Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.380
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 821-851, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32228045

RESUMO

Natural rubber (NR), principally comprising cis-1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, Hevea brasiliensis. In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the cis-prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.


Assuntos
Hemiterpenos/biossíntese , Hevea/metabolismo , Látex/biossíntese , Proteínas de Plantas/química , Borracha/química , Transferases/química , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hemiterpenos/química , Hemiterpenos/metabolismo , Hevea/química , Hevea/genética , Látex/química , Látex/metabolismo , Modelos Moleculares , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Borracha/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/química , Terpenos/metabolismo , Transferases/genética , Transferases/metabolismo
2.
Annu Rev Biochem ; 82: 497-530, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23746261

RESUMO

Isoprenoids are a class of natural products with more than 55,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate and its isomer dimethylallyl diphosphate. Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway [the methylerythritol phosphate (MEP) pathway] and a modified mevalonic acid (MVA) pathway. In this review, we summarize mechanistic insights on the MEP pathway enzymes. Because many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both MVA and MEP pathway-based synthetic biology are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations.


Assuntos
Vias Biossintéticas/fisiologia , Eritritol/metabolismo , Hemiterpenos/biossíntese , Terpenos/metabolismo , Catálise , Humanos , Compostos Organofosforados
3.
PLoS Pathog ; 20(1): e1011557, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38277417

RESUMO

A proposed treatment for malaria is a combination of fosmidomycin and clindamycin. Both compounds inhibit the methylerythritol 4-phosphate (MEP) pathway, the parasitic source of farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively). Both FPP and GGPP are crucial for the biosynthesis of several essential metabolites such as ubiquinone and dolichol, as well as for protein prenylation. Dietary prenols, such as farnesol (FOH) and geranylgeraniol (GGOH), can rescue parasites from MEP inhibitors, suggesting the existence of a missing pathway for prenol salvage via phosphorylation. In this study, we identified a gene in the genome of P. falciparum, encoding a transmembrane prenol kinase (PolK) involved in the salvage of FOH and GGOH. The enzyme was expressed in Saccharomyces cerevisiae, and its FOH/GGOH kinase activities were experimentally validated. Furthermore, conditional knockout parasites (Δ-PolK) were created to investigate the biological importance of the FOH/GGOH salvage pathway. Δ-PolK parasites were viable but displayed increased susceptibility to fosmidomycin. Their sensitivity to MEP inhibitors could not be rescued by adding prenols. Additionally, Δ-PolK parasites lost their capability to utilize prenols for protein prenylation. Experiments using culture medium supplemented with whole/delipidated human plasma in transgenic parasites revealed that human plasma has components that can diminish the effectiveness of fosmidomycin. Mass spectrometry tests indicated that both bovine supplements used in culture and human plasma contain GGOH. These findings suggest that the FOH/GGOH salvage pathway might offer an alternate source of isoprenoids for malaria parasites when de novo biosynthesis is inhibited. This study also identifies a novel kind of enzyme related to isoprenoid metabolism.


Assuntos
Diterpenos , Fosfomicina/análogos & derivados , Hemiterpenos , Parasitos , Pentanóis , Humanos , Animais , Bovinos , Parasitos/metabolismo , Fosfatos , Terpenos/farmacologia , Terpenos/metabolismo
4.
Nature ; 585(7824): 225-233, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908268

RESUMO

Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.


Assuntos
Atmosfera/química , Butadienos/análise , Butadienos/química , Mapeamento Geográfico , Hemiterpenos/análise , Hemiterpenos/química , Imagens de Satélites , África , Austrália , Brasil , Conjuntos de Dados como Assunto , El Niño Oscilação Sul , Formaldeído/química , Radical Hidroxila/análise , Radical Hidroxila/química , Ciclo do Nitrogênio , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Oxirredução , Estações do Ano , Sudeste dos Estados Unidos
5.
Proc Natl Acad Sci U S A ; 120(41): e2309536120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782800

RESUMO

Isoprene is emitted by some plants and is the most abundant biogenic hydrocarbon entering the atmosphere. Multiple studies have elucidated protective roles of isoprene against several environmental stresses, including high temperature, excessive ozone, and herbivory attack. However, isoprene emission adversely affects atmospheric chemistry by contributing to ozone production and aerosol formation. Thus, understanding the regulation of isoprene emission in response to varying environmental conditions, for example, elevated CO2, is critical to comprehend how plants will respond to climate change. Isoprene emission decreases with increasing CO2 concentration; however, the underlying mechanism of this response is currently unknown. We demonstrated that high-CO2-mediated suppression of isoprene emission is independent of photosynthesis and light intensity, but it is reduced with increasing temperature. Furthermore, we measured methylerythritol 4-phosphate (MEP) pathway metabolites in poplar leaves harvested at ambient and high CO2 to identify why isoprene emission is reduced under high CO2. We found that hydroxymethylbutenyl diphosphate (HMBDP) was increased and dimethylallyl diphosphate (DMADP) decreased at high CO2. This implies that high CO2 impeded the conversion of HMBDP to DMADP, possibly through the inhibition of HMBDP reductase activity, resulting in reduced isoprene emission. We further demonstrated that although this phenomenon appears similar to abscisic acid (ABA)-dependent stomatal regulation, it is unrelated as ABA treatment did not alter the effect of elevated CO2 on the suppression of isoprene emission. Thus, this study provides a comprehensive understanding of the regulation of the MEP pathway and isoprene emission in the face of increasing CO2.


Assuntos
Ozônio , Populus , Dióxido de Carbono/metabolismo , Difosfatos/metabolismo , Fotossíntese , Hemiterpenos , Butadienos/farmacologia , Butadienos/metabolismo , Plantas/metabolismo , Ozônio/metabolismo , Pentanos/metabolismo , Folhas de Planta/metabolismo , Populus/genética , Populus/metabolismo
6.
Cell ; 142(2): 203-17, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20637498

RESUMO

N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Anormalidades Múltiplas/metabolismo , Dolicóis/metabolismo , Deficiência Intelectual/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Animais , Butadienos/metabolismo , Consanguinidade , Embrião de Mamíferos/metabolismo , Estudo de Associação Genômica Ampla , Glicosilação , Hemiterpenos/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Pentanos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas
7.
Proc Natl Acad Sci U S A ; 119(38): e2118014119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095176

RESUMO

Emissions of biogenic volatile organic compounds (BVOCs) are a crucial component of biosphere-atmosphere interactions. In northern latitudes, climate change is amplified by feedback processes in which BVOCs have a recognized, yet poorly quantified role, mainly due to a lack of measurements and concomitant modeling gaps. Hence, current Earth system models mostly rely on temperature responses measured on vegetation from lower latitudes, rendering their predictions highly uncertain. Here, we show how tundra isoprene emissions respond vigorously to temperature increases, compared to model results. Our unique dataset of direct eddy covariance ecosystem-level isoprene measurements in two contrasting ecosystems exhibited Q10 (the factor by which the emission rate increases with a 10 °C rise in temperature) temperature coefficients of up to 20.8, that is, 3.5 times the Q10 of 5.9 derived from the equivalent model calculations. Crude estimates using the observed temperature responses indicate that tundra vegetation could enhance their isoprene emissions by up to 41% (87%)-that is, 46% (55%) more than estimated by models-with a 2 °C (4 °C) warming. Our results demonstrate that tundra vegetation possesses the potential to substantially boost its isoprene emissions in response to future rising temperatures, at rates that exceed the current Earth system model predictions.


Assuntos
Butadienos , Aquecimento Global , Hemiterpenos , Desenvolvimento Vegetal , Tundra , Compostos Orgânicos Voláteis , Butadienos/análise , Hemiterpenos/análise , Temperatura , Compostos Orgânicos Voláteis/análise
8.
Biochemistry ; 63(18): 2335-2343, 2024 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-39231435

RESUMO

Prenylated-FMN (prFMN) is the cofactor used by the UbiD-like family of decarboxylases that catalyzes the decarboxylation of various aromatic and unsaturated carboxylic acids. prFMN is synthesized from reduced FMN and dimethylallyl phosphate (DMAP) by a specialized prenyl transferase, UbiX. UbiX catalyzes the sequential formation of two bonds, the first between N5 of the flavin and C1 of DMAP, and the second between C6 of the flavin and C3 of DMAP. We have examined the reaction of UbiX with both FMN and riboflavin. Although UbiX converts FMN to prFMN, we show that significant amounts of the N5-dimethylallyl-FMN intermediate are released from the enzyme during catalysis. With riboflavin as the substrate, UbiX catalyzes only a partial reaction, resulting in only N5-dimethylallyl-riboflavin being formed. Purification of the N5-dimethylallyl-FMN adduct allowed its structure to be verified by 1H NMR spectroscopy and its reactivity to be investigated. Surprisingly, whereas reduced prFMN oxidizes in seconds to form the stable prFMN semiquinone radical when exposed to air, N5-dimethylallyl-FMN oxidizes much more slowly over several hours; in this case, oxidation is accompanied by spontaneous hydrolysis to regenerate FMN. These studies highlight the important contribution that cyclization of the prenyl-derived ring of prFMN makes to the cofactor's biological activity.


Assuntos
Dimetilaliltranstransferase , Mononucleotídeo de Flavina , Prenilação , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Riboflavina/biossíntese , Riboflavina/análogos & derivados , Riboflavina/metabolismo , Riboflavina/química , Compostos Organofosforados/metabolismo , Compostos Organofosforados/química , Catálise , Compostos Alílicos/metabolismo , Compostos Alílicos/química , Escherichia coli/metabolismo , Escherichia coli/genética , Carboxiliases , Hemiterpenos
9.
Proteins ; 92(7): 808-818, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38333996

RESUMO

Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic "isoprenol pathways," which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non-natural alkyl-monophosphates (alkyl-Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non-natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non-natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non-natural alkyl-P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl-P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non-natural substrates.


Assuntos
Trifosfato de Adenosina , Domínio Catalítico , Thermococcus , Especificidade por Substrato , Thermococcus/enzimologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Cinética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Hemiterpenos/metabolismo , Hemiterpenos/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Conformação Proteica em alfa-Hélice , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/química , Clonagem Molecular , Expressão Gênica , Conformação Proteica em Folha beta , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Quinases
10.
J Am Chem Soc ; 146(6): 3926-3942, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291562

RESUMO

(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase, or IspH (formerly known as LytB), catalyzes the terminal step of the bacterial methylerythritol phosphate (MEP) pathway for isoprene synthesis. This step converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into one of two possible isomeric products, either isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). This reaction involves the removal of the C4 hydroxyl group of HMBPP and addition of two electrons. IspH contains a [4Fe-4S] cluster in its active site, and multiple cluster-based paramagnetic species of uncertain redox and ligation states can be detected after incubation with reductant, addition of a ligand, or during catalysis. To characterize the clusters in these species, 57Fe-labeled samples of IspH were prepared and studied by electron paramagnetic resonance (EPR), 57Fe electron-nuclear double resonance (ENDOR), and Mössbauer spectroscopies. Notably, this ENDOR study provides a rarely reported, complete determination of the 57Fe hyperfine tensors for all four Fe ions in a [4Fe-4S] cluster. The resting state of the enzyme (Ox) has a diamagnetic [4Fe-4S]2+ cluster. Reduction generates [4Fe-4S]+ (Red) with both S = 1/2 and S = 3/2 spin ground states. When the reduced enzyme is incubated with substrate, a transient paramagnetic reaction intermediate is detected (Int) which is thought to contain a cluster-bound substrate-derived species. The EPR properties of Int are indicative of a 3+ iron-sulfur cluster oxidation state, and the Mössbauer spectra presented here confirm this. Incubation of reduced enzyme with the product IPP induced yet another paramagnetic [4Fe-4S]+ species (Red+P) with S = 1/2. However, the g-tensor of this state is commonly associated with a 3+ oxidation state, while Mössbauer parameters show features typical for 2+ clusters. Implications of these complicated results are discussed.


Assuntos
Hemiterpenos , Proteínas Ferro-Enxofre , Compostos Organofosforados , Domínio Catalítico , Ligantes , Oxirredução , Espectroscopia de Ressonância de Spin Eletrônica , Catálise , Proteínas Ferro-Enxofre/química
11.
Antimicrob Agents Chemother ; 68(8): e0123823, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39037239

RESUMO

We identified MMV026468 as a picomolar inhibitor of blood-stage Plasmodium falciparum. Phenotyping assays, including isopentenyl diphosphate rescue of parasite growth inhibition, demonstrated that it targets MEP isoprenoid precursor biosynthesis. MMV026468-treated parasites showed an overall decrease in MEP pathway intermediates, which could result from inhibition of the first MEP enzyme DXS or steps prior to DXS such as regulation of the MEP pathway. Selection of MMV026468-resistant parasites lacking DXS mutations suggested that other targets are possible. The identification of MMV026468 could lead to a new class of antimalarial isoprenoid inhibitors.


Assuntos
Antimaláricos , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Compostos Organofosforados/farmacologia , Hemiterpenos/farmacologia , Resistência a Medicamentos , Humanos , Eritritol/análogos & derivados , Eritritol/farmacologia
12.
BMC Plant Biol ; 24(1): 595, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914931

RESUMO

BACKGROUND: Monoterpenes are among the most important volatile aromatic compounds contributing to the flavor and aroma of grapes and wine. However, the molecular basis of monoterpene biosynthesis has not yet been fully elucidated. RESULTS: In our study, transcriptomics and gas chromatography-mass spectrometry (GC-MS) were used to mine candidate genes and transcription factors involved in monoterpene biosynthesis between high-monoterpene and zero-monoterpene table grape cultivars. We found that monoterpene biosynthesis was positively correlated by the expression of five genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (VvDXSs), one encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (VvHDR), three hydroxy-3-methylglutaryl-CoA synthases (VvHMGSs) and one mevalonate kinase (VvMVK), whereas the expression of one isopentenyl diphosphate isomerase (VvIDI) and one 3-hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) negatively correlated monoterpene biosynthesis. Of these genes, VvIDI was selected to validate its function in monoterpene accumulation through a transient overexpression experiment, and was shown to inhibit the biosynthesis of grape linalool and α-terpineol. Meanwhile, we found that a 64-amino acid extension sequence at the N-terminus can guide the VvIDI protein to target the chloroplast. CONCLUSIONS: The findings of this study should help to guide future functional analysis of key genes as well as mining the potential regulatory mechanism of monoterpene biosynthesis in grapes and grape products.


Assuntos
Isomerases de Ligação Dupla Carbono-Carbono , Monoterpenos , Vitis , Vitis/genética , Vitis/enzimologia , Vitis/metabolismo , Monoterpenos/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/genética , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Hemiterpenos
13.
Proc Biol Sci ; 291(2015): 20232578, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228178

RESUMO

In the silkmoth Bombyx mori, the role of male sensilla trichodea in pheromone detection is well established. Here we study the corresponding female sensilla, which contain two olfactory sensory neurons (OSNs) and come in two lengths, each representing a single physiological type. Only OSNs in medium trichoids respond to the scent of mulberry, the silkworm's exclusive host plant, and are more sensitive in mated females, suggesting a role in oviposition. In long trichoids, one OSN is tuned to (+)-linalool and the other to benzaldehyde and isovaleric acid, both odours emitted by silkworm faeces. While the significance of (+)-linalool detection remains unclear, isovaleric acid repels mated females and may therefore play a role in avoiding crowded oviposition sites. When we examined the underlying molecular components of neurons in female trichoids, we found non-canonical co-expression of Ir8a, the co-receptor for acid responses, and ORco, the co-receptor of odorant receptors, in long trichoids, and the unexpected expression of a specific odorant receptor in both trichoid sensillum types. In addition to elucidating the function of female trichoids, our results suggest that some accepted organizational principles of the insect olfactory system may not apply to the predominant sensilla on the antenna of female B. mori.


Assuntos
Monoterpenos Acíclicos , Bombyx , Hemiterpenos , Neurônios Receptores Olfatórios , Ácidos Pentanoicos , Receptores Odorantes , Animais , Feminino , Bombyx/metabolismo , Sensilas/fisiologia , Olfato , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Feromônios/metabolismo
14.
Chembiochem ; 25(12): e202400064, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568158

RESUMO

Bacterial isoprenoids are necessary for many biological processes, including maintaining membrane integrity, facilitating intercellular communication, and preventing oxidative damage. All bacterial isoprenoids are biosynthesized from two five carbon structural isomers, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are cell impermeant. Herein, we demonstrate exogenous delivery of IPP and DMAPP into Bacillus subtilis by utilizing a self-immolative ester (SIE)-caging approach. We initially evaluated native B. subtilis esterase activity, which revealed a preference for short straight chain esters. We then examined the viability of the SIE-caging approach in B. subtilis and demonstrate that the released caging groups are well tolerated and the released IPP and DMAPP are bioavailable, such that isoprenoid biosynthesis can be rescued in the presence of pathway inhibitors. We further show that IPP and DMAPP are both toxic and inhibit growth of B. subtilis at the same concentration. Lastly, we establish the optimal ratio of IPP to DMAPP (5 : 1) for B. subtilis growth and find that, surprisingly, DMAPP alone is insufficient to rescue isoprenoid biosynthesis under high concentrations of fosmidomycin. These findings showcase the potential of the SIE-caging approach in B. subtilis and promise to both aid in novel isoprenoid discovery and to inform metabolic engineering efforts in bacteria.


Assuntos
Bacillus subtilis , Hemiterpenos , Compostos Organofosforados , Terpenos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Hemiterpenos/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Terpenos/metabolismo , Terpenos/química , Pentanóis/metabolismo , Pentanóis/química
15.
Plant Cell Environ ; 47(4): 1099-1117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38038355

RESUMO

Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.


Assuntos
Fotossíntese , Proteômica , Hemiterpenos/metabolismo , Butadienos/metabolismo , Árvores/metabolismo , Pentanos/metabolismo , Folhas de Planta/metabolismo
16.
Glob Chang Biol ; 30(7): e17416, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994730

RESUMO

Climate change is exposing subarctic ecosystems to higher temperatures, increased nutrient availability, and increasing cloud cover. In this study, we assessed how these factors affect the fluxes of greenhouse gases (GHGs) (i.e., methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)), and biogenic volatile organic compounds (BVOCs) in a subarctic mesic heath subjected to 34 years of climate change related manipulations of temperature, nutrient availability, and light. GHGs were sampled from static chambers and gases analyzed with gas chromatograph. BVOCs were measured using the push-pull method and gases analyzed with chromatography-mass spectrometry. The soil temperature and moisture content in the warmed and shaded plots did not differ significantly from that in the controls during GHG and BVOC measurements. Also, the enclosure temperatures during BVOC measurements in the warmed and shaded plots did not differ significantly from temperatures in the controls. Hence, this allowed for assessment of long-term effects of the climate treatment manipulations without interference of temperature and moisture differences at the time of measurements. Warming enhanced CH4 uptake and the emissions of CO2, N2O, and isoprene. Increased nutrient availability increased the emissions of CO2 and N2O but caused no significant changes in the fluxes of CH4 and BVOCs. Shading (simulating increased cloudiness) enhanced CH4 uptake but caused no significant changes in the fluxes of other gases compared to the controls. The results show that climate warming and increased cloudiness will enhance CH4 sink strength of subarctic mesic heath ecosystems, providing negative climate feedback, while climate warming and enhanced nutrient availability will provide positive climate feedback through increased emissions of CO2 and N2O. Climate warming will also indirectly, through vegetation changes, increase the amount of carbon lost as isoprene from subarctic ecosystems.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Nutrientes , Compostos Orgânicos Voláteis , Gases de Efeito Estufa/análise , Compostos Orgânicos Voláteis/análise , Nutrientes/análise , Tundra , Metano/análise , Dióxido de Carbono/análise , Aquecimento Global , Temperatura , Butadienos , Hemiterpenos
17.
Diabetes Obes Metab ; 26(12): 5737-5744, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39284789

RESUMO

AIM: To evaluate the relationship between breath volatile organic compounds (VOCs) and glycaemic states in individuals with type 1 diabetes (T1D), focusing on identifying specific VOCs as biomarkers for hypoglycaemia to offer a non-invasive diabetes-monitoring method. MATERIALS AND METHODS: Ten individuals with T1D underwent induced hypoglycaemia in a clinical setting. Breath samples, collected every 10-15 minutes, were analysed using gas chromatography-ion mobility spectrometry (GC-IMS). Correlation analysis and machine learning models, including Partial Least Squares Discriminant Analysis (PLS-DA) and Support Vector Machine classifiers, were used to classify glycaemic states based on VOC profiles. RESULTS: Statistical analysis revealed moderate correlations between specific VOCs (e.g. isoprene, acetone) and venous blood glucose levels. Machine learning models showed high accuracy in classifying glycaemic states, with the best performance achieved by a two-class PLS-DA model showing an accuracy of 93%, sensitivity of 92% and specificity of 94%. Key biomarkers identified included isoprene, acetone, 2-butanone, methanol, ethanol, 2-propanol and 2-pentanone. CONCLUSIONS: This study shows the potential of breath VOCs to accurately classify glycaemic states in individuals with T1D. While key biomarkers such as isoprene, acetone and 2-butanone were identified, the analysis emphasizes the importance of using overall VOC patterns rather than individual compounds, which can be markers for multiple conditions. Machine learning models leveraging these patterns achieved high accuracy, sensitivity and specificity. These findings suggest that breath analysis using GC-IMS could be a viable non-invasive method for monitoring glycaemic states and managing diabetes.


Assuntos
Biomarcadores , Testes Respiratórios , Diabetes Mellitus Tipo 1 , Hipoglicemia , Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis , Humanos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/sangue , Compostos Orgânicos Voláteis/análise , Testes Respiratórios/métodos , Hipoglicemia/diagnóstico , Masculino , Espectrometria de Mobilidade Iônica/métodos , Feminino , Adulto , Biomarcadores/análise , Glicemia/análise , Glicemia/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Adulto Jovem , Aprendizado de Máquina , Pessoa de Meia-Idade , Butadienos , Hemiterpenos
18.
Microb Cell Fact ; 23(1): 264, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367476

RESUMO

BACKGROUND: Whey, which has high biochemical oxygen demand and chemical oxygen demand, is mass-produced as a major by-product of the dairying industry. Microbial fermentation using whey as the carbon source may convert this potential pollutant into value-added products. This study investigated the potential of using whey powder to produce α-ketoisovalerate, an important platform chemical. RESULTS: Klebsiella oxytoca VKO-9, an efficient L-valine producing strain belonging to Risk Group 1 organism, was selected for the production of α-ketoisovalerate. The leucine dehydrogenase and branched-chain α-keto acid dehydrogenase, which catalyzed the reductive amination and oxidative decarboxylation of α-ketoisovalerate, respectively, were inactivated to enhance the accumulation of α-ketoisovalerate. The production of α-ketoisovalerate was also improved through overexpressing α-acetolactate synthase responsible for pyruvate polymerization and mutant acetohydroxyacid isomeroreductase related to α-acetolactate reduction. The obtained strain K. oxytoca KIV-7 produced 37.3 g/L of α-ketoisovalerate from lactose, the major utilizable carbohydrate in whey. In addition, K. oxytoca KIV-7 also produced α-ketoisovalerate from whey powder with a concentration of 40.7 g/L and a yield of 0.418 g/g. CONCLUSION: The process introduced in this study enabled efficient α-ketoisovalerate production from low-cost substrate whey powder. Since the key genes for α-ketoisovalerate generation were integrated in genome of K. oxytoca KIV-7 and constitutively expressed, this strain is promising in stable α-ketoisovalerate fermentation and can be used as a chassis strain for α-ketoisovalerate derivatives production.


Assuntos
Fermentação , Hemiterpenos , Klebsiella oxytoca , Engenharia Metabólica , Soro do Leite , Klebsiella oxytoca/metabolismo , Klebsiella oxytoca/genética , Soro do Leite/metabolismo , Engenharia Metabólica/métodos , Hemiterpenos/metabolismo , Pós , Acetolactato Sintase/metabolismo , Acetolactato Sintase/genética , Cetoácidos
19.
Environ Sci Technol ; 58(31): 13783-13794, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39042817

RESUMO

As cities strive for ambitious increases in tree canopy cover and reductions in anthropogenic volatile organic compound (AVOC) emissions, accurate assessments of the impacts of biogenic VOCs (BVOCs) on air quality become more important. In this study, we aim to quantify the impact of future urban greening on ozone production. BVOC emissions in dense urban areas are often coarsely represented in regional models. We set up a high-resolution (30 m) MEGAN (The Model of Emissions of Gases and Aerosols from Nature version 3.2) to estimate summertime biogenic isoprene emissions in the New York City metro area (NYC-MEGAN). Coupling an observation-constrained box model with NYC-MEGAN isoprene emissions successfully reproduced the observed isoprene concentrations in the city core. We then estimated future isoprene emissions from likely urban greening scenarios and evaluated the potential impact on future ozone production. NYC-MEGAN predicts up to twice as much isoprene emissions in NYC as the coarse-resolution (1.33 km) Biogenic Emission Inventory System version 3.61 (BEIS) on hot summer days. We find that BVOCs drive ozone production on hot summer days, even in the city core, despite large AVOC emissions. If high isoprene emitting species (e.g., oak trees) are planted, future isoprene emissions could increase by 1.4-2.2 times in the city core, which would result in 8-19 ppbv increases in peak ozone on ozone exceedance days with current NOx concentrations. We recommend planting non- or low-isoprene emitting trees in cities with high NOx concentrations to avoid an increase in the frequency and severity of future ozone exceedance events.


Assuntos
Poluentes Atmosféricos , Ozônio , Estações do Ano , Compostos Orgânicos Voláteis , Cidade de Nova Iorque , Poluentes Atmosféricos/análise , Ozônio/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Butadienos/análise , Hemiterpenos/análise , Pentanos
20.
Macromol Rapid Commun ; 45(7): e2300653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38261808

RESUMO

Herein, a concise, effective, and scalable strategy is reported that the introduction of polar molecules (PMs) (e.g., anisole (PhOMe), phenetole (PhOEt), 2-methoxynaphthalene (NaphOMe), thioanisole (PhSMe), and N,N-dimethylaniline (PhNMe2)) as continuously coordinated neutral ligand of cationic active species in situ generated from the constrain-geometry-configuration-type rare-earth metal complexes A-F/AliBu3/[Ph3C][B(C6F5)4] ternary systems can easily switch the regio- and stereoselectivity of the polymerization of conjugated dienes (CDs, including 2-subsituted CDs such as isoprene (IP) and myrcene (MY), 1,2-disubstituted CD ocimene (OC), and 1-substituted polar CD 1-(para-methoxyphenyl)-1,3-butadiene (p-MOPB)) from poor selectivities to high selectivities (for IP and MY: 3,4-selectivity up to 99%; for OC: trans-1,2-selectivity up to 93% (mm up to 90%); for p-MOPB: 3,4-syndioselectivity (3,4- up to 99%, rrrr up to 96%)). DFT calculations explain the continuous coordination roles of PMs on the regulation of the regio- and stereoselectivity of the polymerization of CDs. In comparison with the traditional strategies, this strategy by adding some common PMs is easier and more convenient, decreasing the synthetic cost and complex operation of new metal catalyst and cocatalyst. Such regio- and stereoselective regulation method by using PMs is not reported for the coordination polymerization of olefins catalyzed by rare-earth metal and early transition metal complexes.


Assuntos
Monoterpenos Acíclicos , Alcenos , Butadienos , Complexos de Coordenação , Hemiterpenos , Metais Terras Raras , Polimerização , Polienos , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA