia , Infecções por Parvoviridae/veterinária , Parvovirinae/imunologia , Doenças das Aves Domésticas/virologia , Animais , Anticorpos Monoclonais/imunologia , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/virologia , Parvovirinae/genética , Parvovirinae/isolamento & purificação , Doenças das Aves Domésticas/diagnóstico , Proteínas Virais/genética
15.
Avian Pathol ; 49(1): 29-35, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31429308

RESUMO

To determine whether geese are susceptible to infection by avian leukosis virus (ALV), 702 serum samples from domestic and foreign goose breeds were screened for p27 antigen as well as being inoculated into DF-1 cell cultures to isolate ALV. Although 5.7% of samples were positive for p27 antigen, reactivity appeared to be non-specific because no ALV was detected in the corresponding DF-1 cultures. To further determine whether geese are susceptible to ALV-J isolated from chickens, ALV-J strain JS09GY7 was artificially inoculated into 10-day-old goose embryos, with one-day-old hatched goslings then screened for p27 antigen and the presence of ALV. In all cases, the results of both tests were negative. Liver tissues from the 1-day-old goslings were screened using a polymerase chain reaction-based assay, which failed to amplify ALV-J gene fragments from any of the samples. Further, no histopathological damage was observed in the liver tissues. ALV-J was further inoculated intraperitoneally into one-day-old goslings, with cloacal swabs samples and plasma samples then collected every 5 days for 30 days. All samples were again negative for the presence of p27 antigen and ALV, and liver tissues from the challenged geese showed no histopathological damage and were negative for the presence of ALV-J gene fragments. Furthermore, p27 antigen detection, PCR-based screening, and indirect immunofluorescence assays were all negative following the infection of goose embryo fibroblasts with ALV-J. Together, these results confirm that virulent chicken-derived ALV-J strains cannot infect geese, and that p27 antigen detection in goose serum is susceptible to non-specific interference.


Assuntos
Vírus da Leucose Aviária/patogenicidade , Leucose Aviária/virologia , Galinhas , Gansos , Animais , Leucose Aviária/imunologia , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/imunologia , Vírus da Leucose Aviária/isolamento & purificação , Galinhas/virologia , Cloaca/virologia , DNA Viral/química , DNA Viral/isolamento & purificação , Fibroblastos/virologia , Imunofluorescência/veterinária , Gansos/embriologia , Gansos/virologia , Fígado/patologia , Fígado/virologia , Antígeno Nuclear de Célula em Proliferação/sangue , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Virulência
16.
Trop Anim Health Prod ; 53(1): 36, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230580

RESUMO

Derzsy's disease, which is seen in goslings (Anser anser domestica) and Muscovy ducks (Cairina moschata), progresses to high mortality and causes significant yield losses. The disease agent is goose parvovirus (GPV), which is common in countries with waterfowl production. It has not previously been reported in Turkey. Using qPCR and sequencing of the VP3 protein-encoding gene, GPV is identified as the causative agent of high mortality among geese between 2018 and 2019. The VP3 sequences were also compared with the similar GenBank sequences phylogenetically. All the sequences were found to be most similar (98.90%) with Polish and Taiwan GPV strains. Phylogenetic analysis of the VP3 gene in strains in Turkey and comparison with strains from other countries demonstrated that the Turkish strains are native to the geography and circulated locally. This study detected the presence of the GPV gene for the first time in Turkey and demonstrated the importance of comparing the vaccine strain and wild type.


Assuntos
Patos/virologia , Gansos/virologia , Infecções por Parvoviridae/veterinária , Parvovirinae , Doenças das Aves Domésticas/virologia , Animais , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/virologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Turquia/epidemiologia
17.
Microb Pathog ; 137: 103766, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31580957

RESUMO

Recently, a novel goose astrovirus (N-GoAstV) was discovered in China, with the transmission route of N-GoAstV unclear. In this study, we developed a TaqMan-based real-time RT-PCR (qRT-PCR) assay for the detection of N-GoAstV infection. After the optimization of the qRT-PCR assay conditions, the results demonstrated that the lower limit of detection for N-GoAstV was 33.4 copies/µL. No cross-reactivity was observed with other goose-origin viruses. Intra-assay and inter-assay variability were ≤1.36% and 2.34%, respectively. N-GoAstV was detected in both field samples, embryos and newly hatched goslings by qRT-PCR assay, provided the view that N-GoAstV may be both horizontally and vertically transmitted. The established qRT-PCR method showed high specificity, sensitivity, and reproducibility, which can be used in future investigations on the pathogenesis and epidemiology of N-GoAstV.


Assuntos
Infecções por Astroviridae/veterinária , Avastrovirus/isolamento & purificação , Doenças das Aves/virologia , Gansos/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Infecções por Astroviridae/virologia , Avastrovirus/classificação , Avastrovirus/genética , China , Sensibilidade e Especificidade
18.
Virol J ; 16(1): 6, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30630503

RESUMO

BACKGROUND: Waterfowl parvoviruses, including goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV), can cause seriously diseases in geese and ducks. Developing a fast and precise diagnosis assay for these two parvoviruses is particularly important. RESULTS: A duplex SYBR Green I-based quantitative real-time PCR assay was developed for the simultaneous detection and differentiation of GPV and MDPV. The assay yielded melting curves with specific single peak (Tm = 87.3 ± 0.26 °C or Tm = 85.4 ± 0.23 °C) when GPV or MDPV was evaluated, respectively. When both parvoviruses were assessed in one reaction, melting curves with specific double peaks were yielded. CONCLUSION: This duplex quantitative RT-PCR can be used to rapid identify of GPV and MDPV in field cases and artificial trials, which make it a powerful tool for diagnosing, preventing and controlling waterfowl parvovirus infections.


Assuntos
Patos/virologia , Gansos/virologia , Infecções por Parvoviridae/veterinária , Parvovirus/classificação , Doenças das Aves Domésticas/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Benzotiazóis , Cloaca/virologia , Diaminas , Genoma Viral , Compostos Orgânicos , Orofaringe/virologia , Infecções por Parvoviridae/diagnóstico , Parvovirus/isolamento & purificação , Filogenia , Doenças das Aves Domésticas/virologia , Quinolinas , Temperatura de Transição , Carga Viral
19.
Mol Cell Probes ; 46: 101410, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31128205

RESUMO

Muscovy duck-origin goose parvovirus (MDGPV) is a causative agent of MDGPV-associated Derzsy's disease. To evalute the role of the cis-acting element E-box (CACATG) deletion on MDGPV eplication, an infectious plasmid clone p-PTΔE287, having one E-box deletion at nucleotide (nt) 287 of the left inverted terminal repeat sequence (L-ITR), was constructed by overlap extension PCR deleting the 287CACATG292 motif from the plasmid pMDGPVPT containing the full-length genome of the virulent MDGPV strain PT. The p-PTΔE287 plasmid was transfected into 9-day-old non-immune Muscovy duck embryos via the yolk sac, resulting in successful rescue of the deletion mutant virus r-PTΔE287. Compared with its parental virus PT, the virulence and the replication ability of r-PTΔE287 were reduced. In addition, we examined the ability of r-PTΔE287 to manipulate cell cycle progression. The results showed that r-PTΔE287 replication results in G0/G1 phase accumulation of infected duck embryo liver mesenchymal stem cells (BMSCs) and that this accumulation is caused by the prevention of cell cycle entry from G0/G1 phase into S phase. Taken together, introducing 287CACATG292 element deletion into MDGPV PT genomic DNA that induced rescued mutant virus (r-PTΔE287) cell cycle arrest function at the G0/G1 phase, which might inhibit MDGPV replication and virus progeny production. This study laid the foundation for further understanding of the relationship between E-box deletion in the L-ITR and MDGPV virulence.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Doenças Transmissíveis/genética , Parvovirinae/genética , Doenças das Aves Domésticas/genética , Animais , Doenças Transmissíveis/virologia , Patos/genética , Patos/virologia , Embrião não Mamífero/virologia , Gansos/genética , Gansos/virologia , Genoma Viral/genética , Fígado/virologia , Células-Tronco Mesenquimais/virologia , Parvovirinae/patogenicidade , Plasmídeos/genética , Doenças das Aves Domésticas/virologia , Fase de Repouso do Ciclo Celular/genética , Fase S/genética , Deleção de Sequência
20.
Arch Virol ; 164(11): 2837-2841, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494776

RESUMO

Since January 2019, abnormal molting has been observed frequently in approximately 40-day-old Pekin ducks in China. To investigate the possible involvement of a virus, we tested the prevalence of duck circovirus (DuCV), goose hemorrhagic polyomavirus (GHPyV), and goose parvovirus (GPV) in 11 molt cases in two provinces. GPV was detected in all cases, particularly in all samples collected from the feather area. The complete genome sequences of three GPV strains were determined and found to have 52 nucleotide changes relative to GPVs associated with short beak and dwarfism syndrome of Pekin ducks. These data will enhance our understanding of GPV diversity and outcomes of GPV infection in Pekin ducks.


Assuntos
Patos/virologia , Gansos/virologia , Muda/fisiologia , Parvovirinae/isolamento & purificação , Doenças das Aves Domésticas/virologia , Animais , China/epidemiologia , Circovirus/genética , Circovirus/isolamento & purificação , Genoma Viral/genética , Parvovirinae/genética , Polyomavirus/genética , Polyomavirus/isolamento & purificação , Doenças das Aves Domésticas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA