Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.954
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 167(1): 39-42, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27634322

RESUMO

Charles Rice and Ralf Bartenschlager, together with Michael Sofia, are the recipients of the 2016 Lasker∼DeBakey Clinical Award. Their discoveries led to the development of a system to study the replication of hepatitis C virus, which causes a chronic and lethal disease in humans, and the use of this system to develop drugs that cure the illness. Charlie and Ralf joined Cell editor João Monteiro in a conversation about their achievements, current challenges, and the future of HCV research.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Replicação Viral , Antivirais/química , Antivirais/uso terapêutico , Distinções e Prêmios , Pesquisa Biomédica , Descoberta de Drogas , Hepatite C/tratamento farmacológico , Humanos
2.
Immunity ; 54(4): 781-796.e4, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33675683

RESUMO

Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.


Assuntos
Anticorpos Neutralizantes/imunologia , Células Germinativas/imunologia , Glicoproteínas/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Macaca mulatta/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linfócitos B/imunologia , Células CHO , Linhagem Celular , Cricetulus , Epitopos/imunologia , Células HEK293 , Hepatite C/virologia , Humanos , Estudos Longitudinais , Macaca mulatta/virologia , Receptores de Antígenos de Linfócitos B/imunologia , Vacinação/métodos
3.
Cell ; 160(6): 1099-110, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25768906

RESUMO

Hepatitis C virus (HCV) uniquely requires the liver-specific microRNA-122 for replication, yet global effects on endogenous miRNA targets during infection are unexplored. Here, high-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) experiments of human Argonaute (AGO) during HCV infection showed robust AGO binding on the HCV 5'UTR at known and predicted miR-122 sites. On the human transcriptome, we observed reduced AGO binding and functional mRNA de-repression of miR-122 targets during virus infection. This miR-122 "sponge" effect was relieved and redirected to miR-15 targets by swapping the miRNA tropism of the virus. Single-cell expression data from reporters containing miR-122 sites showed significant de-repression during HCV infection depending on expression level and site number. We describe a quantitative mathematical model of HCV-induced miR-122 sequestration and propose that such miR-122 inhibition by HCV RNA may result in global de-repression of host miR-122 targets, providing an environment fertile for the long-term oncogenic potential of HCV.


Assuntos
Hepacivirus/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Proteínas Argonautas/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Hepacivirus/genética , Humanos , Fígado/metabolismo , Fígado/virologia , Dados de Sequência Molecular , RNA Viral/química , Replicação Viral
4.
Nat Immunol ; 18(12): 1299-1309, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28967880

RESUMO

NLRX1 is unique among the nucleotide-binding-domain and leucine-rich-repeat (NLR) proteins in its mitochondrial localization and ability to negatively regulate antiviral innate immunity dependent on the adaptors MAVS and STING. However, some studies have suggested a positive regulatory role for NLRX1 in inducing antiviral responses. We found that NLRX1 exerted opposing regulatory effects on viral activation of the transcription factors IRF1 and IRF3, which might potentially explain such contradictory results. Whereas NLRX1 suppressed MAVS-mediated activation of IRF3, it conversely facilitated virus-induced increases in IRF1 expression and thereby enhanced control of viral infection. NLRX1 had a minimal effect on the transcription of IRF1 mediated by the transcription factor NF-kB and regulated the abundance of IRF1 post-transcriptionally by preventing translational shutdown mediated by the double-stranded RNA (dsRNA)-activated kinase PKR and thereby allowed virus-induced increases in the abundance of IRF1 protein.


Assuntos
Hepacivirus/imunologia , Hepatite C/imunologia , Imunidade Inata/imunologia , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 3 de Interferon/imunologia , Proteínas Mitocondriais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Células Cultivadas , Ativação Enzimática/imunologia , Células HEK293 , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Fator Regulador 1 de Interferon/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , NF-kappa B/metabolismo , RNA Viral/genética , Vírus Sendai/imunologia , eIF-2 Quinase/metabolismo
5.
Nature ; 619(7971): 811-818, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407817

RESUMO

RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus1,2 (HCV), which causes chronic infection, liver cirrhosis and cancer3. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA. The HCV FAD-capping frequency is around 75%, which is the highest observed for any RNA metabolite cap across all kingdoms of life4-8. FAD capping is conserved among HCV isolates for the replication-intermediate negative strand and partially for the positive strand. It is also observed in vivo on HCV RNA isolated from patient samples and from the liver and serum of a human liver chimeric mouse model. Furthermore, we show that 5'-FAD capping protects RNA from RIG-I mediated innate immune recognition but does not stabilize the HCV RNA. These results establish capping with cellular metabolites as a novel viral RNA-capping strategy, which could be used by other viruses and affect anti-viral treatment outcomes and persistence of infection.


Assuntos
Flavina-Adenina Dinucleotídeo , Hepacivirus , Capuzes de RNA , RNA Viral , Animais , Humanos , Camundongos , Quimera/virologia , Flavina-Adenina Dinucleotídeo/metabolismo , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/virologia , Reconhecimento da Imunidade Inata , Fígado/virologia , Estabilidade de RNA , RNA Viral/química , RNA Viral/genética , RNA Viral/imunologia , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/genética , Capuzes de RNA/metabolismo
6.
Mol Cell ; 77(3): 542-555.e8, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810760

RESUMO

The RNA modification N6-methyladenosine (m6A) modulates mRNA fate and thus affects many biological processes. We analyzed m6A across the transcriptome following infection by dengue virus (DENV), Zika virus (ZIKV), West Nile virus (WNV), and hepatitis C virus (HCV). We found that infection by these viruses in the Flaviviridae family alters m6A modification of specific cellular transcripts, including RIOK3 and CIRBP. During viral infection, the addition of m6A to RIOK3 promotes its translation, while loss of m6A in CIRBP promotes alternative splicing. Importantly, viral activation of innate immune sensing or the endoplasmic reticulum (ER) stress response contributes to the changes in m6A in RIOK3 or CIRBP, respectively. Further, several transcripts with infection-altered m6A profiles, including RIOK3 and CIRBP, encode proteins that influence DENV, ZIKV, and HCV infection. Overall, this work reveals that cellular signaling pathways activated during viral infection lead to alterations in m6A modification of host mRNAs to regulate infection.


Assuntos
Adenosina/análogos & derivados , Infecções por Flaviviridae/genética , RNA Mensageiro/genética , Adenosina/genética , Linhagem Celular , Dengue/virologia , Vírus da Dengue/genética , Flaviviridae/genética , Hepacivirus/genética , Hepatite C/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/genética , Zika virus/genética , Infecção por Zika virus/genética
7.
Nat Immunol ; 16(8): 802-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26194286

RESUMO

Type III interferons (IFNs) or IFN-λs regulate a similar set of genes as type I IFNs, but whereas type I IFNs act globally, IFN-λs primarily target mucosal epithelial cells and protect them against the frequent viral attacks that are typical for barrier tissues. IFN-λs thereby help to maintain healthy mucosal surfaces through immune protection, without the significant immune-related pathogenic risk associated with type I IFN responses. Type III IFNs also target the human liver, with dual effects: they induce an antiviral state in hepatocytes, but specific IFN-λ4 action impairs the clearance of hepatitis C virus and could influence inflammatory responses. This constitutes a paradox that has yet to be resolved.


Assuntos
Interleucinas/imunologia , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 19/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Interferons , Interleucinas/genética , Modelos Imunológicos
8.
Nat Immunol ; 15(1): 72-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24241692

RESUMO

IFNL3, which encodes interferon-λ3 (IFN-λ3), has received considerable attention in the hepatitis C virus (HCV) field, as many independent genome-wide association studies have identified a strong association between polymorphisms near IFNL3 and clearance of HCV. However, the mechanism underlying this association has remained elusive. In this study, we report the identification of a functional polymorphism (rs4803217) in the 3' untranslated region (UTR) of IFNL3 mRNA that dictated transcript stability. We found that this polymorphism influenced AU-rich element (ARE)-mediated decay (AMD) of IFNL3 mRNA, as well as the binding of HCV-induced microRNAs during infection. Together these pathways mediated robust repression of the unfavorable IFNL3 polymorphism. Our data reveal a previously unknown mechanism by which HCV attenuates the antiviral response and indicate new potential therapeutic targets for HCV treatment.


Assuntos
Elementos Ricos em Adenilato e Uridilato/genética , Interleucinas/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Estabilidade de RNA/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Citometria de Fluxo , Genótipo , Células Hep G2 , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Interferons , Interleucinas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
9.
Annu Rev Cell Dev Biol ; 28: 411-37, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22578141

RESUMO

Lipid droplets (LDs) are neutral lipid storage organelles ubiquitous to eukaryotic cells. It is increasingly recognized that LDs interact extensively with other organelles and that they perform functions beyond passive lipid storage and lipid homeostasis. One emerging function for LDs is the coordination of immune responses, as these organelles participate in the generation of prostaglandins and leukotrienes, which are important inflammation mediators. Similarly, LDs are also beginning to be recognized as playing a role in interferon responses and in antigen cross presentation. Not surprisingly, there is emerging evidence that many pathogens, including hepatitis C and Dengue viruses, Chlamydia, and Mycobacterium, target LDs during infection either for nutritional purposes or as part of an anti-immunity strategy. We here review recent findings that link LDs to the regulation and execution of immune responses in the context of host-pathogen interactions.


Assuntos
Lipídeos/fisiologia , Animais , Apresentação de Antígeno , Autofagia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Hepacivirus/fisiologia , Hepatite C/imunologia , Hepatite C/patologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Metabolismo dos Lipídeos , Organelas/microbiologia , Organelas/fisiologia , Organelas/ultraestrutura , Montagem de Vírus
10.
J Biol Chem ; 300(5): 107286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636657

RESUMO

Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.


Assuntos
Anexina A3 , Hepacivirus , Hepatite C , Antígeno SS-B , Internalização do Vírus , Humanos , Anexina A3/metabolismo , Anexina A3/genética , Autoantígenos/metabolismo , Autoantígenos/genética , Células HEK293 , Hepacivirus/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatite C/genética , Interações Hospedeiro-Patógeno , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/virologia , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética
11.
Am J Hum Genet ; 109(2): 299-310, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090584

RESUMO

Spontaneous clearance of acute hepatitis C virus (HCV) infection is associated with single nucleotide polymorphisms (SNPs) on the MHC class II. We fine-mapped the MHC region in European (n = 1,600; 594 HCV clearance/1,006 HCV persistence) and African (n = 1,869; 340 HCV clearance/1,529 HCV persistence) ancestry individuals and evaluated HCV peptide binding affinity of classical alleles. In both populations, HLA-DQß1Leu26 (p valueMeta = 1.24 × 10-14) located in pocket 4 was negatively associated with HCV spontaneous clearance and HLA-DQß1Pro55 (p valueMeta = 8.23 × 10-11) located in the peptide binding region was positively associated, independently of HLA-DQß1Leu26. These two amino acids are not in linkage disequilibrium (r2 < 0.1) and explain the SNPs and classical allele associations represented by rs2647011, rs9274711, HLA-DQB1∗03:01, and HLA-DRB1∗01:01. Additionally, HCV persistence classical alleles tagged by HLA-DQß1Leu26 had fewer HCV binding epitopes and lower predicted binding affinities compared to clearance alleles (geometric mean of combined IC50 nM of persistence versus clearance; 2,321 nM versus 761.7 nM, p value = 1.35 × 10-38). In summary, MHC class II fine-mapping revealed key amino acids in HLA-DQß1 explaining allelic and SNP associations with HCV outcomes. This mechanistic advance in understanding of natural recovery and immunogenetics of HCV might set the stage for much needed enhancement and design of vaccine to promote spontaneous clearance of HCV infection.


Assuntos
Cadeias beta de HLA-DQ/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Interações Hospedeiro-Patógeno/genética , Polimorfismo de Nucleotídeo Único , Doença Aguda , Alelos , Substituição de Aminoácidos , População Negra , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Cadeias beta de HLA-DQ/imunologia , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/imunologia , Hepatite C/etnologia , Hepatite C/imunologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Leucina/imunologia , Leucina/metabolismo , Masculino , Prolina/imunologia , Prolina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Remissão Espontânea , População Branca
12.
J Virol ; 98(1): e0084923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38174935

RESUMO

Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.


Assuntos
Hepacivirus , Hepatite C , Evasão da Resposta Imune , Lipoproteínas HDL , Proteínas do Envelope Viral , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Apolipoproteínas/metabolismo , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas do Envelope Viral/metabolismo , Células HEK293
13.
J Virol ; 98(3): e0192123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38319104

RESUMO

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE: Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.


Assuntos
Aptidão Genética , Hepacivirus , Hepatócitos , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Mutação , Humanos , Células Cultivadas , Estresse do Retículo Endoplasmático , Aptidão Genética/genética , Aptidão Genética/imunologia , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/imunologia , Hepacivirus/fisiologia , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , MicroRNAs/metabolismo , Inoculações Seriadas , Resposta a Proteínas não Dobradas , Tropismo Viral , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Replicação Viral/genética , Replicação Viral/imunologia
14.
Rev Med Virol ; 34(4): e2552, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877365

RESUMO

Infections caused by blood-borne viruses, such as human immunodeficiency virus (HIV), human T-lymphotropic virus (HTLV), hepatitis C virus (HCV), and hepatitis B virus (HBV), are systemic diseases that can lead to a wide range of pathological manifestations. Besides causing severe immune and hepatic disorders, these viral pathogens can also induce neurological dysfunctions via both direct and indirect mechanisms. Neurological dysfunctions are one of the most common manifestations caused by these viruses that can also serve as indicators of their infection, impacting the clinical presentation of the disease. The main neurological manifestations of these blood-borne viral pathogens consist of several central and peripheral nervous system (CNS and PNS, respectively) dysfunctions. The most common neurological manifestations of HIV, HTLV, HCV, and HBV include HIV-associated peripheral neuropathy (PN), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and HCV-/HBV-associated PN, respectively. Nonetheless, patients infected with these viruses may experience other neurological disorders, either associated with these conditions or manifesting in isolation, which can often go unnoticed or undiagnosed by physicians. The present review aims to provide an overview of the latest evidence on the relationship between blood-borne viruses and neurological disorders to highlight neurological conditions that may be somewhat overlooked by mainstream literature and physicians.


Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/virologia , Doenças do Sistema Nervoso/etiologia , Infecções Transmitidas por Sangue/virologia , Viroses/virologia , Viroses/complicações , Patógenos Transmitidos pelo Sangue , Hepatite C/virologia , Hepatite C/complicações , Infecções por HIV/virologia , Infecções por HIV/complicações , Hepatite B/virologia , Hepatite B/complicações
15.
Nucleic Acids Res ; 51(5): 2447-2463, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36807979

RESUMO

Efficient hepatitis C virus (HCV) RNA accumulation is dependent upon interactions with the human liver-specific microRNA, miR-122. MiR-122 has at least three roles in the HCV life cycle: it acts as an RNA chaperone, or 'riboswitch', allowing formation of the viral internal ribosomal entry site; it provides genome stability; and promotes viral translation. However, the relative contribution of each role in HCV RNA accumulation remains unclear. Herein, we used point mutations, mutant miRNAs, and HCV luciferase reporter RNAs to isolate each of the roles and evaluate their contribution to the overall impact of miR-122 in the HCV life cycle. Our results suggest that the riboswitch has a minimal contribution in isolation, while genome stability and translational promotion have similar contributions in the establishment phase of infection. However, in the maintenance phase, translational promotion becomes the dominant role. Additionally, we found that an alternative conformation of the 5' untranslated region, termed SLIIalt, is important for efficient virion assembly. Taken together, we have clarified the overall importance of each of the established roles of miR-122 in the HCV life cycle and provided insight into the regulation of the balance between viral RNAs in the translating/replicating pool and those engaged in virion assembly.


Assuntos
Hepatite C , MicroRNAs , Humanos , Instabilidade Genômica , Hepacivirus/genética , Hepatite C/virologia , MicroRNAs/genética , RNA Viral/genética , Vírion/genética , Replicação Viral/genética , Montagem de Vírus
16.
Nucleic Acids Res ; 51(22): 12397-12413, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37941151

RESUMO

Hepatitis C virus (HCV) requires two cellular factors, microRNA-122 (miR-122) and poly(C) binding protein 2 (PCBP2), for optimal replication. These host factors compete for binding to the 5' end of the single-stranded RNA genome to regulate the viral replication cycle. To understand how they interact with the RNA, we measured binding affinities of both factors for an RNA probe representing the 5' 45 nucleotides of the HCV genome (HCV45). Isothermal titration calorimetry revealed two, unequal miR-122 binding sites in HCV45, high-affinity (S1) and low-affinity (S2), differing roughly 100-fold in binding affinity. PCBP2 binds a site overlapping S2 with affinity similar to miR-122 binding to S2. PCBP2 circularizes the genome by also binding to the 3' UTR, bridging the 5' and 3' ends of the genome. By competing with PCBP2 for binding at S2, miR-122 disrupts PCBP2-mediated genome circularization. We show that the viral RNA-dependent RNA polymerase, NS5B, also binds to HCV45, and that the binding affinity of NS5B is increased in the presence of miR-122, suggesting miR-122 promotes recruitment of the polymerase. We propose that competition between miR-122 and PCBP2 for HCV45 functions as a translation-to-replication switch, determining whether the RNA genome templates protein synthesis or RNA replication.


Assuntos
Hepacivirus , Hepatite C , MicroRNAs , Humanos , Regiões 5' não Traduzidas , Proteínas de Transporte/genética , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/genética
17.
J Virol ; 97(12): e0092523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38092564

RESUMO

IMPORTANCE: HCV genotype 3b is a difficult-to-treat subtype, associated with accelerated progression of liver disease and resistance to antivirals. Moreover, its prevalence has significantly increased among persons who inject drugs posing a serious risk of transmission in the general population. Thus, more genetic information and antiviral testing systems are required to develop novel therapeutic options for this genotype 3 subtype. We determined the complete genomic sequence and complexity of three genotype 3b isolates, which will be beneficial to study its biology and evolution. Furthermore, we developed a full-length in vivo infectious cDNA clone of genotype 3b and showed its robustness and genetic stability in human-liver chimeric mice. This is, to our knowledge the first reported infectious cDNA clone of HCV genotype 3b and will provide a valuable tool to evaluate antivirals and neutralizing antibodies in vivo, as well as in the development of infectious cell culture systems required for further research.


Assuntos
Genoma Viral , Hepacivirus , Hepatite C , Animais , Humanos , Camundongos , Antivirais/uso terapêutico , DNA Complementar/genética , Genótipo , Hepacivirus/genética , Hepatite C/virologia , Análise de Sequência
18.
J Virol ; 97(4): e0181222, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971565

RESUMO

The lack of robust immunocompetent animal models for hepatitis C virus (HCV) impedes vaccine development and studies of immune responses. Norway rat hepacivirus (NrHV) infection in rats shares HCV-defining characteristics, including hepatotropism, chronicity, immune responses, and aspects of liver pathology. To exploit genetic variants and research tools, we previously adapted NrHV to prolonged infection in laboratory mice. Through intrahepatic RNA inoculation of molecular clones of the identified variants, we here characterized four mutations in the envelope proteins responsible for mouse adaptation, including one disrupting a glycosylation site. These mutations led to high-titer viremia, similar to that observed in rats. In 4-week-old mice, infection was cleared after around 5 weeks compared to 2 to 3 weeks for nonadapted virus. In contrast, the mutations led to persistent but attenuated infection in rats, and they partially reverted, accompanied by an increase in viremia. Attenuated infection in rat but not mouse hepatoma cells demonstrated that the characterized mutations were indeed mouse adaptive rather than generally adaptive across species and that species determinants and not immune interactions were responsible for attenuation in rats. Unlike persistent NrHV infection in rats, acute resolving infection in mice was not associated with the development of neutralizing antibodies. Finally, infection of scavenger receptor B-I (SR-BI) knockout mice suggested that adaptation to mouse SR-BI was not a primary function of the identified mutations. Rather, the virus may have adapted to lower dependency on SR-BI, thereby potentially surpassing species-specific differences. In conclusion, we identified specific determinants of NrHV mouse adaptation, suggesting species-specific interactions during entry. IMPORTANCE A prophylactic vaccine is required to achieve the World Health Organization's objective for hepatitis C virus elimination as a serious public health threat. However, the lack of robust immunocompetent animal models supporting hepatitis C virus infection impedes vaccine development as well as studies of immune responses and viral evasion. Hepatitis C virus-related hepaciviruses were discovered in a number of animal species and provide useful surrogate infection models. Norway rat hepacivirus is of particular interest, as it enables studies in rats, an immunocompetent and widely used small laboratory animal model. Its adaptation to robust infection also in laboratory mice provides access to a broader set of mouse genetic lines and comprehensive research tools. The presented mouse-adapted infectious clones will be of utility for reverse genetic studies, and the Norway rat hepacivirus mouse model will facilitate studies of hepacivirus infection for in-depth characterization of virus-host interactions, immune responses, and liver pathology.


Assuntos
Adaptação Fisiológica , Hepacivirus , Hepatite C , Adaptação Fisiológica/genética , Adaptação Fisiológica/imunologia , Hepacivirus/genética , Hepacivirus/imunologia , Viremia/imunologia , Viremia/virologia , Mutação , Animais , Camundongos , Ratos , Hepatite C/imunologia , Hepatite C/fisiopatologia , Hepatite C/virologia , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Linhagem Celular , Antígenos CD36/genética , Antígenos CD36/imunologia
19.
J Virol ; 97(10): e0109023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787533

RESUMO

IMPORTANCE: Clinical data suggest that Hepatitis C virus (HCV) levels are generally lower in Hepatitis B virus (HBV) co-infected patients, but the mechanism is unknown. Here, we show that HBV, but not HCV, activated absent in melanoma-2. This in turn results in inflammasome-mediated cleavage of pro-IL-18, leading to an innate immune activation cascade that results in increased interferon-γ, suppressing both viruses.


Assuntos
Coinfecção , Proteínas de Ligação a DNA , Hepacivirus , Vírus da Hepatite B , Hepatite B , Hepatite C , Imunidade Inata , Humanos , Coinfecção/imunologia , Coinfecção/virologia , Proteínas de Ligação a DNA/metabolismo , Hepacivirus/imunologia , Hepatite B/complicações , Hepatite B/imunologia , Hepatite B/virologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Hepatite C/complicações , Hepatite C/imunologia , Hepatite C/virologia , Inflamassomos/metabolismo , Interferon gama/imunologia
20.
J Virol ; 97(10): e0089223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772835

RESUMO

IMPORTANCE: The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.


Assuntos
Antivirais , Hepacivirus , Proteínas do Core Viral , Humanos , Antivirais/metabolismo , Antivirais/farmacologia , Hepacivirus/química , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Nucleocapsídeo/antagonistas & inibidores , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Replicação Viral , Imagem Individual de Molécula/métodos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA