Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mycorrhiza ; 31(6): 755-766, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34432129

RESUMO

Ectomycorrhizal fungi contribute to the nutrition of many woody plants, including those in the Pinaceae family. Loblolly pine (Pinus taeda L.), a native species of the Southeastern USA, can be colonized by multiple species of ectomycorrhizal fungi. The role of these symbionts in P. taeda potassium (K+) nutrition has not been previously investigated. Here, we assessed the contribution of four ectomycorrhizal fungi, Hebeloma cylindrosporum, Paxillus ammoniavirescens, Laccaria bicolor, and Suillus cothurnatus, in P. taeda K+ acquisition under different external K+ availabilities. Using a custom-made two-compartment system, P. taeda seedlings were inoculated with one of the four fungi, or kept non-colonized, and grown under K+-limited or -sufficient conditions for 8 weeks. Only the fungi had access to separate compartments in which rubidium, an analog tracer for K+, was supplied before harvest. Resulting effects of the fungi were recorded, including root colonization, biomass, and nutrient concentrations. We also analyzed the fungal performance in axenic conditions under varying supply of K+ and sodium. Our study revealed that these four ectomycorrhizal fungi are differentially affected by external K+ and sodium variations, that they are not able to provide similar benefits to the host P. taeda in our growing conditions, and that rubidium may be used with some limitations to estimate K+ transport from ectomycorrhizal fungi to colonized plants.


Assuntos
Micorrizas , Pinus , Basidiomycota , Hebeloma , Laccaria , Pinus taeda , Potássio , Plântula
2.
Mycorrhiza ; 30(6): 735-747, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32820366

RESUMO

While plants mainly rely on the use of inorganic nitrogen sources like ammonium and nitrate, soil-borne microorganisms like the ectomycorrhizal fungus Hebeloma cylindrosporum can also take up soil organic N in the form of amino acids and peptides that they use as nitrogen and carbon sources. Following the previous identification and functional expression in yeast of two PTR-like peptide transporters, the present study details the functions and substrates of HcPTR2A and HcPTR2B by analysing their transport kinetics in Xenopus laevis oocytes. While both transporters mediated high-affinity di- and tripeptide transport, HcPTR2A also showed low-affinity transport of several amino acids-mostly hydrophobic ones with large side chains.


Assuntos
Hebeloma , Proteínas de Membrana Transportadoras , Micorrizas , Regulação Fúngica da Expressão Gênica , Hebeloma/genética , Proteínas de Membrana Transportadoras/genética
3.
Biometals ; 32(1): 101-110, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30560539

RESUMO

Ectomycorrhizal fungi hold a potential role in bioremediation of heavy metal polluted areas because of its metal accumulation and detoxification property. We investigated the cadmium (Cd) induced bioaccumulation of glutathione (GSH) mediated by γ-glutamylcysteine synthetase (γ-GCS) in the ectomycorrhizal fungus Hebeloma cylindrosporum. In H. cylindrosporum, a demand driven synthesis of GSH has been observed in response to Cd. The expression and enzyme activity of H. cylindrosporum γ-GCS (Hcγ-GCS) increased as a function of external Cd stress resulting in increased GSH production. The function of Hcγ-GCS in providing heavy metal tolerance to H. cylindrosporum was justified by complementing the gene in gsh1Δ mutant of Saccharomyces cerevisiae. The metal sensitive mutant gsh1Δ successfully restored its metal tolerance ability when transformed with Hcγ-GCS gene. Sequence analysis of Hcγ-GCS showed homology with most of the reported γ-GCS proteins from basidiomycetes family. The active site of the Hcγ-GCS protein is composed of amino acids that were found to be conserved not only in fungi, but also in plants and mammals. From these results, it was concluded that Hcγ-GCS plays an important role in bioaccumulation of GSH, which is a core component in the mycorrhizal defense system under Cd stress for Cd homeostasis and detoxification.


Assuntos
Cádmio/farmacologia , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Hebeloma/efeitos dos fármacos , Hebeloma/metabolismo , Glutamato-Cisteína Ligase/genética , Hebeloma/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
4.
Appl Microbiol Biotechnol ; 103(5): 2229-2241, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30631897

RESUMO

L-Amino acid oxidases (LAAOs) are flavoproteins, which use oxygen to deaminate L-amino acids and produce the corresponding α-keto acids, ammonia, and hydrogen peroxide. Here we describe the heterologous expression of LAAO4 from the fungus Hebeloma cylindrosporum without signal sequence as fusion protein with a 6His tag in Escherichia coli and its purification. 6His-hcLAAO4 could be activated by exposure to acidic pH, the detergent sodium dodecyl sulfate, or freezing. The enzyme converted 14 proteinogenic L-amino acids with L-glutamine, L-leucine, L-methionine, L-phenylalanine, L-tyrosine, and L-lysine being the best substrates. Methyl esters of these L-amino acids were also accepted. Even ethyl esters were converted but with lower activity. Km values were below 1 mM and vmax values between 19 and 39 U mg-1 for the best substrates with the acid-activated enzyme. The information for an N-terminal aldehyde tag was added to the coding sequence. Co-expressed formylglycine-generating enzyme was used to convert a cysteine residue in the aldehyde tag to a Cα-formylglycine residue. The aldehyde tag did not change the properties of the enzyme. Purified Ald-6His-hcLAAO4 was covalently bound to a hexylamine resin via the Cα-formylglycine residue. The immobilized enzyme could be reused repeatedly to generate phenylpyruvate from L-phenylalanine with a total turnover number of 17,600 and was stable for over 40 days at 25 °C.


Assuntos
Enzimas Imobilizadas/metabolismo , Hebeloma/enzimologia , L-Aminoácido Oxidase/metabolismo , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , L-Aminoácido Oxidase/genética , Proteínas Recombinantes de Fusão/genética
5.
Environ Microbiol ; 20(5): 1873-1887, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29614209

RESUMO

Ectomycorrhizal fungi play an essential role in the ecology of boreal and temperate forests through the improvement of tree mineral nutrition. Potassium (K+ ) is an essential nutrient for plants and is needed in high amounts. We recently demonstrated that the ectomycorrhizal fungus Hebeloma cylindrosporum improves the K+ nutrition of Pinus pinaster under shortage conditions. Part of the transport systems involved in K+ uptake by the fungus has been deciphered, while the molecular players responsible for the transfer of this cation towards the plant remain totally unknown. Analysis of the genome of H. cylindrosporum revealed the presence of three putative tandem-pore outward-rectifying K+ (TOK) channels that could contribute to this transfer. Here, we report the functional characterization of these three channels through two-electrode voltage-clamp experiments in oocytes and yeast complementation assays. The expression pattern and physiological role of these channels were analysed in symbiotic interaction with P. pinaster. Pine seedlings colonized by fungal transformants overexpressing two of them displayed a larger accumulation of K+ in shoots. This study revealed that TOK channels have distinctive properties and functions in axenic and symbiotic conditions and suggested that HcTOK2.2 is implicated in the symbiotic transfer of K+ from the fungus towards the plant.


Assuntos
Micorrizas/metabolismo , Pinus/microbiologia , Potássio/metabolismo , Transporte Biológico , Hebeloma/genética , Minerais/metabolismo , Canais de Potássio , Saccharomyces cerevisiae/metabolismo , Plântula , Simbiose/genética
6.
New Phytol ; 220(4): 1185-1199, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29944179

RESUMO

Through a mutualistic relationship with woody plant roots, ectomycorrhizal fungi provide growth-limiting nutrients, including inorganic phosphate (Pi), to their host. Reciprocal trades occur at the Hartig net, which is the symbiotic interface of ectomycorrhizas where the two partners are symplasmically isolated. Fungal Pi must be exported to the symbiotic interface, but the proteins facilitating this transfer are unknown. In the present study, we combined transcriptomic, microscopy, whole plant physiology, X-ray fluorescence mapping, 32 P labeling and fungal genetic approaches to unravel the role of HcPT2, a fungal Pi transporter, during the Hebeloma cylindrosporum-Pinus pinaster ectomycorrhizal association. We localized HcPT2 in the extra-radical hyphae and the Hartig net and demonstrated its determinant role for both the establishment of ectomycorrhizas and Pi allocation towards P. pinaster. We showed that the host plant induces HcPT2 expression and that the artificial overexpression of HcPT2 is sufficient to significantly enhance Pi export towards the central cylinder. Together, our results reveal that HcPT2 plays an important role in ectomycorrhizal symbiosis, affecting both Pi influx in the mycelium and efflux towards roots under the control of P. pinaster.


Assuntos
Proteínas Fúngicas/metabolismo , Hebeloma/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Micorrizas/fisiologia , Simbiose , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hebeloma/genética , Hebeloma/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Micélio/metabolismo , Fosfatos/metabolismo , Radioisótopos de Fósforo , Pinus/microbiologia , Regulação para Cima/genética
7.
Environ Microbiol ; 19(3): 1338-1354, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28076886

RESUMO

To clarify the early molecular interaction between ectomycorrhizal partners, we performed a RNA-Seq study of transcriptome reprogramming of the basidiomycete Hebeloma cylindrosporum before symbiotic structure differentiation with Pinus pinaster. Mycorrhiza transcriptome was studied for comparison. By reference to asymbiotic mycelium, 47 and 46 genes were specifically upregulated over fivefold (p ≤ 0.05) upon rhizosphere colonization and root adhesion respectively. Other 45 were upregulated throughout the symbiotic interaction, from rhizosphere colonization to differentiated mycorrhizas, whereas 274 were specifically upregulated in mycorrhizas. Although exoproteome represents 5.6% of H. cylindrosporum proteome, 38.5% of the genes upregulated upon pre-infectious root colonization encoded extracellular proteins. The proportion decreased to 23.5% in mycorrhizas. At all studied time points, mycorrhiza-induced small secreted proteins (MiSSPs), representing potential effectors, were over-represented among upregulated genes. This was also the case for carbohydrate-active enzymes (CAZymes). Several CAZymes were upregulated at all studied stages of the interaction. Consistent with a role in fungal morphogenesis and symbiotic interface differentiation, CAZymes over-expressed before and upon root attachment targeted fungal and both fungal and plant polysaccharides respectively. Different hydrophobins were upregulated upon early root adhesion, in mycorrhizas or throughout interaction. The functional classification of genes upregulated only in mycorrhizas pointed to intense metabolic activity and nutritional exchanges.


Assuntos
Hebeloma/genética , Micorrizas/genética , Simbiose , Transcriptoma , Proteínas Fúngicas/genética , Hebeloma/crescimento & desenvolvimento , Hebeloma/isolamento & purificação , Hebeloma/fisiologia , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/isolamento & purificação , Micorrizas/crescimento & desenvolvimento , Micorrizas/isolamento & purificação , Micorrizas/fisiologia , Pinus/microbiologia , Pinus/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Proteoma/genética , Regulação para Cima
8.
Plant Cell Environ ; 40(2): 190-202, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27743400

RESUMO

Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32 P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced 32 P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots.


Assuntos
Hebeloma/fisiologia , Interações Hospedeiro-Patógeno , Espectroscopia de Ressonância Magnética , Micorrizas/fisiologia , Radioisótopos de Fósforo/metabolismo , Fósforo/metabolismo , Pinus/microbiologia , Polifosfatos/metabolismo , Hifas/metabolismo , Pinus/metabolismo , Zea mays/metabolismo
9.
New Phytol ; 208(4): 1169-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26171947

RESUMO

Extracellular proteins play crucial roles in the interaction between mycorrhizal fungi and their environment. Computational prediction and experimental detection allowed identification of 869 proteins constituting the exoproteome of Hebeloma cylindrosporum. Small secreted proteins (SSPs) and carbohydrate-active enzymes (CAZymes) were the two major classes of extracellular proteins. Twenty-eight per cent of the SSPs were secreted by free-living mycelia and five of the 10 most abundant extracellular proteins were SSPs. By contrast, 63-75% of enzymes involved in nutrient acquisition were secreted. A total of 150 extracellular protein-coding genes were differentially expressed between mycorrhizas and free-living mycelia. SSPs were the most affected. External environmental conditions also affected expression of 199 exoproteome genes in mycorrhizas. SSPs displayed different patterns of regulation in response to presence of a host plant or other environmental signals. Several of the genes most overexpressed in the presence of organic matter encoded oxidoreductases. Hebeloma cylindrosporum has not fully lost its ancestral saprotrophic capacities but rather adapted them not to harm its hosts and to use soil organic nitrogen. The complex and divergent patterns of regulation of SSPs in response to a symbiotic partner and/or organic matter suggest various roles in the biology of mycorrhizal fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Genes Fúngicos , Hebeloma/metabolismo , Micorrizas/metabolismo , Proteoma/metabolismo , Simbiose , Proteínas Fúngicas/genética , Genômica , Hebeloma/genética , Proteômica , Transcriptoma
10.
Mycologia ; 107(1): 149-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25361830

RESUMO

Hebeloma ifeleletorum is described as a new species from American Samoa. Based on analyses of ITS and combined nLSU-ITS datasets H. ifeleletorum clusters with but is distinct from described species that have been placed in the genus Anamika by some. The phylogenetic relationship of H. ifeleletorum to the genus Anamika from Asia and to other species from Australia and New Caledonia suggests that H. ifeleletorum has origins in the western Pacific.


Assuntos
Hebeloma/classificação , Hebeloma/isolamento & purificação , Filogenia , Ásia , Austrália , DNA Fúngico/genética , Hebeloma/genética , Hebeloma/crescimento & desenvolvimento , Dados de Sequência Molecular , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação
11.
Mycologia ; 107(6): 1285-303, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26354807

RESUMO

Between 2002 and 2012 regular visits to the Carpathians were made and a number of Hebeloma spp. were collected from the alpine area. In total 44 collections were made that represent 11 species, two of which, Hebeloma grandisporum and H. oreophilum, are described here as new. Of the 11 species, four (H. alpinum, H. marginatulum and the two species described as new) are known only from alpine or Arctic habitats. Hebeloma dunense and H. mesophaeum are commonly found in, but not restricted to, alpine habitats. The other five species (H. aanenii, H. laterinum, H. naviculosporum, H. vaccinum, H. velutipes) are usually found in lowland or boreal habitats. Hebeloma naviculosporum is reported for the first time from the alpine zone and H. alpinum for the first time as growing with Helianthemum. All but two species (H. alpinum, H. marginatulum) are reported for the first time from the Carpathian alpine zone. In this paper we discuss the habitat, the 11 recorded species and give detailed descriptions of the two new species, both morphologically and molecularly. A key for Hebeloma species from sect. Hebeloma occurring in Arctic-alpine habitats is provided.


Assuntos
Hebeloma/classificação , Hebeloma/isolamento & purificação , Ecossistema , Europa (Continente) , Proteínas Fúngicas/genética , Hebeloma/genética , Hebeloma/crescimento & desenvolvimento , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Filogenia , RNA Polimerase II/genética , Microbiologia do Solo , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação
12.
Mol Plant Microbe Interact ; 27(10): 1059-69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24918768

RESUMO

We used Agrobacterium-mediated insertional mutagenesis to identify genes in the ectomycorrhizal fungus Hebeloma cylindrosporum that are essential for efficient mycorrhiza formation. One of the mutants presented a dramatically reduced ability to form ectomycorrhizas when grown in the presence of Pinus pinaster. It failed to form mycorrhizas in the presence of glucose at 0.5 g liter(-1), a condition favorable for mycorrhiza formation by the wild-type strain. However, it formed few mycorrhizas when glucose was replaced by fructose or when glucose concentration was increased to 1 g liter(-1). Scanning electron microscopy examination of these mycorrhizas revealed that this mutant was unable to differentiate true fungal sheath and Hartig net. Molecular analyses showed that the single-copy disrupting T-DNA was integrated 6,884 bp downstream from the start codon, of an open reading frame potentially encoding a 3,096-amino-acid-long protein. This gene, which we named HcMycE1, has orthologs in numerous fungi as well as different other eukaryotic microorganisms. RNAi inactivation of HcMycE1 in the wild-type strain also led to a mycorrhizal defect, demonstrating that the nonmycorrhizal phenotype of the mutant was due to mutagenic T-DNA integration in HcMycE1. In the wild-type strain colonizing P. pinaster roots, HcMycE1 was transiently upregulated before symbiotic structure differentiation. Together with the inability of the mutant to differentiate these structures, this suggests that HcMycE1 plays a crucial role upstream of the fungal sheath and Hartig net differentiation. This study provides the first characterization of a fungal mutant altered in mycorrhizal ability.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hebeloma/genética , Micorrizas/genética , Pinus/microbiologia , Proteínas Fúngicas/genética , Hebeloma/fisiologia , Hebeloma/ultraestrutura , Microscopia Eletrônica de Varredura , Família Multigênica , Mutagênese Insercional , Micélio , Micorrizas/fisiologia , Micorrizas/ultraestrutura , Fenótipo , Filogenia , Pinus/ultraestrutura , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Interferência de RNA , Simbiose
13.
Fungal Genet Biol ; 67: 3-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24674773

RESUMO

Sequestration of intracellular heavy metals in eukaryotes involves compartmentalization and binding with cytosolic, cysteine-rich metallothionein (MT) peptides. We examined the roles of these processes in handling of zinc (Zn), cadmium (Cd) and silver (Ag) in sporocarps and a metal-exposed extraradical mycelium of Hebeloma mesophaeum, the Zn-accumulating ectomycorrhizal (EM) species frequently associated with metal disturbed sites. Size exclusion chromatography revealed that the majority of Zn and Cd in the sporocarps and mycelium was contained in a low molecular mass fraction attributable to compartmentalized metal. The staining of hyphal cells with the Zn-specific Zinquin and Cd-specific Leadmium fluorescent tracers labeled Zn and Cd in small, punctuated vesicles and vacuoles, respectively. By contrast, the sporocarp and mycelium Ag was associated with cysteine-rich, 5-kDa peptides. The peptides of the same size were also identified in minor Zn and Cd complexes from the metal-exposed mycelium. We have further isolated and characterized HmMT1, HmMT2 and HmMT3 genes coding for different 5-kDa MTs of H. mesophaeum collected at a lead smelter site. Heterologous complementation assays in metal-sensitive yeast mutants indicated that HmMTs encode functional, metal-specific peptides: only HmMT1 was able to complement sensitivity to Zn; HmMT1 conferred higher tolerance to Cd and Cu than HmMT2 or HmMT3; and both HmMT2 and HmMT3, but not HmMT1, conferred increased tolerance to Ag. The presence of HmMT1 and HmMT3, but not HmMT2, was also confirmed in a H. mesophaeum isolate from an unpolluted site. Gene expression analysis in the extraradical mycelium of this isolate revealed that the transcription of HmMT1 was preferentially induced in the presence of Zn and Cd, while Ag was a stronger inducer of HmMT3. Altogether, these results improve our understanding of the handling of intracellular Zn, Cd and Ag in Hebeloma and represent the first evidence suggesting involvement of MTs in sequestration of Zn in EM fungi.


Assuntos
Cádmio/metabolismo , Hebeloma/metabolismo , Metalotioneína/genética , Prata/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Metalotioneína/metabolismo , Dados de Sequência Molecular , Micélio/metabolismo
14.
New Phytol ; 201(3): 951-960, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24279702

RESUMO

Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway.


Assuntos
Proteínas Fúngicas/metabolismo , Hebeloma/metabolismo , Interações Hospedeiro-Patógeno , Micorrizas/metabolismo , Fósforo/metabolismo , Pinus/metabolismo , Potássio/metabolismo , Transporte Biológico/efeitos dos fármacos , DNA Bacteriano/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hebeloma/efeitos dos fármacos , Hebeloma/genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/metabolismo , Micorrizas/efeitos dos fármacos , Micorrizas/genética , Fenótipo , Fósforo/farmacologia , Pinus/efeitos dos fármacos , Pinus/microbiologia , Potássio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia , Sódio/metabolismo
15.
Fungal Genet Biol ; 58-59: 53-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23850603

RESUMO

Mycorrhizal exchange of nutrients between fungi and host plants involves a specialization and polarization of the fungal plasma membrane adapted for the uptake from the soil and for secretion of nutrient ions towards root cells. In addition to the current progress in identification of membrane transport systems of both symbiotic partners, data concerning the transcriptional and translational regulation of these proteins are needed to elucidate their role for symbiotic functions. To answer whether the formerly described Pi-dependent expression of the phosphate transporter HcPT1.1 from Hebeloma cylindrosporum is the result of its promoter activity, we introduced promoter-EGFP fusion constructs in the fungus by Agrotransformation. Indeed, HcPT1.1 expression in pure fungal cultures quantified and visualized by EGFP under control of the HcPT1.1 promoter was dependent on external Pi concentrations, low Pi stimulating the expression. Furthermore, to study expression and localization of the phosphate transporter HcPT1.1 in symbiotic conditions, presence of transcripts and proteins was analyzed by the in situ hybridization technique as well as by immunostaining of proteins. In ectomycorrhiza, expression of the phosphate transporter was clearly enhanced by Pi-shortage indicating its role in Pi nutrition in the symbiotic association. Transcripts were detected in external hyphae and in the hyphal mantle, proteins in addition also within the Hartig net. Exploiting the transformable fungus H. cylindrosporum, Pi-dependent expression of the fungal transporter HcPT1.1 as result from its promoter activity as well as transcript and protein localization in ectomycorrhizal symbiosis are shown.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Hebeloma/genética , Hebeloma/metabolismo , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Pinus/microbiologia , Pinus/fisiologia , Transporte Proteico , Simbiose
16.
Mycologia ; 105(4): 1043-58, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23709478

RESUMO

The first collection of a macrofungal agaric species, with morphological features similar to already described Anamika species, has been found in association with animal bones in north Queensland, Australia. This species also shares features with several, commonly occurring and previously described Australian Hebeloma species. An integrated morphological and molecular study has resulted in the conclusion that all Anamika species belong in Hebeloma. As a result, already described species of Anamika are recombined as H. indicum (K.A. Thomas, Peintner, M.M. Moser and Manim.) B.J. Rees & Orlovich, H. angustilamellatum (Zhu L. Yang and Z.W. Ge) B.J. Rees & Orlovich and H. lactariolens (Clémençon and Hongo) B.J. Rees & Orlovich. A. phylogenetic tree based on ribosomal ITS sequences examines the relationship of these species with other Hebeloma species from both hemispheres. Four new species, Hebeloma youngii B.J. Rees, H. nothofagetorum B.J. Rees, H. subvictoriense B.J. Rees, H. lacteocoffeatum B.J. Rees, and one form, H. aminophilum f. hygrosarx B.J. Rees, are described as new from Australia.


Assuntos
Hebeloma/classificação , Austrália , Hebeloma/genética , Hebeloma/ultraestrutura , Microscopia Eletrônica de Varredura , Filogenia
17.
Mycorrhiza ; 23(7): 551-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23558517

RESUMO

The frost hardiness (FH) of mycorrhizal [ectomycorrhizal (ECM)] and non-mycorrhizal (NM) Scots pine (Pinus sylvestris) seedlings was studied to assess whether mycorrhizal symbiosis affected the roots' tolerance of below-zero temperatures. ECM (Hebeloma sp.) and NM seedlings were cultivated in a growth chamber for 18 weeks. After 13 weeks' growth in long-day and high-temperature (LDHT) conditions, a half of the ECM and NM seedlings were moved into a chamber with short-day and low-temperature (SDLT) conditions to cold acclimate. After exposures to a range of below-zero temperatures, the FH of the roots was assessed by means of the relative electrolyte leakage test. The FH was determined as the inflection point of the temperature-response curve. No significant difference was found between the FH of mycorrhizal and non-mycorrhizal roots in LDHT (-8.9 and -9.8 °C) or SDLT (-7.5 and -6.8 °C). The mycorrhizal treatment had no significant effect on the total dry mass, the allocation of dry mass among the roots and needles or nutrient accumulation. The mycorrhizal treatment with Hebeloma sp. did not affect the FH of Scots pine in this experimental setup. More information is needed on the extent to which mycorrhizas tolerate low temperatures, especially with different nutrient contents and different mycorrhiza fungi.


Assuntos
Hebeloma/fisiologia , Micorrizas/fisiologia , Pinus sylvestris/microbiologia , Pinus sylvestris/fisiologia , Temperatura Baixa , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Simbiose
18.
Mycorrhiza ; 23(2): 155-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23001334

RESUMO

Bacterial communities associated with mycorrhizal roots are likely to respond to rising atmospheric CO(2) levels in terms of biomass, community composition and activity since they are supported by the carbon (C) flow outside the root tips, especially by exudation of low molecular weight organic compounds. We studied how general bacterial and diazotrophic communities associated with ectomycorrhizal (ECM) fungi respond to different belowground C supply conditions, mediated by elevated atmospheric CO(2) concentration under nitrogen (N) limited conditions. Microcosm systems were constructed using forest soil and Scots pine seedlings, which were either pre-inoculated with one of the ECM fungal species Hebeloma velutipes or Suillus variegatus, or non-inoculated. These fungal species differ in C allocation and exudation patterns. Seedlings were maintained under ambient (380 ppm) or elevated (700 ppm) CO(2) levels for 6 months. Quantitative polymerase chain reaction (PCR) showed a significant increase in 16S rRNA gene copy numbers for Suillus-inoculated microcosms under elevated CO(2) compared to ambient CO(2). The copy numbers of the nitrogenase reductase (nifH) gene were under the detection limit in all samples regardless the CO(2) treatments. Denaturing gradient gel electrophoresis analysis of PCR-amplified nifH genes revealed simple and consistent communities in all samples throughout the incubation period. A nested reverse transcription PCR approach revealed that expression of nifH genes were detected in some microcosms. Our findings suggest that the effect of mycorrhizal fungi on soil bacteria may vary depending on C supply and fungal species.


Assuntos
Bactérias/crescimento & desenvolvimento , Basidiomycota/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Hebeloma/efeitos dos fármacos , Hifas/efeitos dos fármacos , Interações Microbianas , Oxirredutases/metabolismo , Basidiomycota/fisiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Hebeloma/fisiologia , Hifas/fisiologia , Dados de Sequência Molecular , Fixação de Nitrogênio , Pinus/microbiologia , Plântula/microbiologia , Análise de Sequência de DNA , Microbiologia do Solo
19.
Mycologia ; 115(6): 813-870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753966

RESUMO

During the 1970s and 1980s, L. R. Hesler and A. H. Smith, alone, together, or Smith with other authors such as V. S. Evenson and D. H. Mitchel, described numerous North American taxa in Hebeloma. With the inclusion of an early work by Smith and a later work by E. Grilli, who described a species based on material from Smith, 130 taxa were described and form the subject of this paper. Apart from two taxa that were (deliberately) invalidly published and two that were illegitimately published, all others are valid and legitimate names. After study of morphology, habitat, and location of collection (based on available material and information) as well as molecular analysis (insofar as this was successful), of these 128 validly published taxa we regard 14 as being current names; the remaining 114 are synonymized with other current names. These 14 species are Hebeloma albomarginatum, H. alpinicola, H. angelesiense, H. caulocystidiosum, H. immutabile, H. incarnatulum, H. kelloggense, H. mackinawense, H. nitidum, H. olympianum, H. parcivelum, H. praeolidum, H. pungens, and H. sporadicum. This brings up the number of currently recognized, validly published, Hebeloma species in America to 72.


Assuntos
Hebeloma , Filogenia , América , Ecossistema
20.
Mycologia ; 115(3): 375-426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37159336

RESUMO

William Alphonso Murrill was an American mycologist of the early 20th century. He described 1453 new species of Agaricales, Boletales, and Polyporales. Within these were 44 taxa that he described as Hebeloma or that he recombined into Hebeloma. Additionally, there are five species, of which we are aware, that Murrill described within other genera that should be referred to the genus Hebeloma. A further three species described from northern America by J. P. F. C. Montagne, and transferred to Hebeloma by Saccardo, were commented on by Murrill and not accepted within the genus. These 52 taxa are analyzed here, both morphologically and molecularly, as far as possible. For 18 of his types, internal transcribed spacer (ITS) sequences were generated. For two species (H. harperi and H. subfastibile), which were mixed collections, lectotypes are designated. Twenty-three of the taxa analyzed are Hebeloma, as the genus is recognized today, and six of these (H. australe, H. harperi, H. paludicola, H. subaustrale, H. subfastibile, and H. viscidissimum) are regarded as current, i.e., they are names that should be accepted and used. Hebeloma paludicola is an earlier name for H. hygrophilum, described from Europe. Gymnopilus viscidissimus is synonymous with H. amarellum but has priority and is here recombined into Hebeloma. The remaining 17 Hebeloma taxa are synonymized with other species that have priority. The remaining 29 species belong to a range of genera; molecularly supported were Agrocybe, Cortinarius, Inocybe, Inosperma, Phlegmacium, Pholiota, Pseudosperma, and Pyrrhulomyces. Recombinations and synonymizations are made as appropriate and necessary. The names H. alachuanum and H. vatricosum, respectively Inocybe vatricosa, are considered doubtful and should be avoided.


Assuntos
Agaricales , Basidiomycota , Cortinarius , Hebeloma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA