Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.536
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 622(7984): 834-841, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794190

RESUMO

Although haemoglobin is a known carrier of oxygen in erythrocytes that functions to transport oxygen over a long range, its physiological roles outside erythrocytes are largely elusive1,2. Here we found that chondrocytes produced massive amounts of haemoglobin to form eosin-positive bodies in their cytoplasm. The haemoglobin body (Hedy) is a membraneless condensate characterized by phase separation. Production of haemoglobin in chondrocytes is controlled by hypoxia and is dependent on KLF1 rather than the HIF1/2α pathway. Deletion of haemoglobin in chondrocytes leads to Hedy loss along with severe hypoxia, enhanced glycolysis and extensive cell death in the centre of cartilaginous tissue, which is attributed to the loss of the Hedy-controlled oxygen supply under hypoxic conditions. These results demonstrate an extra-erythrocyte role of haemoglobin in chondrocytes, and uncover a heretofore unrecognized mechanism in which chondrocytes survive a hypoxic environment through Hedy.


Assuntos
Adaptação Fisiológica , Hipóxia Celular , Condrócitos , Hemoglobinas , Humanos , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Morte Celular , Hipóxia Celular/fisiologia , Condrócitos/metabolismo , Citoplasma/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Eritrócitos/metabolismo , Glicólise , Hemoglobinas/deficiência , Hemoglobinas/genética , Hemoglobinas/metabolismo , Oxigênio/metabolismo
2.
Genes Dev ; 35(3-4): 250-260, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446567

RESUMO

Reactive oxygen species (ROS) produced by NADPH1 oxidase 1 (NOX1) are thought to drive spermatogonial stem cell (SSC) self-renewal through feed-forward production of ROS by the ROS-BCL6B-NOX1 pathway. Here we report the critical role of oxygen on ROS-induced self-renewal. Cultured SSCs proliferated poorly and lacked BCL6B expression under hypoxia despite increase in mitochondria-derived ROS. Due to lack of ROS amplification under hypoxia, NOX1-derived ROS were significantly reduced, and Nox1-deficient SSCs proliferated poorly under hypoxia but normally under normoxia. NOX1-derived ROS also influenced hypoxic response in vivo because Nox1-deficient undifferentiated spermatogonia showed significantly reduced expression of HIF1A, a master transcription factor for hypoxic response. Hypoxia-induced poor proliferation occurred despite activation of MYC and suppression of CDKN1A by HIF1A, whose deficiency exacerbated self-renewal efficiency. Impaired proliferation of Nox1- or Hif1a-deficient SSCs under hypoxia was rescued by Cdkn1a depletion. Consistent with these observations, Cdkn1a-deficient SSCs proliferated actively only under hypoxia but not under normoxia. On the other hand, chemical suppression of mitochondria-derived ROS or Top1mt mitochondria-specific topoisomerase deficiency did not influence SSC fate, suggesting that NOX1-derived ROS play a more important role in SSCs than mitochondria-derived ROS. These results underscore the importance of ROS origin and oxygen tension on SSC self-renewal.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Hipóxia Celular/fisiologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Divisão Celular/genética , Proliferação de Células/genética , Células Cultivadas , DNA Topoisomerases Tipo I/genética , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Camundongos , Camundongos Knockout , Mitocôndrias/fisiologia , NADPH Oxidase 1/metabolismo
4.
EMBO J ; 41(7): e110819, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35199359

RESUMO

Context-specific control mechanisms of hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha in tumors exposed to oxygen shortage remain incompletely understood. In this issue, Zhang et al (2022) identify a deubiquitinase that differentially stabilizes HIF-2alpha in stem-like glioblastoma cells, suggesting potential implications for regulation of the hypoxic response in a wide array of tissues and cancers.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Glioblastoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/fisiologia , Enzimas Desubiquitinantes , Glioblastoma/genética , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isoformas de Proteínas
5.
Genes Cells ; 29(2): 169-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158708

RESUMO

Hypoxia-inducible factor 1 (HIF1) is a transcription factor that is stabilized under hypoxia conditions via post-translational modifications. HIF1 regulates tumor malignancy and metastasis by gene transcriptions, such as Warburg effect and angiogenesis-related genes, in cancer cells. However, the HIF1 downstream genes show varied expressional patterns in different cancer types. Herein, we performed the hierarchical clustering based on the HIF1 downstream gene expression patterns using 1406 cancer cell lines crossing 30 types of cancer to understand the relationship between HIF1 downstream genes and the metastatic potential of cancer cell lines. Two types of cancers, including bone and breast cancers, were classified based on HIF1 downstream genes with significantly altered metastatic potentials. Furthermore, different HIF1 downstream gene subsets were extracted to discriminate each subtype for these cancer types. HIF1 downstream subtyping classification will help to understand the novel insight into tumor malignancy and metastasis in each cancer type.


Assuntos
Neoplasias da Mama , Fator 1 Induzível por Hipóxia , Humanos , Feminino , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular , Neoplasias da Mama/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Hipóxia Celular/fisiologia
6.
FASEB J ; 38(13): e23762, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38923643

RESUMO

Exosomes play significant roles in the communications between tumor cells and tumor microenvironment. However, the specific mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic neuroendocrine tumors (pNETs) are not well understood. This study aims to investigate these mechanisms and made several important discoveries. We found that hypoxic exosomes derived from pNETs cells can activate tumor-associated macrophages (TAM) to the M2 phenotype, in turn, the M2-polarized TAM, facilitate the migration and invasion of pNETs cells. Further investigation revealed that CEACAM5, a protein highly expressed in hypoxic pNETs cells, is enriched in hypoxic pNETs cell-derived exosomes. Hypoxic exosomal CEACAM5 was observed to induce M2 polarization of TAM through activation of the MAPK signaling pathway. Coculturing pNETs cells with TAM or treated with hypoxic exosomes enhanced the metastatic capacity of pNETs cells. In conclusion, these findings suggest that pNETs cells generate CEACAM5-rich exosomes in a hypoxic microenvironment, which in turn polarize TAM promote malignant invasion of pNETs cells. Targeting exosomal CEACAM5 could potentially serve as a diagnostic and therapeutic strategy for pNETs.


Assuntos
Antígenos CD , Exossomos , Proteínas Ligadas por GPI , Metaloproteinase 9 da Matriz , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Microambiente Tumoral , Macrófagos Associados a Tumor , Exossomos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos , Animais , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Metaloproteinase 9 da Matriz/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Camundongos , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Metástase Neoplásica , Camundongos Nus , Hipóxia/metabolismo , Hipóxia Celular/fisiologia , Antígeno Carcinoembrionário
7.
PLoS Comput Biol ; 20(8): e1012357, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39137218

RESUMO

The experimental study and transplantation of pancreatic islets requires their isolation from the surrounding tissue, and therefore, from the vasculature. Under these conditions, avascular islets rely on the diffusion of peripheral oxygen and nutrients to comply with the requirements of islet cells while responding to changes in body glucose. As a complement to the experimental work, computational models have been widely used to estimate how avascular islets would be affected by the hypoxic conditions found both in culture and transplant sites. However, previous models have been based on simplified representations of pancreatic islets which has limited the reach of the simulations performed. Aiming to contribute with a more realistic model of avascular human islets, in this work we used architectures of human islets reconstructed from experimental data to simulate the availability of oxygen for α, ß and δ-cells, emulating culture and transplant conditions at different glucose concentrations. The modeling approach proposed allowed us to quantitatively estimate how the loss of cells due to severe hypoxia would impact interactions between islet cells, ultimately segregating the islet into disconnected subnetworks. According to the simulations performed, islet encapsulation, by reducing the oxygen available within the islets, could severely compromise cell viability. Moreover, our model suggests that even without encapsulation, only microislets composed of less than 100 cells would remain viable in oxygenation conditions found in transplant sites. Overall, in this article we delineate a novel modeling methodology to simulate detailed avascular islets in experimental and transplant conditions with potential applications in the field of islet encapsulation.


Assuntos
Sobrevivência Celular , Simulação por Computador , Glucose , Ilhotas Pancreáticas , Modelos Biológicos , Oxigênio , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/irrigação sanguínea , Oxigênio/metabolismo , Glucose/metabolismo , Sobrevivência Celular/fisiologia , Biologia Computacional , Transplante das Ilhotas Pancreáticas/métodos , Hipóxia Celular/fisiologia
8.
Biol Cell ; 116(2): e2300077, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031929

RESUMO

BACKGROUND INFORMATION: Cancer cells acquire malignant characteristics and therapy resistance by employing the hypoxia-inducible factor 1 (HIF-1)-dependent adaptive response to hypoxic microenvironment in solid tumors. Since the underlying molecular mechanisms remain unclear, difficulties are associated with establishing effective therapeutic strategies. RESULTS: We herein identified DEAD-box helicase 5 (DDX5) as a novel activator of HIF-1 and found that it enhanced the heterodimer formation of HIF-1α and HIF-1ß and facilitated the recruitment of the resulting HIF-1 to its recognition sequence, hypoxia-response element (HRE), leading to the expression of a subset of cancer-related genes under hypoxia. CONCLUSIONS: This study reveals that the regulation of HIF-1 recruitment to HRE is an important regulatory step in the control of HIF-1 activity. SIGNIFICANCE: The present study provides novel insights for the development of strategies to inhibit the HIF-1-dependent expression of cancer-related genes.


Assuntos
Fator 1 Induzível por Hipóxia , Neoplasias , Humanos , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia Celular/fisiologia , Hipóxia/metabolismo , Elementos de Resposta , Neoplasias/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Microambiente Tumoral
9.
Proc Natl Acad Sci U S A ; 119(39): e2202178119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122208

RESUMO

Acute oxygen (O2) sensing is essential for adaptation of organisms to hypoxic environments or medical conditions with restricted exchange of gases in the lung. The main acute O2-sensing organ is the carotid body (CB), which contains neurosecretory chemoreceptor (glomus) cells innervated by sensory fibers whose activation by hypoxia elicits hyperventilation and increased cardiac output. Glomus cells have mitochondria with specialized metabolic and electron transport chain (ETC) properties. Reduced mitochondrial complex (MC) IV activity by hypoxia leads to production of signaling molecules (NADH and reactive O2 species) in MCI and MCIII that modulate membrane ion channel activity. We studied mice with conditional genetic ablation of MCIII that disrupts the ETC in the CB and other catecholaminergic tissues. Glomus cells survived MCIII dysfunction but showed selective abolition of responsiveness to hypoxia (increased [Ca2+] and transmitter release) with normal responses to other stimuli. Mitochondrial hypoxic NADH and reactive O2 species signals were also suppressed. MCIII-deficient mice exhibited strong inhibition of the hypoxic ventilatory response and altered acclimatization to sustained hypoxia. These data indicate that a functional ETC, with coupling between MCI and MCIV, is required for acute O2 sensing. O2 regulation of breathing results from the integrated action of mitochondrial ETC complexes in arterial chemoreceptors.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Oxigênio , Respiração , Animais , Hipóxia Celular/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Canais Iônicos , Camundongos , NAD/metabolismo , Oxigênio/metabolismo
10.
J Biol Chem ; 299(9): 105103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507013

RESUMO

The hydrolysis of ATP is the primary source of metabolic energy for eukaryotic cells. Under physiological conditions, cells generally produce more than sufficient levels of ATP to fuel the active biological processes necessary to maintain homeostasis. However, mechanisms underpinning the distribution of ATP to subcellular microenvironments with high local demand remain poorly understood. Intracellular distribution of ATP in normal physiological conditions has been proposed to rely on passive diffusion across concentration gradients generated by ATP producing systems such as the mitochondria and the glycolytic pathway. However, subcellular microenvironments can develop with ATP deficiency due to increases in local ATP consumption. Alternatively, ATP production can be reduced during bioenergetic stress during hypoxia. Mammalian cells therefore need to have the capacity to alter their metabolism and energy distribution strategies to compensate for local ATP deficits while also controlling ATP production. It is highly likely that satisfying the bioenergetic requirements of the cell involves the regulated distribution of ATP producing systems to areas of high ATP demand within the cell. Recently, the distribution (both spatially and temporally) of ATP-producing systems has become an area of intense investigation. Here, we review what is known (and unknown) about intracellular energy production and distribution and explore potential mechanisms through which this targeted distribution can be altered in hypoxia, with the aim of stimulating investigation in this important, yet poorly understood field of research.


Assuntos
Hipóxia Celular , Metabolismo Energético , Animais , Humanos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Hipóxia Celular/fisiologia , Adaptação Fisiológica
11.
Pflugers Arch ; 476(9): 1423-1444, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955833

RESUMO

Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.


Assuntos
Mitocôndrias , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Humanos , Animais , Mitocôndrias/metabolismo , Hipóxia/metabolismo , Hipóxia Celular/fisiologia , Oxigênio/metabolismo
12.
Pflugers Arch ; 476(9): 1399-1410, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38294517

RESUMO

Clathrin-associated trafficking is a major mechanism for intracellular communication, as well as for cells to communicate with the extracellular environment. A decreased oxygen availability termed hypoxia has been described to influence this mechanism in the past. Mostly biochemical studies were applied in these analyses, which miss spatiotemporal information. We have applied live cell microscopy and a newly developed analysis script in combination with a GFP-tagged clathrin-expressing cell line to obtain insight into the dynamics of the effect of hypoxia. Number, mobility and directionality of clathrin-coated vesicles were analysed in non-stimulated cells as well as after stimulation with epidermal growth factor (EGF) or transferrin in normoxic and hypoxic conditions. These data reveal cargo-specific effects, which would not be observable with biochemical methods or with fixed cells and add to the understanding of cell physiology in hypoxia. The stimulus-dependent consequences were also reflected in the final cellular output, i.e. decreased EGF signaling and in contrast increased iron uptake in hypoxia.


Assuntos
Hipóxia Celular , Vesículas Revestidas por Clatrina , Clatrina , Fator de Crescimento Epidérmico , Transferrina , Fator de Crescimento Epidérmico/metabolismo , Humanos , Hipóxia Celular/fisiologia , Vesículas Revestidas por Clatrina/metabolismo , Clatrina/metabolismo , Transferrina/metabolismo , Animais , Transporte Proteico/fisiologia , Endocitose/fisiologia
13.
Pflugers Arch ; 476(10): 1613-1621, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39075239

RESUMO

Glucagon-like peptide (GLP)-1 is a hormone released by enteroendocrine L-cells after food ingestion. L-cells express various receptors for nutrient sensing including G protein-coupled receptors (GPRs). Intestinal epithelial cells near the lumen have a lower O2 tension than at the base of the crypts, which leads to hypoxia in L-cells. We hypothesized that hypoxia affects nutrient-stimulated GLP-1 secretion from the enteroendocrine cell line STC-1, the most commonly used model. In this study, we investigated the effect of hypoxia (1% O2) on alpha-linolenic acid (αLA) stimulated GLP-1 secretion and their receptor expressions. STC-1 cells were incubated for 12 h under hypoxia (1% O2) and treated with αLA to stimulate GLP-1 secretion. 12 h of hypoxia did not change basal GLP-1 secretion, but significantly reduced nutrient (αLA) stimulated GLP-1 secretion. In normoxia, αLA (12.5 µM) significantly stimulated (~ 5 times) GLP-1 secretion compared to control, but under hypoxia, GLP-1 secretion was reduced by 45% compared to normoxia. αLA upregulated GPR120, also termed free fatty acid receptor 4 (FFAR4), expressions under normoxia as well as hypoxia. Hypoxia downregulated GPR120 and GPR40 expression by 50% and 60%, respectively, compared to normoxia. These findings demonstrate that hypoxia does not affect the basal GLP-1 secretion but decreases nutrient-stimulated GLP-1 secretion. The decrease in nutrient-stimulated GLP-1 secretion was due to decreased GPR120 and GPR40 receptors expression. Changes in the gut environment and inflammation might contribute to the hypoxia of the epithelial and L-cells.


Assuntos
Hipóxia Celular , Células Enteroendócrinas , Peptídeo 1 Semelhante ao Glucagon , Receptores Acoplados a Proteínas G , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Enteroendócrinas/metabolismo , Animais , Hipóxia Celular/fisiologia , Linhagem Celular , Camundongos , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo
14.
Eur J Neurosci ; 60(1): 3629-3642, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697919

RESUMO

Microglia are endogenous immune cells in the brain, and their pyroptosis and phenotype dichotomy are proved to play roles in neurodegenerative diseases. We investigated whether and how hypoxia affected pyroptosis and phenotype polarization in mouse microglia. Primary mouse microglia and BV2 microglia were exposed to hypoxia. Pyroptosis and M1/M2 phenotype were assessed by measuring gasdermin D truncation and M1/M2 surface marker expression. Mechanisms including purinergic ionotropic receptor (P2XR), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and NOD-like receptor protein 3 (NLRP3) inflammasome were investigated. We reported hypoxia (90% N2, 5% O2 and 5% CO2) induced pyroptosis and promoted M1 phenotype polarization in primary mouse microglia and BV2 microglia, and the effect appeared after 6 h exposure. Although hypoxia (90% N2, 5% O2 and 5% CO2, 6 h) had no effect on P2X1R and P2X7R expression, it increased P2X4R expression and decreased PGC-1α expression. Interestingly, blockade of P2X4R or P2X7R abolished hypoxia-modulated PGC-1α expression, pyroptosis and M1 polarization. PGC-1α overexpression or overactivation alleviated hypoxia-induced pyroptosis and M1 polarization, while PGC-1α knockdown or deactivation promoted pyroptosis and M1 polarization under normoxic situation. Further, hypoxia induced NLRP3 expression and activated caspase-1 and induced the phosphorylation of NF-κB and reduced the phosphorylation of STAT3/6. NLRP3 inhibitor and caspase-1 inhibitor abolished hypoxia-induced pyroptosis, while NF-κB inhibitor and STAT phosphorylation inducer ameliorated hypoxia-induced M1 polarization. In addition, NF-κB activator and STAT3/6 inhibitor caused microglia M1 polarization under normoxic situation. We concluded in cultured mouse microglia, hypoxia may induce pyroptosis via P2XR/PGC-1α/NLRP3/caspase-1 pathway and trigger M1 polarization through P2XR/PGC-1α/NF-κB/STAT3/6 pathway.


Assuntos
Microglia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Piroptose , Transdução de Sinais , Animais , Piroptose/fisiologia , Microglia/metabolismo , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/fisiologia , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hipóxia Celular/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Cultivadas , Inflamassomos/metabolismo , Fenótipo , Hipóxia/metabolismo
15.
Biol Reprod ; 111(3): 708-722, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38924703

RESUMO

During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed toward the relevance of hypoxia as modulator of trophoblast cell death. Previous reports have shown that leptin, a placental cytokine, promotes cell survival in both cell culture and placental explant models. The aim of this work is to establish the role of leptin in apoptosis under hypoxic condition in trophoblast cells. In this study, we evaluated the effect of cobalt chloride, a hypoxia mimicking agent that stabilizes the expression of hypoxia-inducible factor-1 alpha, on Swan-71 and human placental explants. Hypoxia chamber was also used to generate 2% oxygen. Apoptosis was determined by the presence of apoptotic nucleus, fragmentation of DNA and Caspase-3 and PARP-1 cleavage. The pro-apoptotic proteins BAX, BID, BAD, and BAK and the anti-apoptotic effectors BCL-2, B-cell lymphoma-extra-large, and myeloid cell leukemia-1 were also analyzed. We found that hypoxia-inducible factor-1 alpha stabilization increased the appearance of apoptotic nucleus, fragmentation of DNA, and Caspase-3 and PARP-1 cleavage. Hypoxia mimicking conditions enhanced the expression of pro-apoptotic effectors BAX, BID, BAD, and BAK. Hypoxia-inducible factor-1 alpha stabilization also downregulated the level of BCL-2, B-cell lymphoma-extra-large, and myeloid cell leukemia-1. All these apoptotic parameters changes were reversed with leptin treatment. Moreover, we showed that leptin action on apoptosis modulation involves PI3K and MAPK signaling pathways. Obtained data demonstrate that hypoxia-inducible factor-1 alpha stabilization induces apoptosis in human placenta and leptin counteracts this effect, reinforcing its role as a survival cytokine.


Assuntos
Apoptose , Leptina , Placenta , Humanos , Feminino , Placenta/metabolismo , Placenta/efeitos dos fármacos , Gravidez , Leptina/metabolismo , Leptina/farmacologia , Apoptose/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Cobalto/farmacologia , Hipóxia Celular/fisiologia
16.
Mol Carcinog ; 63(5): 834-848, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372346

RESUMO

Hypoxia-inducible factor-1 (HIF-1) is the master regulator of cellular response to hypoxia, and is activated in many cancers contributing to many steps in the metastatic cascade by acting as a key transcription co-regulator for a large number of downstream genes. Presence of hypoxia within a tumor is spatially nonuniform, and can also by dynamic. Further, although HIF-1 is primarily stabilized and activated by lack of molecular O2, its stability is also affected by other factors present in the tumor microenvironment. HIF-1 also crosstalks with other transcription factors in co-regulating gene expression. Consequently, it is nontrivial to predict the gene expression patterns in cells in response to hypoxia, or HIF-1 activation. Additionally, cancers originating from tissue origins with different basal level of partial oxygen tension may activate HIF-1 at different threshold of hypoxia. We analyzed large published single cell RNAseq data for colorectal, lung, and pancreatic cancers to investigate the phenotypic outcome of HIF-1 activation in cancer cells. We found that cancers from tissues with different partial O2 tension levels exhibit HIF-1 activation at different stages of metastasis, and phenotypically respond differently to HIF-1 activation, likely by contextual co-option of different transcription factors. We experimentally confirmed these predictions by using cell lines representative of colorectal, lung, and pancreatic cancers, finding that while hypoxia enhances growth of colorectal cancer, it induces increased invasion of lung, and pancreatic cancers. Our analysis suggest that HIF-1 activation may act as a rheostat regulating downstream gene expression towards phenotypic outcomes differently in various cancers.


Assuntos
Neoplasias Colorretais , Fator 1 Induzível por Hipóxia , Neoplasias Pancreáticas , Humanos , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Hipóxia/genética , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/genética
17.
Eur J Clin Invest ; 54(8): e14202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38553975

RESUMO

BACKGROUND: High-altitude pulmonary oedema (HAPE) is a form of noncardiogenic pulmonary oedema. Studies have found that long noncoding RNA (lncRNA) plays an important role in HAPE. ANRIL is significant in pulmonary illnesses, which implies that alterations in ANRIL expression levels may be involved in the beginning and development of HAPE. However, the specific mechanism is indistinct. The present study is meant to explore the effect and mechanism of ANRIL on hypoxic-induced injury of pulmonary microvascular endothelial cells (PMEVCs). METHODS: In the hypoxic model of PMVECs, overexpression of ANRIL or knockdown of miR-181c-5p was performed to assess cell proliferation, apoptosis, and migration. Furthermore, the levels of apoptosis-related proteins, inflammatory factors, and vascular active factors were also measured. RESULTS: The results showed that, after 24 h of hypoxia, PMVECs proliferation and migration were suppressed in comparison to the control group, along with an increase in apoptosis, a decrease in the expression of ANRIL, and an increase in the expression of miR-181c-5p (all p < .05). The damage caused by hypoxia in PMVECs can be lessened by overexpressing ANRIL, which also inhibits the production of TNF-α, iNOS, and VEGF as well as BAX and cleaved caspase-3 (all p < .05). Further experimental results showed that overexpression of ANRIL and knockdown of miR-181c-5p had the same protection against hypoxic injury in PMVECs (all p < .05). CONCLUSIONS: Our study suggests that ANRIL may prevent hypoxia injury to PMVECs in HAPE through the negative regulation of miR-181c-5p.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Células Endoteliais , Pulmão , MicroRNAs , RNA Longo não Codificante , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Células Endoteliais/metabolismo , Proliferação de Células/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Movimento Celular/genética , Animais , Pulmão/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Hipóxia Celular/fisiologia , Ratos , Técnicas de Silenciamento de Genes , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética
18.
Respir Res ; 25(1): 282, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014439

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by chronic bronchitis, emphysema and vascular remodelling. The disease is associated with hypoxia, inflammation and oxidative stress. Lung fibroblasts are important cells in remodelling processes in COPD, as main producers of extracellular matrix proteins but also in synthesis of growth factors and inflammatory mediators. METHODS: In this study we aimed to investigate if there are differences in how primary distal lung fibroblasts obtained from COPD patients and healthy subjects respond to hypoxia (1% O2) and pro-fibrotic stimuli with TGF-ß1 (10 ng/mL). Genes and proteins associated with oxidative stress, endoplasmic reticulum stress, remodelling and inflammation were analysed with RT-qPCR and ELISA. RESULTS: Hypoxia induced differences in expression of genes involved in oxidative stress (SOD3 and HIF-1α), ER stress (IRE1, PARK and ATF6), apoptosis (c-Jun and Bcl2) and remodelling (5HTR2B, Collagen7 and VEGFR2) in lung fibroblasts from COPD subjects compared to control subjects, where COPD fibroblasts were in general less responsive. The release of VEGF-C was increased after hypoxia, whereas TGF-ß significantly reduced the VEGF response to hypoxia and the release of HGF. COPD fibroblasts had a higher release of IL-6, IL-8, MCP-1 and PGE2 compared to lung fibroblasts from control subjects. The release of inflammatory mediators was less affected by hypoxia, whereas TGFß1 induced differences in inflammatory profile between fibroblasts from COPD and control subjects. CONCLUSION: These results suggest that there is an alteration of gene regulation of various stress responses and remodelling associated mediator release that is related to COPD and hypoxia, where fibroblasts from COPD patients have a deficient response.


Assuntos
Fibroblastos , Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Células Cultivadas , Idoso , Pulmão/metabolismo , Pulmão/patologia , Hipóxia Celular/fisiologia , Estresse Oxidativo/fisiologia , Mediadores da Inflamação/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Hipóxia/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Estudos de Casos e Controles
19.
Respir Res ; 25(1): 287, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39061007

RESUMO

BACKGROUND: Asthma's complexity, marked by airway inflammation and remodeling, is influenced by hypoxic conditions. This study focuses on the role of Hypoxia-Inducible Factor-1 Alpha (HIF-1α) and P53 ubiquitination in asthma exacerbation. METHODS: High-throughput sequencing and bioinformatics were used to identify genes associated with asthma progression, with an emphasis on GO and KEGG pathway analyses. An asthma mouse model was developed, and airway smooth muscle cells (ASMCs) were isolated to create an in vitro hypoxia model. Cell viability, proliferation, migration, and apoptosis were assessed, along with ELISA and Hematoxylin and Eosin (H&E) staining. RESULTS: A notable increase in HIF-1α was observed in both in vivo and in vitro asthma models. HIF-1α upregulation enhanced ASMCs' viability, proliferation, and migration, while reducing apoptosis, primarily via the promotion of P53 ubiquitination through MDM2. In vivo studies showed increased inflammatory cell infiltration and airway structural changes, which were mitigated by the inhibitor IDF-11,774. CONCLUSION: The study highlights the critical role of the HIF-1α-MDM2-P53 axis in asthma, suggesting its potential as a target for therapeutic interventions. The findings indicate that modulating this pathway could offer new avenues for treating the complex respiratory disorder of asthma.


Assuntos
Asma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Miócitos de Músculo Liso , Proteína Supressora de Tumor p53 , Asma/metabolismo , Asma/patologia , Asma/genética , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Cultivadas , Camundongos Endogâmicos BALB C , Apoptose/fisiologia , Proliferação de Células/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Hipóxia/metabolismo , Hipóxia/patologia , Modelos Animais de Doenças , Hipóxia Celular/fisiologia , Feminino , Humanos , Movimento Celular/fisiologia , Ubiquitinação
20.
Neurochem Res ; 49(7): 1762-1781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38551797

RESUMO

Lactate has received attention as a potential therapeutic intervention for brain diseases, particularly those including energy deficit, exacerbated inflammation, and disrupted redox status, such as cerebral ischemia. However, lactate roles in metabolic or signaling pathways in neural cells remain elusive in the hypoxic and ischemic contexts. Here, we tested the effects of lactate on the survival of a microglial (BV-2) and a neuronal (SH-SY5Y) cell lines during oxygen and glucose deprivation (OGD) or OGD followed by reoxygenation (OGD/R). Lactate signaling was studied by using 3,5-DHBA, an exogenous agonist of lactate receptor GPR81. Inhibition of lactate dehydrogenase (LDH) or monocarboxylate transporters (MCT), using oxamate or 4-CIN, respectively, was performed to evaluate the impact of lactate metabolization and transport on cell viability. The OGD lasted 6 h and the reoxygenation lasted 24 h following OGD (OGD/R). Cell viability, extracellular lactate concentrations, microglial intracellular pH and TNF-ɑ release, and neurite elongation were evaluated. Lactate or 3,5-DHBA treatment during OGD increased microglial survival during reoxygenation. Inhibition of lactate metabolism and transport impaired microglial and neuronal viability. OGD led to intracellular acidification in BV-2 cells, and reoxygenation increased the release of TNF-ɑ, which was reverted by lactate and 3,5-DHBA treatment. Our results suggest that lactate plays a dual role in OGD, acting as a metabolic and a signaling molecule in BV-2 and SH-SY5Y cells. Lactate metabolism and transport are vital for cell survival during OGD. Moreover, lactate treatment and GPR81 activation during OGD promote long-term adaptations that potentially protect cells against secondary cell death during reoxygenation.


Assuntos
Sobrevivência Celular , Glucose , Ácido Láctico , Microglia , Neurônios , Oxigênio , Microglia/metabolismo , Microglia/efeitos dos fármacos , Glucose/metabolismo , Glucose/deficiência , Humanos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Oxigênio/metabolismo , Ácido Láctico/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Animais , Camundongos , Fármacos Neuroprotetores/farmacologia , Hipóxia Celular/fisiologia , Hipóxia Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular Tumoral , Linhagem Celular , Transportadores de Ácidos Monocarboxílicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA