Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 46(9): 1365-1373, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37452834

RESUMO

Chiral compounds are important drug intermediates that play a critical role in human life. Herein, we report a facile method to prepare multi-enzyme nano-devices with high catalytic activity and stability. The self-assemble molecular binders SpyCatcher and SpyTag were fused with leucine dehydrogenase and glucose dehydrogenase to produce sc-LeuDH (SpyCatcher-fused leucine dehydrogenase) and GDH-st (SpyTag-fused glucose dehydrogenase), respectively. After assembling, the cross-linked enzymes LeuDH-GDH were formed. The crosslinking enzyme has good pH stability and temperature stability. The coenzyme cycle constant of LeuDH-GDH was always higher than that of free double enzymes. The yield of L-tert-leucine synthesis by LeuDH-GDH was 0.47 times higher than that by free LeuDH and GDH. To further improve the enzyme performance, the cross-linked LeuDH-GDH was immobilized on zeolite imidazolate framework-8 (ZIF-8) via bionic mineralization, forming LeuDH-GDH @ZIF-8. The created co-immobilized enzymes showed even better pH stability and temperature stability than the cross-linked enzymes, and LeuDH-GDH@ZIF-8 retains 70% relative conversion rate in the first four reuses. In addition, the yield of LeuDH-GDH@ZIF-8 was 0.62 times higher than that of LeuDH-GDH, and 1.38 times higher than that of free double enzyme system. This work provides a novel method for developing multi-enzyme nano-device, and the ease of operation of this method is appealing for the construction of other multi-enzymes @MOF systems for the applications in the kinds of complex environment.


Assuntos
Estruturas Metalorgânicas , Humanos , Leucina Desidrogenase/química , Leucina/química , Glucose Desidrogenase
2.
Subcell Biochem ; 96: 355-372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252736

RESUMO

Thermostability is a key factor in the industrial and clinical application of enzymes, and understanding mechanisms of thermostability is valuable for molecular biology and enzyme engineering. In this chapter, we focus on the thermostability of leucine dehydrogenase (LDH, EC 1.4.1.9), an amino acid-metabolizing enzyme that is an NAD+-dependent oxidoreductase which catalyzes the deamination of branched-chain l-amino acids (BCAAs). LDH from Geobacillus stearothermophilus (GstLDH) is a highly thermostable enzyme that has already been applied to quantify the concentration of BCAAs in biological specimens. However, the molecular mechanism of its thermostability had been unknown because no high-resolution structure was available. Here, we discuss the thermostability of GstLDH on the basis of its structure determined by cryo-electron microscopy. Sequence comparison with other structurally characterized LDHs (from Lysinibacillus sphaericus and Sporosarcina psychrophila) indicated that non-conserved residues in GstLDH, including Ala94, Tyr127, and the C-terminal region, are crucial for oligomeric stability through intermolecular interactions between protomers. Furthermore, NAD+ binding to GstLDH increased the thermostability of the enzyme as additional intermolecular interactions formed on cofactor binding. This knowledge is important for further applications and development of amino acid metabolizing enzymes in industrial and clinical fields.


Assuntos
Leucina Desidrogenase/química , Leucina Desidrogenase/metabolismo , Bacillaceae/enzimologia , Microscopia Crioeletrônica , Estabilidade Enzimática , Geobacillus stearothermophilus/enzimologia , Leucina Desidrogenase/ultraestrutura , Sporosarcina/enzimologia
3.
Microb Cell Fact ; 20(1): 3, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407464

RESUMO

BACKGROUND: Biosynthesis of L-tert-leucine (L-tle), a significant pharmaceutical intermediate, by a cofactor regeneration system friendly and efficiently is a worthful goal all the time. The cofactor regeneration system of leucine dehydrogenase (LeuDH) and glucose dehydrogenase (GDH) has showed great coupling catalytic efficiency in the synthesis of L-tle, however the multi-enzyme complex of GDH and LeuDH has never been constructed successfully. RESULTS: In this work, a novel fusion enzyme (GDH-R3-LeuDH) for the efficient biosynthesis of L-tle was constructed by the fusion of LeuDH and GDH mediated with a rigid peptide linker. Compared with the free enzymes, both the environmental tolerance and thermal stability of GDH-R3-LeuDH had a great improved since the fusion structure. The fusion structure also accelerated the cofactor regeneration rate and maintained the enzyme activity, so the productivity and yield of L-tle by GDH-R3-LeuDH was all enhanced by twofold. Finally, the space-time yield of L-tle catalyzing by GDH-R3-LeuDH whole cells could achieve 2136 g/L/day in a 200 mL scale system under the optimal catalysis conditions (pH 9.0, 30 °C, 0.4 mM of NAD+ and 500 mM of a substrate including trimethylpyruvic acid and glucose). CONCLUSIONS: It is the first report about the fusion of GDH and LeuDH as the multi-enzyme complex to synthesize L-tle and reach the highest space-time yield up to now. These results demonstrated the great potential of the GDH-R3-LeuDH fusion enzyme for the efficient biosynthesis of L-tle.


Assuntos
Bacillus cereus/enzimologia , Bacillus megaterium/enzimologia , Glucose 1-Desidrogenase/metabolismo , Leucina Desidrogenase/metabolismo , Leucina/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/genética , Leucina Desidrogenase/química , Leucina Desidrogenase/genética , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
4.
Appl Microbiol Biotechnol ; 105(9): 3625-3634, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33929595

RESUMO

L-tert-leucine (L-Tle) is widely used as vital chiral intermediate for pharmaceuticals and as chiral auxiliarie for organocatalysis. L-Tle is generally prepared via the asymmetric reduction of trimethylpyruvate (TMP) catalyzed by NAD+-dependent leucine dehydrogenase (LeuDH). To improve the catalytic efficiency and coenzyme affinity of LeuDH from Bacillus cereus, mutation libraries constructed by error-prone PCR and iterative saturation mutation were screened by two kinds of high-throughput methods. Compared with the wild type, the affinity of the selected mutant E24V/E116V for TMP and NADH increased by 7.7- and 2.8-fold, respectively. And the kcat/Km of E24V/E116V on TMP was 5.4-fold higher than that of the wild type. A coupled reaction comprising LeuDH with glucose dehydrogenase of Bacillus amyloliquefaciens resulted in substrate inhibition at high TMP concentrations (0.5 M), which was overcome by batch-feeding of the TMP substrate. The total turnover number and specific space-time conversion of 0.57 M substrate increased to 11,400 and 22.8 mmol·h-1·L-1·g-1, respectively. KEY POINTS: • The constructed new high-throughput screening strategy takes into account the two indicators of catalytic efficiency and coenzyme affinity. • A more efficient leucine dehydrogenase (LeuDH) mutant (E24V/E116V) was identified. • E24V/E116V has potential for the industrial synthesis of L-tert-leucine.


Assuntos
Coenzimas , Valina , Catálise , Coenzimas/metabolismo , Cinética , Leucina , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo , Valina/análogos & derivados
5.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885864

RESUMO

α-Amino acids and α-keto acids are versatile building blocks for the synthesis of several commercially valuable products in the food, agricultural, and pharmaceutical industries. In this study, a novel transamination-like reaction catalyzed by leucine dehydrogenase was successfully constructed for the efficient enzymatic co-synthesis of α-amino acids and α-keto acids. In this reaction mode, the α-keto acid substrate was reduced and the α-amino acid substrate was oxidized simultaneously by the enzyme, without the need for an additional coenzyme regeneration system. The thermodynamically unfavorable oxidation reaction was driven by the reduction reaction. The efficiency of the biocatalytic reaction was evaluated using 12 different substrate combinations, and a significant variation was observed in substrate conversion, which was subsequently explained by the differences in enzyme kinetics parameters. The reaction with the selected model substrates 2-oxobutanoic acid and L-leucine reached 90.3% conversion with a high total turnover number of 9.0 × 106 under the optimal reaction conditions. Furthermore, complete conversion was achieved by adjusting the ratio of addition of the two substrates. The constructed reaction mode can be applied to other amino acid dehydrogenases in future studies to synthesize a wider range of valuable products.


Assuntos
Aminoácidos/biossíntese , Cetoácidos/metabolismo , Leucina Desidrogenase/metabolismo , Aminação , Aminoácidos/química , Compostos de Amônio/metabolismo , Bacillus cereus/enzimologia , Catálise , Concentração de Íons de Hidrogênio , Cetoácidos/química , Cinética , NAD/metabolismo , Oxirredução , Especificidade por Substrato
6.
Appl Microbiol Biotechnol ; 104(1): 391-403, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31745574

RESUMO

Bacillus licheniformis has been regarded as an outstanding microbial cell factory for the production of biochemicals and enzymes. Due to lack of genetic tools to repress gene expression, metabolic engineering and gene function elucidation are limited in this microbe. In this study, an integrated CRISPR interference (CRISPRi) system was constructed in B. licheniformis. Several endogenous genes, including yvmC, cypX, alsD, pta, ldh, and essential gene rpsC, were severed as the targets to test this CRISPRi system, and the repression efficiencies were ranged from 45.02 to 94.00%. Moreover, the multiple genes were simultaneously repressed with high efficiency using this CRISPRi system. As a case study, the genes involved in by-product synthetic and L-valine degradation pathways were selected as the silence targets to redivert metabolic flux toward L-valine synthesis. Repression of acetolactate decarboxylase (alsD) and leucine dehydrogenase (bcd) led to 90.48% and 80.09 % increases in L-valine titer, respectively. Compared with the control strain DW9i△leuA (1.47 g/L and 1.79 g/L), the L-valine titers of combinatorial strain DW9i△leuA/pHYi-alsD-bcd were increased by 1.27-fold and 2.89-fold, respectively, in flask and bioreactor. Collectively, this work provides a feasible approach for multiplex metabolic engineering and functional genome studies of B. licheniformis.


Assuntos
Bacillus licheniformis/genética , Sistemas CRISPR-Cas , Inativação Gênica , Engenharia Metabólica/métodos , Bacillus licheniformis/enzimologia , Proteínas de Bactérias/genética , Carboxiliases/genética , Leucina Desidrogenase/genética , Redes e Vias Metabólicas , Valina/análise , Valina/metabolismo
7.
J Struct Biol ; 205(1): 11-21, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30543982

RESUMO

Leucine dehydrogenase (LDH, EC 1.4.1.9) is a NAD+-dependent oxidoreductase that catalyzes the deamination of branched-chain l-amino acids (BCAAs). LDH of Geobacillus stearothermophilus (GstLDH) is a highly thermostable enzyme that has been applied for the quantification or production of BCAAs. Here the cryo-electron microscopy (cryo-EM) structures of apo and NAD+-bound LDH are reported at 3.0 and 3.2 Šresolution, respectively. On comparing the structures, the two overall structures are almost identical, but it was observed that the partial conformational change was triggered by the interaction between Ser147 and the nicotinamide moiety of NAD+. NAD+ binding also enhanced the strength of oligomerization interfaces formed by the core domains. Such additional interdomain interaction is in good agreement with our experimental results showing that the residual activity of NAD+-bound form was approximately three times higher than that of the apo form after incubation at 80 °C. In addition, sequence comparison of three structurally known LDHs indicated a set of candidates for site-directed mutagenesis to improve thermostability. Subsequent mutation analysis actually revealed that non-conserved residues, including Ala94, Tyr127, and the C-terminal region, are crucial for oligomeric thermostability.


Assuntos
Microscopia Crioeletrônica/métodos , Geobacillus stearothermophilus/enzimologia , Leucina Desidrogenase/química , NAD/química , Sequência de Aminoácidos , Sítios de Ligação , Estrutura Molecular , Mutagênese Sítio-Dirigida , Estabilidade Proteica
8.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022947

RESUMO

The production of l-leucine was improved by the disruption of ltbR encoding transcriptional regulator and overexpression of the key genes (leuAilvBNCE) of the l-leucine biosynthesis pathway in Corynebacterium glutamicum XQ-9. In order to improve l-leucine production, we rationally engineered C. glutamicum to enhance l-leucine production, by improving the redox flux. On the basis of this, we manipulated the redox state of the cells by mutating the coenzyme-binding domains of acetohydroxyacid isomeroreductase encoded by ilvC, inserting NAD-specific leucine dehydrogenase, encoded by leuDH from Lysinibacillus sphaericus, and glutamate dehydrogenase encoded by rocG from Bacillus subtilis, instead of endogenous branched-chain amino acid transaminase and glutamate dehydrogenase, respectively. The yield of l-leucine reached 22.62 ± 0.17 g·L-1 by strain ΔLtbR-acetohydroxyacid isomeroreductase (AHAIR)M/ABNCME, and the concentrations of the by-products (l-valine and l-alanine) increased, compared to the strain ΔLtbR/ABNCE. Strain ΔLtbR-AHAIRMLeuDH/ABNCMLDH accumulated 22.87±0.31 g·L-1 l-leucine, but showed a drastically low l-valine accumulation (from 8.06 ± 0.35 g·L-1 to 2.72 ± 0.11 g·L-1), in comparison to strain ΔLtbR-AHAIRM/ABNCME, which indicated that LeuDH has much specificity for l-leucine synthesis but not for l-valine synthesis. Subsequently, the resultant strain ΔLtbR-AHAIRMLeuDHRocG/ABNCMLDH accumulated 23.31 ± 0.24 g·L-1 l-leucine with a glucose conversion efficiency of 0.191 g·g-1.


Assuntos
Vias Biossintéticas , Corynebacterium glutamicum/genética , Leucina/genética , Engenharia Metabólica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Desidrogenase de Glutamato (NADP+)/genética , Desidrogenase de Glutamato (NADP+)/metabolismo , Cetol-Ácido Redutoisomerase/genética , Cetol-Ácido Redutoisomerase/metabolismo , Leucina/metabolismo , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo , Oxirredução
9.
J Nutr ; 148(1): 40-48, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378055

RESUMO

Background: Fructose feeding in the context of high energy intake is recognized as being responsible for metabolic dysregulation. However, its consumption in the postabsorptive state might contribute to reducing the use of amino acids (AAs) as energy substrates and thus spare nitrogen resources, which could be beneficial during catabolic states. Objective: We hypothesized that fructose feeding during a catabolic situation corresponding to protein-energy restriction (PER) in older rats would reduce AA utilization for energy purposes, thus slowing down the loss of body weight (BW) and improving body composition. Methods: For 45 d, 22-mo-old male Wistar rats (average weight: 716 g) were fed a control ration (13% protein) either at normal (20 g/d), restricted (PER: 10 g/d), or at PER levels supplemented with glucose (3 g/d) or fructose (3 g/d) and then studied in the postabsorptive state. We measured BW, body composition, and enzyme activities and metabolite concentrations related to glucose, fructose, and AA metabolism. Results: Both glucose and fructose feeding reduced PER-induced loss of BW and lean mass (-27% compared with PER), but only fructose reduced the loss of fat mass (-28% compared with PER). Fructose feeding prevented the PER-induced loss of muscle and intestinal mass. Fructose feeding also reduced circulating branched-chain AA concentrations by 50% (compared with PER) and increased those of alanine (+65% compared with PER). A reduction in hepatic enzymes related to AA catabolism was also observed during fructose feeding (compared with PER), whereas glycogen concentrations were enhanced in both intestine (+300%) and muscle (+21%). Conclusions: We showed that in PER older rats, fructose feeding improved body composition and the weight of several organs by reducing AA catabolism and utilization for energy production and liver autophagy potential. This could be advantageous in sparing body proteins, particularly during catabolic states, such as those related to malnutrition during aging.


Assuntos
Composição Corporal , Dieta com Restrição de Proteínas , Frutose/administração & dosagem , Nitrogênio/metabolismo , Alanina/sangue , Alanina Desidrogenase/sangue , Aminoácidos de Cadeia Ramificada/sangue , Animais , Glicemia/metabolismo , Glicogênio/metabolismo , Insulina/sangue , Ácido Láctico/sangue , Leucina Desidrogenase/sangue , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Ureia/sangue
10.
Appl Microbiol Biotechnol ; 102(5): 2129-2141, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29352398

RESUMO

Whole-cell catalysis with co-expression of two or more enzymes in a single host as a simple low-cost biosynthesis method has been widely studied and applied but hardly with regulation of multi-enzyme expression. Here we developed an efficient whole-cell catalyst for biosynthesis of L-phenylglycine (L-Phg) from benzoylformic acid through co-expression of leucine dehydrogenase from Bacillus cereus (BcLeuDH) and NAD+-dependent mutant formate dehydrogenase from Candida boidinii (CbFDHA10C) in Escherichia coli with tunable multi-enzyme-coordinate expression system. By co-expressing one to four copies of CbFDHA10C and optimization of the RBS sequence of BcLeuDH in the expression system, the ratio of BcLeuDH to CbFDH in E. coli BL21/pETDuet-rbs 4 leudh-3fdh A10C was finally regulated to 2:1, which was the optimal one determined by enzyme-catalyzed synthesis. The catalyst activity of E. coli BL21/pETDuet-rbs 4 leudh-3fdh A10C was 28.4 mg L-1 min-1 g-1 dry cell weight for L-Phg production using whole-cell transformation, it's was 3.7 times higher than that of engineered E. coli without enzyme expression regulation. Under optimum conditions (pH 8.0 and 35 °C), 60 g L-1 benzoylformic acid was completely converted to pure chiral L-Phg in 4.5 h with 10 g L-1 dry cells and 50.4 g L-1 ammonium formate, and with enantiomeric excess > 99.9%. This multi-enzyme-coordinate expression system strategy significantly improved L-Phg productivity and demonstrated a novel low-cost method for enantiopure L-Phg production.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Glicina/análogos & derivados , Engenharia Metabólica , Bacillus cereus/enzimologia , Bacillus cereus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Candida glabrata/enzimologia , Candida glabrata/genética , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicina/biossíntese , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo
11.
Mar Drugs ; 16(10)2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275355

RESUMO

l-tert-leucine and its derivatives are useful as pharmaceutical active ingredients, in which leucine dehydrogenase (LeuDH) is the key enzyme in their enzymatic conversions. In the present study, a novel cold-adapted LeuDH, psleudh, was cloned from psychrotrophic bacteria Pseudoalteromonas sp. ANT178, which was isolated from Antarctic sea-ice. Bioinformatics analysis of the gene psleudh showed that the gene was 1209 bp in length and coded for a 42.6 kDa protein containing 402 amino acids. PsLeuDH had conserved Phe binding site and NAD⁺ binding site, and belonged to a member of the Glu/Leu/Phe/Val dehydrogenase family. Homology modeling analysis results suggested that PsLeuDH exhibited more glycine residues, reduced proline residues, and arginine residues, which might be responsible for its catalytic efficiency at low temperature. The recombinant PsLeuDH (rPsLeuDH) was purified a major band with the high specific activity of 275.13 U/mg using a Ni-NTA affinity chromatography. The optimum temperature and pH for rPsLeuDH activity were 30 °C and pH 9.0, respectively. Importantly, rPsLeuDH retained at least 40% of its maximum activity even at 0 °C. Moreover, the activity of rPsLeuDH was the highest in the presence of 2.0 M NaCl. Substrate specificity and kinetic studies of rPsLeuDH demonstrated that l-leucine was the most suitable substrate, and the catalytic activity at low temperatures was ensured by maintaining a high kcat value. The results of the current study would provide insight into Antarctic sea-ice bacterium LeuDH, and the unique properties of rPsLeuDH make it a promising candidate as a biocatalyst in medical and pharmaceutical industries.


Assuntos
Camada de Gelo/microbiologia , Leucina Desidrogenase/genética , Pseudoalteromonas/genética , Sequência de Aminoácidos , Aminoácidos/genética , Regiões Antárticas , Catálise , Temperatura Baixa , Concentração de Íons de Hidrogênio , Cinética , Alinhamento de Sequência , Especificidade por Substrato
12.
Biotechnol Lett ; 39(4): 529-533, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27999972

RESUMO

OBJECTIVES: To reduce the unpleasant odor during 1-deoxynojirimycin (DNJ) production, the genes of leucine dehydrogenase (bcd) and phosphate butryltransferase (ptb) were deleted from Bacillus amyloliquefaciens HZ-12, and the concentrations of branched-chain short fatty acids (BCFAs) and DNJ were compared. RESULTS: By knockout of the ptb gene, 1.01 g BCFAs kg-1 was produced from fermented soybean by HZ-12Δptb. This was a 56% decrease compared with that of HZ-12 (2.27 g BCFAs kg-1). Moreover, no significant difference was found in the DNJ concentration (0.7 g kg-1). After further deletion of the bcd gene from HZ-12Δptb, no BCFAs was detected in fermented soybeans with HZ-12ΔptbΔbcd, while the DNJ yield decreased by 26% compared with HZ-12. CONCLUSIONS: HZ-12Δptb had decreased BCFAs formation but also maintained the stable DNJ yield, which contributed to producing DNJ-rich products with decreased unpleasant smell.


Assuntos
1-Desoxinojirimicina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Ácidos Graxos/biossíntese , Microbiologia de Alimentos , Engenharia Metabólica , Bacillus amyloliquefaciens/genética , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Fermentação , Expressão Gênica , Técnicas de Inativação de Genes , Genes Bacterianos , Leucina Desidrogenase/metabolismo , Odorantes/prevenção & controle , Fosfato Acetiltransferase/metabolismo , Glycine max/metabolismo
13.
Anal Biochem ; 495: 29-31, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656924

RESUMO

A simple and rapid screening method for amino acid dehydrogenase (e.g., leucine dehydrogenase, LDH) has been developed. It relies on a competitive relationship between a non-fluorescent Cu(II)-calcein complex and amino acid (e.g., l-2-aminobutyric acid, l-ABA). When ABA was introduced to a Cu(II)-calcein solution, it bound with the Cu(II) ions and this released calcein from the complex, which was detected as strong fluorescence. The principle of this high-throughput screening method was validated by screening an LDH mutant library. Compared with other methods, this method provided much quicker l-ABA detection and screening for leucine dehydrogenase mutations.


Assuntos
Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala , Leucina Desidrogenase/metabolismo , Aminobutiratos/metabolismo , Complexos de Coordenação/química , Cobre/química , Fluoresceínas/química , Íons/química , Espectrometria de Fluorescência
14.
Appl Microbiol Biotechnol ; 100(13): 5805-13, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26898942

RESUMO

L-tert-Leucine and its derivatives are used as synthetic building blocks for pharmaceutical active ingredients, chiral auxiliaries, and ligands. Leucine dehydrogenase (LeuDH) is frequently used to prepare L-tert-leucine from the α-keto acid precursor trimethylpyruvate (TMP). In this study, a high-throughput screening method for the L-tert-leucine synthesis reaction based on a spectrophotometric approach was developed. Directed evolution strategy was applied to engineer LeuDH from Lysinibacillus sphaericus for improved efficiency of L-tert-leucine synthesis. After two rounds of random mutagenesis, the specific activity of LeuDH on the substrate TMP was enhanced by more than two-fold, compared with that of the wild-type enzyme, while the activity towards its natural substrate, leucine, decreased. The catalytic efficiencies (k cat/K m) of the best mutant enzyme, H6, on substrates TMP and NADH were all enhanced by more than five-fold as compared with that of the wild-type enzyme. The efficiency of L-tert-leucine synthesis by mutant H6 was significantly improved. A productivity of 1170 g/l/day was achieved for the mutant enzyme H6, compared with 666 g/l/day for the wild-type enzyme.


Assuntos
Bacillaceae/enzimologia , Proteínas de Bactérias/química , Evolução Molecular Direcionada/métodos , Leucina Desidrogenase/química , Leucina/metabolismo , Bacillaceae/química , Bacillaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Leucina/química , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo , Engenharia de Proteínas , Especificidade por Substrato
15.
Biotechnol Lett ; 38(5): 855-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26861852

RESUMO

OBJECTIVE: A potential thermotolerant L-leucine dehydrogenase from Laceyella sacchari (Ls-LeuDH) was over-expressed in E. coli, purified and characterized. RESULTS: Ls-LeuDH had excellent thermostability with a specific activity of 183 U/mg at pH 10.5 and 25 °C. It retained a high activity in 200 mM carbonate buffer from pH 9.5 to 11. The optimal temperature for Ls-LeuDH was 60 °C. CONCLUSION: It is the first time that a thermostable and highly active LeuDH originating from L. sacchari has been characterized. It may be useful for medical and pharmaceutical applications.


Assuntos
Bacillales/enzimologia , Leucina Desidrogenase/metabolismo , Sequência de Aminoácidos , Bacillales/genética , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Leucina Desidrogenase/química , Leucina Desidrogenase/genética , Leucina Desidrogenase/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
16.
Biotechnol Lett ; 38(1): 123-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26376640

RESUMO

OBJECTIVE: To make the previously developed biosynthesis of L-2-aminobutyric acid (L-ABA) more suitable for the industrial-scale production. RESULTS: A recyclable biotransformation system was developed based on immobilized enzyme technology. The conversion yield of L-threonine (at 90 g l(-1)) reached 99.9 % and the theoretical yield of L-ABA reached more than 90 % using the optimized biotransformation system by the individual immobilization of threonine deaminase and the co-immobilization of L leucine dehydrogenase and formate dehydrogenase. 90 g L-threonine l(-1) was converted to 73.9 g L-ABA l(-1) >95 % theoretical yield, within 120-145 min in 30 batch transformation experiments. CONCLUSION: The recyclable biotransformation system is promising to fulfill industrial requirements for L-ABA production.


Assuntos
Aminobutiratos/metabolismo , Leucina Desidrogenase/metabolismo , Treonina Desidratase/metabolismo , Biotransformação , Enzimas Imobilizadas , Reutilização de Equipamento/economia , Escherichia coli/metabolismo , Leucina Desidrogenase/isolamento & purificação , Treonina Desidratase/isolamento & purificação
17.
Wei Sheng Wu Xue Bao ; 56(11): 1709-18, 2016 Nov 04.
Artigo em Zh | MEDLINE | ID: mdl-29741833

RESUMO

Objective: Different co-expression strategies to express leucine dehydrogenase and glucose dehydrogenase in E. coli were done to observe the effect of expression of different enzyme. A recombinant strain with two high enzyme activities was built for efficiently asymmetric synthesis of L-tert-leucine. Methods: The leucine dehydrogenase (ldh) from Bacillus cereus and glucose dehydrogenase (gdh) from Bacillus sp. were co-expressed by three different strategies, including co-expressing two genes in single vector, co-expressing two genes in two vectors and expressing fusion protein. The catalytic efficiencies of recombinant strains with different enzyme activity ratio in different modes of biocatalyst were compared to produce L-tert-leucine from its corresponding α-keto acids. Results: Different co-expression strategies displayed a slight impact on leucine dehydrogenase expression, whereas, a greater impact on glucose dehydrogenase. All the activity of leucine dehydrogenase was normally expressed, but the fusion proteins lost the activity of glucose dehydrogenase. Besides, the activity of glucose dehydrogenase was also totally inhibited when the 6-histidine tag was fused at C termini, which indicated the additional 6-histidine tag considerately depressed the glucose dehydrogenase activity. After optimization of expression, three recombinant strains exhibiting high enzyme activity and different enzyme activity ratio were used to synthesis L-tert-leucine in the mode of cell-free extracts and whole-cell. Result displayed a great influence on the catalytic efficiencies resulted from the mode of catalyst and enzyme activity. When the cell-free crude culture broth of E. coli BL21/pET28a-L-SD-AS-G coexpressing two genes in single vector was used as biocatalyst, 15 g/L cell loading and 0.1 mmol/L NAD+ were enough to completely transform 0.5 mol/L trimethylpyruvate into L-tert-leucine. Conclusion: The recombinant strain with high activities of leucine dehydrogenase and glucose dehydrogenase was achieved by co-expressing two genes in single vector without histidine tag in E. coli and L-tert-leucine was efficiently produced with this recombinant strain.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/genética , Escherichia coli/genética , Glucose 1-Desidrogenase/genética , Leucina Desidrogenase/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Glucose 1-Desidrogenase/metabolismo , Leucina/análogos & derivados , Leucina Desidrogenase/metabolismo , Engenharia Metabólica , Valina/análogos & derivados , Valina/biossíntese
18.
Anal Bioanal Chem ; 406(1): 367-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24220759

RESUMO

Leucine plays an important role in protein synthesis, brain functions, building muscle mass, and helping the body when it undergoes stress. Here, we report a new amperometric bienzyme screen-printed biosensor for the determination of leucine, by coimmobilizing p-hydroxybenzoate hydroxylase (HBH) and leucine dehydrogenase (LDH) on a screen-printed electrode with NADP(+) and p-hydroxybenzoate as the cofactors. The detection principle of the sensor is that LDH catalyzes the specific dehydrogenation of leucine by using NADP(+) as a cofactor. The product, NADPH, triggers the hydroxylation of p-hydroxybenzoate by HBH in the presence of oxygen to produce 3,4-dihydroxybenzoate, which results in a change in electron concentration at the working carbon electrode, which is detected by the potentiostat. The sensor shows a linear detection range between 10 and 600 µM with a detection limit of 2 µM. The response is reproducible and has a fast measuring time of 5-10 s after the addition of a given concentration of leucine.


Assuntos
4-Hidroxibenzoato-3-Mono-Oxigenase/química , Técnicas Biossensoriais , Leucina Desidrogenase/química , Leucina/sangue , Carbono/química , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/química , Humanos , Limite de Detecção , NADP/química , Oxirredução , Parabenos/química
19.
Biotechnol Lett ; 36(4): 835-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24322776

RESUMO

L-2-Aminobutyric acid (L-ABA) is an unnatural amino acid that is a key intermediate for the synthesis of several important drugs. It can be produced by transaminase or dehydrogenase from α-ketobutyric acid, which can be synthesized enzymatically from the bulk amino acid, L-threonine. Deamination of L-threonine followed by a hydrogenation reaction gave almost the theoretical yield and was estimated to be more cost-effective than the established chemical process. L-Threonine deaminase from Escherichia coli, L-leucine dehydrogenase from Bacillus cereus, and formate dehydrogenase from Pseudomonas sp. were over-expressed in E. coli and used for one-pot production of L-ABA with formate as a co-substrate for NADH regeneration. 30 mol L-threonine were converted to 29.2 mol L-ABA at 97.3 % of theoretical yield and with productivity of 6.37 g l(-1) h(-1) at 50 l. This process offers a promising approach to fulfil industrial requirements for L-ABA.


Assuntos
Aminobutiratos/metabolismo , Formiato Desidrogenases/metabolismo , Leucina Desidrogenase/metabolismo , NAD/metabolismo , Treonina Desidratase/metabolismo , Treonina/metabolismo , Bacillus cereus/enzimologia , Bacillus cereus/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Formiato Desidrogenases/genética , Expressão Gênica , Leucina Desidrogenase/genética , Pseudomonas/enzimologia , Pseudomonas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Treonina Desidratase/genética
20.
Biotechnol J ; 18(5): e2200465, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36738237

RESUMO

Enzymatic asymmetric synthesis of chiral amino acids has great industrial potential. However, the low catalytic efficiency of high-concentration substrates limits their industrial application. Herein, using a combination of substrate catalytic efficiency prediction based on "open to closed" conformational change and substrate specificity prediction, a novel leucine dehydrogenase (TsLeuDH), with high substrate catalytic efficiency toward benzoylformic acid (BFA) for producing l-phenylglycine (l-Phg), was directly identified from 4695 putative leucine dehydrogenases in a public database. The specific activity of TsLeuDH was determined to be as high as 4253.8 U mg-1 . Through reaction process optimization, a high-concentration substrate (0.7 m) was efficiently and completely converted within 90 min in a single batch, without any external coenzyme addition. Moreover, a continuous flow-feeding approach was designed using gradient control of the feed rate to reduce substrate accumulation. Finally, the highest overall substrate concentration of up to 1.2 m BFA could be aminated to l-Phg with conversion of >99% in 3 h, demonstrating that this new combination of enzyme process development is promising for large-scale application of l-Phg.


Assuntos
Aminoácidos , Glicina , Leucina Desidrogenase/genética , Leucina Desidrogenase/metabolismo , Catálise , Especificidade por Substrato , Leucina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA