Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.420
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(8): 1796-1811.e8, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38908373

RESUMO

Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-ß-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.


Assuntos
Autoimunidade , Citocinas , Lúpus Eritematoso Sistêmico , Transdução de Sinais , Espermina , Animais , Espermina/metabolismo , Espermina/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Citocinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Janus Quinase 1/metabolismo , Fosforilação , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Psoríase/imunologia , Psoríase/metabolismo , Camundongos Endogâmicos C57BL , Janus Quinases/metabolismo , Feminino , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo
2.
Cell ; 171(1): 217-228.e13, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890086

RESUMO

Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.


Assuntos
Prurido/imunologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Dermatopatias/imunologia , Animais , Gânglios Espinais , Humanos , Interleucina-13/imunologia , Interleucina-4/imunologia , Janus Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prurido/metabolismo , Dermatopatias/patologia
3.
Immunity ; 53(3): 481-484, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937149

RESUMO

Personalized medicines require understanding the molecular causes of disease. In this issue of Immunity, Gruber et al. reveal that a gain-of-function JAK1 genetic variant results in a mutant protein with mosaic expression that drives multi-organ immune dysregulation via kinase dependent and independent mechanisms. The work highlights how biochemistry can inform therapies to resolve complex immune disorders.


Assuntos
Mosaicismo , Janus Quinase 1/genética
4.
Immunity ; 53(3): 672-684.e11, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750333

RESUMO

Autoinflammatory disease can result from monogenic errors of immunity. We describe a patient with early-onset multi-organ immune dysregulation resulting from a mosaic, gain-of-function mutation (S703I) in JAK1, encoding a kinase essential for signaling downstream of >25 cytokines. By custom single-cell RNA sequencing, we examine mosaicism with single-cell resolution. We find that JAK1 transcription was predominantly restricted to a single allele across different cells, introducing the concept of a mutational "transcriptotype" that differs from the genotype. Functionally, the mutation increases JAK1 activity and transactivates partnering JAKs, independent of its catalytic domain. S703I JAK1 is not only hypermorphic for cytokine signaling but also neomorphic, as it enables signaling cascades not canonically mediated by JAK1. Given these results, the patient was treated with tofacitinib, a JAK inhibitor, leading to the rapid resolution of clinical disease. These findings offer a platform for personalized medicine with the concurrent discovery of fundamental biological principles.


Assuntos
Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/patologia , Janus Quinase 1/genética , Síndrome de Resposta Inflamatória Sistêmica/genética , Síndrome de Resposta Inflamatória Sistêmica/patologia , Adolescente , COVID-19/mortalidade , Domínio Catalítico/genética , Linhagem Celular , Citocinas/metabolismo , Feminino , Mutação com Ganho de Função/genética , Genótipo , Células HEK293 , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Humanos , Janus Quinase 1/antagonistas & inibidores , Mosaicismo , Piperidinas/uso terapêutico , Medicina de Precisão/métodos , Pirimidinas/uso terapêutico , Transdução de Sinais/imunologia , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico
5.
Nat Immunol ; 17(7): 816-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27213690

RESUMO

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.


Assuntos
Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Proliferação de Células/genética , Citotoxicidade Imunológica/genética , Vigilância Imunológica , Interferon gama/metabolismo , Interleucina-15/metabolismo , Janus Quinase 1/metabolismo , Ativação Linfocitária/genética , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Neoplasias/imunologia , Transdução de Sinais/genética , Proteínas Supressoras da Sinalização de Citocina/genética
6.
Nat Immunol ; 15(9): 866-74, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25029551

RESUMO

The number of Foxp3+ regulatory T cells (Treg cells) must be tightly controlled for efficient suppression of autoimmunity with no impairment of normal immune responses. Here we found that the adaptor TRAF3 was intrinsically required for restraining the lineage determination of thymic Treg cells. T cell-specific deficiency in TRAF3 resulted in a two- to threefold greater frequency of Treg cells, due to the more efficient transition of precursors of Treg cells into Foxp3+ Treg cells. TRAF3 dampened interleukin 2 (IL-2) signaling by facilitating recruitment of the tyrosine phosphatase TCPTP to the IL-2 receptor complex, which resulted in dephosphorylation of the signaling molecules Jak1 and Jak3 and negative regulation of signaling via Jak and the transcription factor STAT5. Our results identify a role for TRAF3 as an important negative regulator of signaling via the IL-2 receptor that affects the development of Treg cells.


Assuntos
Diferenciação Celular/imunologia , Interleucina-2/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Fator 3 Associado a Receptor de TNF/imunologia , Timo/citologia , Animais , Autoimunidade/imunologia , Fatores de Transcrição Forkhead/imunologia , Janus Quinase 1/imunologia , Janus Quinase 3/imunologia , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 2/imunologia , Fator de Transcrição STAT5/imunologia
7.
Blood ; 143(23): 2386-2400, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446698

RESUMO

ABSTRACT: Hemophagocytic lymphohistiocytosis (HLH) comprises a severe hyperinflammatory phenotype driven by the overproduction of cytokines, many of which signal via the JAK/STAT pathway. Indeed, the JAK1/2 inhibitor ruxolitinib has demonstrated efficacy in preclinical studies and early-phase clinical trials in HLH. Nevertheless, concerns remain for ruxolitinib-induced cytopenias, which are postulated to result from the blockade of JAK2-dependent hematopoietic growth factors. To explore the therapeutic effects of selective JAK inhibition in mouse models of HLH, we carried out studies incorporating the JAK1 inhibitor itacitinib, JAK2 inhibitor fedratinib, and JAK1/2 inhibitor ruxolitinib. All 3 drugs were well-tolerated and at the doses tested, they suppressed interferon-gamma (IFN-γ)-induced STAT1 phosphorylation in vitro and in vivo. Itacitinib, but not fedratinib, significantly improved survival and clinical scores in CpG-induced secondary HLH. Conversely, in primary HLH, in which perforin-deficient (Prf1-/-) mice are infected with lymphocytic choriomeningitis virus (LCMV), itacitinib, and fedratinib performed suboptimally. Ruxolitinib demonstrated excellent clinical efficacy in both HLH models. RNA-sequencing of splenocytes from LCMV-infected Prf1-/- mice revealed that itacitinib targeted inflammatory and metabolic pathway genes in CD8 T cells, whereas fedratinib targeted genes regulating cell proliferation and metabolism. In monocytes, neither drug conferred major transcriptional impacts. Consistent with its superior clinical effects, ruxolitinib exerted the greatest transcriptional changes in CD8 T cells and monocytes, targeting more genes across several biologic pathways, most notably JAK-dependent proinflammatory signaling. We conclude that JAK1 inhibition is sufficient to curtail CpG-induced disease, but combined inhibition of JAK1 and JAK2 is needed to best control LCMV-induced immunopathology.


Assuntos
Modelos Animais de Doenças , Linfo-Histiocitose Hemofagocítica , Nitrilas , Pirazóis , Pirimidinas , Animais , Pirimidinas/farmacologia , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Linfo-Histiocitose Hemofagocítica/induzido quimicamente , Linfo-Histiocitose Hemofagocítica/patologia , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Camundongos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Pirróis/farmacologia , Pirróis/uso terapêutico , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Piperidinas/farmacologia , Humanos , Benzenossulfonamidas , Hidrocarbonetos Aromáticos com Pontes , Pirrolidinas
8.
J Biol Chem ; 300(3): 105779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395305

RESUMO

The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Complexo de Endopeptidases do Proteassoma , Doenças dos Suínos , Proteínas não Estruturais Virais , Animais , Acetilação , Alphacoronavirus/fisiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Suínos , Ubiquitinas/metabolismo , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Células HEK293 , Células Vero , Humanos , Chlorocebus aethiops , Proteínas não Estruturais Virais/metabolismo
9.
Blood ; 141(1): 72-89, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130301

RESUMO

Immune aplastic anemia (AA) is a severe blood disease characterized by T-lymphocyte- mediated stem cell destruction. Hematopoietic stem cell transplantation and immunosuppression are effective, but they entail costs and risks, and are not always successful. The Janus kinase (JAK) 1/2 inhibitor ruxolitinib (RUX) suppresses cytotoxic T-cell activation and inhibits cytokine production in models of graft-versus-host disease. We tested RUX in murine immune AA for potential therapeutic benefit. After infusion of lymph node (LN) cells mismatched at the major histocompatibility complex [C67BL/6 (B6)⇒CByB6F1], RUX, administered as a food additive (Rux-chow), attenuated bone marrow hypoplasia, ameliorated peripheral blood pancytopenia, preserved hematopoietic progenitors, and prevented mortality, when used either prophylactically or therapeutically. RUX suppressed the infiltration, proliferation, and activation of effector T cells in the bone marrow and mitigated Fas-mediated apoptotic destruction of target hematopoietic cells. Similar effects were obtained when Rux-chow was fed to C.B10 mice in a minor histocompatibility antigen mismatched (B6⇒C.B10) AA model. RUX only modestly suppressed lymphoid and erythroid hematopoiesis in normal and irradiated CByB6F1 mice. Our data support clinical trials of JAK/STAT inhibitors in human AA and other immune bone marrow failure syndromes.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Pancitopenia , Camundongos , Humanos , Animais , Pancitopenia/patologia , Anemia Aplástica/patologia , Transtornos da Insuficiência da Medula Óssea/patologia , Medula Óssea/patologia , Doenças da Medula Óssea/patologia , Janus Quinase 1
10.
Lancet Oncol ; 25(1): 117-125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092009

RESUMO

BACKGROUND: Golidocitinib, a selective JAK1 tyrosine-kinase inhibitor, has shown encouraging anti-tumour activity in heavily pre-treated patients with relapsed or refractory peripheral T-cell lymphoma in a phase 1 study (JACKPOT8 Part A). Here, we report the full analysis of a phase 2 study, in which we assessed the anti-tumour activity of golidocitinib in a large multinational cohort of patients. METHODS: We did a single-arm, multinational, phase 2 trial (JACKPOT8 Part B) in 49 centres in Australia, China, South Korea, and the USA. Eligible patients were adults (aged ≥18 years) with relapsed or refractory peripheral T-cell lymphoma who had received at least one previous line of systemic therapy and an Eastern Cooperative Oncology Group performance status of 0-2. Patients were given oral golidocitinib 150 mg once daily until disease progression or other discontinuation criteria were met. The primary endpoint was the CT-based objective response rate, assessed by an independent review committee (IRC) per Lugano 2014 classification. The activity analysis set included all patients who received at least one dose and whose pathological diagnosis of peripheral T-cell lymphoma had been retrospectively confirmed by a central laboratory and who had at least one measurable lesion at baseline assessed by IRC. The safety analysis set included all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, NCT04105010, and is closed to accrual and follow-up is ongoing. FINDINGS: Between Feb 26, 2021, and Oct 12, 2022, we assessed 161 patients for eligibility, of whom 104 (65%) were enrolled and received at least one dose of study drug; the activity analysis set included 88 (85%) patients (median age 58 years [IQR 51-67], 57 [65%] of 88 were male, 31 [35%] were female, and 83 [94%] were Asian). As of data cutoff (Aug 31, 2023; median follow-up was 13·3 months [IQR 4·9-18·4]), per IRC assessment, the objective response rate was 44·3% (95% CI 33·7-55·3; 39 of 88 patients, p<0·0001), with 21 (24%) patients having a complete response and 18 (20%) having a partial response. In the safety analysis set, 61 (59%) of 104 patients had grade 3-4 drug-related treatment-emergent adverse events. The most common grade 3-4 drug-related treatment-emergent adverse events were neutrophil count decreased (30 [29%]), white blood cell count decreased (27 [26%]), lymphocyte count decreased (22 [21%]), and platelet count decreased (21 [20%]), which were clinically manageable and reversible. 25 (24%) patients had treatment-related serious adverse events. Deaths due to treatment-emergent adverse events occurred in three (3%) patients: two (2%) due to pneumonia (one case with fungal infection [related to golidocitinib] and another one with COVID-19 infection) and one (1%) due to confusional state. INTERPRETATION: In this phase 2 study, golidocitinib showed a favourable benefit-risk profile in treating relapsed or refractory peripheral T-cell lymphoma. The results of this study warrant further randomised clinical studies to confirm activity and assess efficacy in this population. FUNDING: Dizal Pharmaceutical.


Assuntos
Linfoma de Células T Periférico , Adulto , Humanos , Masculino , Feminino , Adolescente , Pessoa de Meia-Idade , Linfoma de Células T Periférico/tratamento farmacológico , Estudos Retrospectivos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Progressão da Doença , Janus Quinase 1/genética , Tirosina/uso terapêutico
11.
J Biol Chem ; 299(8): 104965, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356718

RESUMO

Janus Kinase-1 (JAK1) plays key roles during neurodevelopment and following neuronal injury, while activatory JAK1 mutations are linked to leukemia. In mice, Jak1 genetic deletion results in perinatal lethality, suggesting non-redundant roles and/or regulation of JAK1 for which other JAKs cannot compensate. Proteomic studies reveal that JAK1 is more likely palmitoylated compared to other JAKs, implicating palmitoylation as a possible JAK1-specific regulatory mechanism. However, the importance of palmitoylation for JAK1 signaling has not been addressed. Here, we report that JAK1 is palmitoylated in transfected HEK293T cells and endogenously in cultured Dorsal Root Ganglion (DRG) neurons. We further use comprehensive screening in transfected non-neuronal cells and shRNA-mediated knockdown in DRG neurons to identify the related enzymes ZDHHC3 and ZDHHC7 as dominant protein acyltransferases (PATs) for JAK1. Surprisingly, we found palmitoylation minimally affects JAK1 localization in neurons, but is critical for JAK1's kinase activity in cells and even in vitro. We propose this requirement is likely because palmitoylation facilitates transphosphorylation of key sites in JAK1's activation loop, a possibility consistent with structural models of JAK1. Importantly, we demonstrate a leukemia-associated JAK1 mutation overrides the palmitoylation-dependence of JAK1 activity, potentially explaining why this mutation is oncogenic. Finally, we show that JAK1 palmitoylation is important for neuropoietic cytokine-dependent signaling and neuronal survival and that combined Zdhhc3/7 loss phenocopies loss of palmitoyl-JAK1. These findings provide new insights into the control of JAK signaling in both physiological and pathological contexts.


Assuntos
Citocinas , Lipoilação , Neurônios , Transdução de Sinais , Animais , Feminino , Humanos , Camundongos , Gravidez , Citocinas/metabolismo , Gânglios Espinais/metabolismo , Células HEK293 , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteômica , Sobrevivência Celular
12.
J Biol Chem ; 299(12): 105467, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979913

RESUMO

In this study, we integrated machine learning (ML), structure-tissue selectivity-activity-relationship (STAR), and wet lab synthesis/testing to design a gastrointestinal (GI) locally activating JAK inhibitor for ulcerative colitis treatment. The JAK inhibitor achieves site-specific efficacy through high local GI tissue selectivity while minimizing the requirement for JAK isoform specificity to reduce systemic toxicity. We used the ML model (CoGT) to classify whether the designed compounds were inhibitors or noninhibitors. Then we used the regression ML model (MTATFP) to predict their IC50 against related JAK isoforms of predicted JAK inhibitors. The ML model predicted MMT3-72, which was retained in the GI tract, to be a weak JAK1 inhibitor, while MMT3-72-M2, which accumulated in only GI tissues, was predicted to be an inhibitor of JAK1/2 and TYK2. ML docking methods were applied to simulate their docking poses in JAK isoforms. Application of these ML models enabled us to limit our synthetic efforts to MMT3-72 and MMT3-72-M2 for subsequent wet lab testing. The kinase assay confirmed MMT3-72 weakly inhibited JAK1, and MMT3-72-M2 inhibited JAK1/2 and TYK2. We found that MMT3-72 accumulated in the GI lumen, but not in GI tissue or plasma, but released MMT3-72-M2 accumulated in colon tissue with minimal exposure in the plasma. MMT3-72 achieved superior efficacy and reduced p-STAT3 in DSS-induced colitis. Overall, the integration of ML, the structure-tissue selectivity-activity-relationship system, and wet lab synthesis/testing could minimize the effort in the optimization of a JAK inhibitor to treat colitis. This site-specific inhibitor reduces systemic toxicity by minimizing the need for JAK isoform specificity.


Assuntos
Colite Ulcerativa , Desenho de Fármacos , Inibidores de Janus Quinases , Humanos , Colite Ulcerativa/tratamento farmacológico , Janus Quinase 1 , Janus Quinase 2 , Inibidores de Janus Quinases/farmacologia , Isoformas de Proteínas , Aprendizado de Máquina , Relação Estrutura-Atividade
13.
J Hepatol ; 80(2): 220-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37925078

RESUMO

BACKGROUND & AIMS: Chronic co-infection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. To date, no treatment induces efficient viral clearance, and a better characterization of virus-host interactions is required to develop new therapeutic strategies. METHODS: Using loss-of-function strategies, we validated the unexpected proviral activity of Janus kinase 1 (JAK1) - a key player in innate immunity - in the HDV life cycle and determined its mechanism of action on HDV through various functional analyses including co-immunoprecipitation assays. RESULTS: We confirmed the key role of JAK1 kinase activity in HDV infection. Moreover, our results suggest that JAK1 inhibition is associated with a modulation of ERK1/2 activation and S-HDAg phosphorylation, which is crucial for viral replication. Finally, we showed that FDA-approved JAK1-specific inhibitors are efficient antivirals in relevant in vitro models including primary human hepatocytes. CONCLUSIONS: Taken together, we uncovered JAK1 as a key host factor for HDV replication and a potential target for new antiviral treatment. IMPACT AND IMPLICATIONS: Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. As no curative treatment is currently available, new therapeutic strategies based on host-targeting agents are urgently needed. Here, using loss-of-function strategies, we uncover an unexpected interaction between JAK1, a major player in the innate antiviral response, and HDV infection. We demonstrated that JAK1 kinase activity is crucial for both the phosphorylation of the delta antigen and the replication of the virus. By demonstrating the antiviral potential of several FDA-approved JAK1 inhibitors, our results could pave the way for the development of innovative therapeutic strategies to tackle this global health threat.


Assuntos
Hepatite D Crônica , Vírus Delta da Hepatite , Humanos , Vírus Delta da Hepatite/fisiologia , Janus Quinase 1 , Vírus da Hepatite B , Hepatite D Crônica/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
14.
N Engl J Med ; 384(12): 1101-1112, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33761207

RESUMO

BACKGROUND: The oral Janus kinase 1 (JAK1) inhibitor abrocitinib, which reduces interleukin-4 and interleukin-13 signaling, is being investigated for the treatment of atopic dermatitis. Data from trials comparing JAK1 inhibitors with monoclonal antibodies, such as dupilumab, that block interleukin-4 receptors are limited. METHODS: In a phase 3, double-blind trial, we randomly assigned patients with atopic dermatitis that was unresponsive to topical agents or that warranted systemic therapy (in a 2:2:2:1 ratio) to receive 200 mg or 100 mg of abrocitinib orally once daily, 300 mg of dupilumab subcutaneously every other week (after a loading dose of 600 mg), or placebo; all the patients received topical therapy. The primary end points were an Investigator's Global Assessment (IGA) response (defined as a score of 0 [clear] or 1 [almost clear] on the IGA [scores range from 0 to 4], with an improvement of ≥2 points from baseline) and an Eczema Area and Severity Index-75 (EASI-75) response (defined as ≥75% improvement from baseline in the score on the EASI [scores range from 0 to 72]) at week 12. The key secondary end points were itch response (defined as an improvement of ≥4 points in the score on the Peak Pruritus Numerical Rating Scale [scores range from 0 to 10]) at week 2 and IGA and EASI-75 responses at week 16. RESULTS: A total of 838 patients underwent randomization; 226 patients were assigned to the 200-mg abrocitinib group, 238 to the 100-mg abrocitinib group, 243 to the dupilumab group, and 131 to the placebo group. An IGA response at week 12 was observed in 48.4% of patients in the 200-mg abrocitinib group, 36.6% in the 100-mg abrocitinib group, 36.5% in the dupilumab group, and 14.0% in the placebo group (P<0.001 for both abrocitinib doses vs. placebo); an EASI-75 response at week 12 was observed in 70.3%, 58.7%, 58.1%, and 27.1%, respectively (P<0.001 for both abrocitinib doses vs. placebo). The 200-mg dose, but not the 100-mg dose, of abrocitinib was superior to dupilumab with respect to itch response at week 2. Neither abrocitinib dose differed significantly from dupilumab with respect to most other key secondary end-point comparisons at week 16. Nausea occurred in 11.1% of the patients in the 200-mg abrocitinib group and 4.2% of those in the 100-mg abrocitinib group, and acne occurred in 6.6% and 2.9%, respectively. CONCLUSIONS: In this trial, abrocitinib at a dose of either 200 mg or 100 mg once daily resulted in significantly greater reductions in signs and symptoms of moderate-to-severe atopic dermatitis than placebo at weeks 12 and 16. The 200-mg dose, but not the 100-mg dose, of abrocitinib was superior to dupilumab with respect to itch response at week 2. Neither abrocitinib dose differed significantly from dupilumab with respect to most other key secondary end-point comparisons at week 16. (Funded by Pfizer; JADE COMPARE ClinicalTrials.gov number, NCT03720470.).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Administração Oral , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Imunoglobulina A/sangue , Injeções Subcutâneas , Subunidade alfa de Receptor de Interleucina-4/antagonistas & inibidores , Janus Quinase 1/antagonistas & inibidores , Masculino , Placebos/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Prurido/tratamento farmacológico , Pirimidinas/efeitos adversos , Índice de Gravidade de Doença , Sulfonamidas/efeitos adversos
15.
J Pharmacol Exp Ther ; 389(1): 40-50, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336380

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent type of cancer in young children and is associated with high levels of reactive oxygen species (ROS). The antioxidant N-acetylcysteine (NAC) was tested for its ability to alter disease progression in a mouse model of B-ALL. Mb1-CreΔPB mice have deletions in genes encoding PU.1 and Spi-B in B cells and develop B-ALL at 100% incidence. Treatment of Mb1-CreΔPB mice with NAC in drinking water significantly reduced the frequency of CD19+ pre-B-ALL cells infiltrating the thymus at 11 weeks of age. However, treatment with NAC did not reduce leukemia progression or increase survival by a median 16 weeks of age. NAC significantly altered gene expression in leukemias in treated mice. Mice treated with NAC had increased frequencies of activating mutations in genes encoding Janus kinases 1 and 3. In particular, frequencies of Jak3 R653H mutations were increased in mice treated with NAC compared with control drinking water. NAC opposed oxidization of PTEN protein ROS in cultured leukemia cells. These results show that NAC alters leukemia progression in this mouse model, ultimately selecting for leukemias with high Jak3 R653H mutation frequencies. SIGNIFICANCE STATEMENT: In a mouse model of precursor B-cell acute lymphoblastic leukemia associated with high levels of reactive oxygen species, treatment with N-acetylcysteine did not delay disease progression but instead selected for leukemic clones with activating R653H mutations in Janus kinase 3.


Assuntos
Água Potável , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Camundongos , Animais , Pré-Escolar , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Janus Quinases , Taxa de Mutação , Espécies Reativas de Oxigênio/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Mutação , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Progressão da Doença
16.
Drug Metab Dispos ; 52(7): 690-702, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38719744

RESUMO

Brepocitinib is an oral once-daily Janus kinase 1 and Tyrosine kinase 2 selective inhibitor currently in development for the treatment of several autoimmune disorders. Mass balance and metabolic profiles were determined using accelerator mass spectrometry in six healthy male participants following a single oral 60 mg dose of 14C-brepocitinib (∼300 nCi). The average mass balance recovery was 96.7% ± 6.3%, with the majority of dose (88.0% ± 8.0%) recovered in urine and 8.7% ± 2.1% of the dose recovered in feces. Absorption of brepocitinib was rapid, with maximal plasma concentrations of total radioactivity and brepocitinib achieved within 0.5 hours after dosing. Circulating radioactivity consisted primarily of brepocitinib (47.8%) and metabolite M1 (37.1%) derived from hydroxylation at the C5' position of the pyrazole ring. Fractional contributions to metabolism via cytochrome P450 enzymes were determined to be 0.77 for CYP3A4/5 and 0.14 for CYP1A2 based on phenotyping studies in human liver microsomes. However, additional clinical studies are required to understand the potential contribution of CYP1A1. Approximately 83% of the dose was eliminated as N-methylpyrazolyl oxidative metabolites, with 52.1% of the dose excreted as M1 alone. Notably, M1 was not observed as a circulating metabolite in earlier metabolic profiling of human plasma from a multiple ascending dose study with unlabeled brepocitinib. Mechanistic studies revealed that M1 was highly unstable in human plasma and phosphate buffer, undergoing chemical oxidation leading to loss of the 5-hydroxy-1-methylpyrazole moiety and formation of aminopyrimidine cleavage product M2. Time-dependent inhibition and trapping studies with M1 yielded insights into the mechanism of this unusual and unexpected instability. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of brepocitinib, a JAK1/TYK2 inhibitor for atopic dermatitis, in humans as well as characterization of clearance pathways and pharmacokinetics of brepocitinib and its metabolites.


Assuntos
Inibidores de Proteínas Quinases , Humanos , Masculino , Adulto , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/metabolismo , Adulto Jovem , Pirazóis/farmacocinética , Pirazóis/metabolismo , Pirazóis/sangue , Pirazóis/administração & dosagem , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Administração Oral , Citocromo P-450 CYP3A/metabolismo , Voluntários Saudáveis , Microssomos Hepáticos/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Fezes/química , Hidroxilação , Citocromo P-450 CYP1A2/metabolismo , Pessoa de Meia-Idade
17.
Cytokine ; 179: 156620, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701735

RESUMO

PURPOSE: The emergence of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, but these drugs can also cause severe immune-related adverse effects (irAEs), including myocarditis. Researchers have become interested in exploring ways to mitigate this side effect, and one promising avenue is the use of baricitinib, a Janus kinase inhibitor known to have anti-inflammatory properties. This study aimed to examine the potential mechanism by which baricitinib in ICIs-related myocarditis. METHODS: To establish an ICIs-related myocarditis model, BALB/c mice were administered murine cardiac troponin I (cTnI) peptide and anti-mouse programmed death 1 (PD-1) antibodies. Subsequently, baricitinib was administered to the mice via intragastric administration. Echocardiography, HE staining, and Masson staining were performed to evaluate myocardial functions, inflammation, and fibrosis. Immunofluorescence was used to detect macrophages in the cardiac tissue of the mice.In vitro experiments utilized raw264.7 cells to induce macrophage polarization using anti-PD-1 antibodies. Different concentrations of baricitinib were applied to assess cell viability, and the release of pro-inflammatory cytokines was measured. The activation of the JAK1/STAT3 signaling pathway was evaluated through western blot analysis. RESULTS: Baricitinib demonstrated its ability to improve cardiac function and reduce cardiac inflammation, as well as fibrosis induced by ICIs. Mechanistically, baricitinib treatment promoted the polarization of macrophages towards the M2 phenotype. In vitro and in vivo experiments showed that anti-PD-1 promoted the release of inflammatory factors. However, treatment with baricitinib significantly inhibited the phosphorylation of JAK1 and STAT3. Additionally, the use of RO8191 reversed the effects of baricitinib, further confirming our findings. CONCLUSION: Baricitinib demonstrated its potential as a protective agent against ICIs-related myocarditis by modulating macrophage polarization. These findings provide a solid theoretical foundation for the development of future treatments for ICIs-related myocarditis.


Assuntos
Azetidinas , Janus Quinase 1 , Macrófagos , Camundongos Endogâmicos BALB C , Miocardite , Purinas , Pirazóis , Fator de Transcrição STAT3 , Sulfonamidas , Animais , Masculino , Camundongos , Azetidinas/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Janus Quinase 1/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Miocardite/induzido quimicamente , Miocardite/tratamento farmacológico , Miocardite/patologia , Miocardite/metabolismo , Purinas/farmacologia , Pirazóis/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/farmacologia , Troponina I/metabolismo
18.
BMC Cancer ; 24(1): 98, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233760

RESUMO

Acute myeloid leukemia (AML), characterized by the abnormal accumulation of immature marrow cells in the bone marrow, is a malignant tumor of the blood system. Currently, the pathogenesis of AML is not yet clear. Therefore, this study aims to explore the mechanisms underlying the development of AML. Firstly, we identified a competing endogenous RNA (ceRNA) SUCLG2-AS1-miR-17-5p-JAK1 axis through bioinformatics analysis. Overexpression of SUCLG2-AS1 inhibits proliferation, migration and invasion and promotes apoptosis of AML cells. Secondly, luciferase reporter assay and RIP assay validated that SUCLG2-AS1 functioned as ceRNA for sponging miR-17-5p, further leading to JAK1 underexpression. Additionally, the results of MeRIP-qPCR and m6A RNA methylation quantification indicted that SUCLG2-AS1(lncRNA) had higher levels of m6A RNA methylation compared with controls, and SUCLG2-AS1 is regulated by m6A modification of WTAP in AML cells. WTAP, one of the main regulatory components of m6A methyltransferase complexes, proved to be highly expressed in AML and elevated WTAP is associated with poor prognosis of AML patients. Taken together, the WTAP-SUCLG2-AS1-miR-17-5p-JAK1 axis played essential roles in the process of AML development, which provided a novel therapeutic target for AML.


Assuntos
Adenina/análogos & derivados , Leucemia Mieloide Aguda , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , Leucemia Mieloide Aguda/genética , RNA Longo não Codificante/genética , Proliferação de Células/genética , Fatores de Processamento de RNA , Proteínas de Ciclo Celular , Janus Quinase 1/genética
19.
FASEB J ; 37(2): e22693, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607250

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common, heterogenous endocrine disorders and is the leading cause of ovulatory obstacle associated with abnormal folliculogenesis. Dysfunction of ovarian granulosa cells (GCs) is recognized as a major factor that underlies abnormal follicle maturation. Angiopoietin-like 4 (ANGPTL4) expression in GCs differs between patients with and without PCOS. However, the role and mechanism of ANGPTL4 in impaired follicular development are still poorly understood. Here, the case-control study was designed to investigate the predictive value of ANGPTL4 in PCOS while cell experiments in vitro were set for mechanism research. Results found that ANGPTL4 levels in serum and in follicular fluid, and its expression in GCs, were upregulated in patients with PCOS. In KGN and SVOG cells, upregulation of ANGPTL4 inhibited the proliferation of GCs by blocking G1/S cell cycle progression, as well as the molecular activation of the EGFR/JAK1/STAT3 cascade. Moreover, the STAT3-dependent CDKN1A(p21) promoter increased CDKN1A transcription, resulting in remarkable suppression effect on GCs. Together, our results demonstrated that overexpression of ANGPTL4 inhibited the proliferation of GCs through EGFR/JAK1/STAT3-mediated induction of p21, thus providing a novel epigenetic mechanism for the pathogenesis of PCOS.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Estudos de Casos e Controles , Células da Granulosa/metabolismo , Proliferação de Células , Receptores ErbB/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/farmacologia , Janus Quinase 1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
20.
Cell Commun Signal ; 22(1): 170, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459564

RESUMO

Heterogeneous cancer-associated fibroblasts (CAFs) play important roles in cancer progression. However, the specific biological functions and regulatory mechanisms involved in endometrial cancer have yet to be elucidated. We aimed to explore the potential mechanisms of heterogeneous CAFs in promoting endometrial cancer progression. The presence of melanoma cell adhesion molecule (MCAM; CD146) positive CAFs was confirmed by tissue multi-immunofluorescence (mIF), and fluorescence activated cell sorting (FACS). The biological functions were determined by wound healing assays, tuber formation assays and cord formation assays. The effects of CD146+CAFs on endometrial cancer cells were studied in vitro and in vivo. The expression level of interleukin 10 (IL-10) was measured by quantitative real time polymerase chain reaction (qRT-PCR), western boltting and enzyme linked immunosorbent assays (ELISAs). In addition, the transcription factor STAT3 was identified by bioinformatics methods and chromatin immunoprecipitation (ChIP). A subtype of CAFs marked with CD146 was found in endometrial cancer and correlated with poor prognosis. CD146+CAFs promoted angiogenesis and vasculogenic mimicry (VM) in vitro. A xenograft tumour model also showed that CD146+CAFs can facilitate tumour progression. The expression of IL-10 was elevated in CD146+CAFs. IL-10 promoted epithelial-endothelial transformation (EET) and further VM formation in endometrial cancer cells via the janus kinase 1/signal transducer and activator of transcription 3 (JAK1/STAT3) signalling pathway. This process could be blocked by the JAK1/STAT3 inhibitor niclosamide. Mechanically, STAT3 can bind to the promoter of cadherin5 (CDH5) to promote its transcription which may be stimulated by IL-10. We concluded that CD146+CAFs could promote angiogenesis and VM formation via the IL-10/JAK1/STAT3 signalling pathway. These findings may lead to the identification of potential targets for antiangiogenic therapeutic strategies for endometrial cancers.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias do Endométrio , Feminino , Humanos , Angiogênese , Fibroblastos Associados a Câncer/metabolismo , Antígeno CD146/metabolismo , Linhagem Celular Tumoral , Neoplasias do Endométrio/metabolismo , Interleucina-10 , Janus Quinase 1 , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA