RESUMO
γ-Secretases are a family of intramembrane-cleaving proteases involved in various signaling pathways and diseases, including Alzheimer's disease (AD). Cells co-express differing γ-secretase complexes, including two homologous presenilins (PSENs). We examined the significance of this heterogeneity and identified a unique motif in PSEN2 that directs this γ-secretase to late endosomes/lysosomes via a phosphorylation-dependent interaction with the AP-1 adaptor complex. Accordingly, PSEN2 selectively cleaves late endosomal/lysosomal localized substrates and generates the prominent pool of intracellular Aß that contains longer Aß; familial AD (FAD)-associated mutations in PSEN2 increased the levels of longer Aß further. Moreover, a subset of FAD mutants in PSEN1, normally more broadly distributed in the cell, phenocopies PSEN2 and shifts its localization to late endosomes/lysosomes. Thus, localization of γ-secretases determines substrate specificity, while FAD-causing mutations strongly enhance accumulation of aggregation-prone Aß42 in intracellular acidic compartments. The findings reveal potentially important roles for specific intracellular, localized reactions contributing to AD pathogenesis.
Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/análise , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Presenilina-2/análise , Complexo 1 de Proteínas Adaptadoras/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Endossomos/química , Humanos , Lisossomos/química , Camundongos , Presenilina-1/análise , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/química , Presenilina-2/genética , Presenilina-2/metabolismo , Ratos , Especificidade por SubstratoRESUMO
Clec16a has been identified as a disease susceptibility gene for type 1 diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. Here we report that Clec16a is a membrane-associated endosomal protein that interacts with E3 ubiquitin ligase Nrdp1. Loss of Clec16a leads to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a have abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal ß cell function. Indeed, pancreatic Clec16a is required for normal glucose-stimulated insulin release. Moreover, patients harboring a diabetogenic SNP in the Clec16a gene have reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controls ß cell function and prevents diabetes by controlling mitophagy. This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases.
Assuntos
Diabetes Mellitus Tipo 1/genética , Ilhotas Pancreáticas/patologia , Lectinas Tipo C/metabolismo , Mitofagia , Proteínas de Transporte de Monossacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Diabetes Mellitus Tipo 1/patologia , Predisposição Genética para Doença , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lisossomos/química , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Polimorfismo de Nucleotídeo Único , Ubiquitina-Proteína LigasesRESUMO
The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.
Assuntos
Chaetomium , Proteínas Fúngicas , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatos de Fosfatidilinositol , Serina C-Palmitoiltransferase , Chaetomium/química , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/metabolismoRESUMO
Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.
Assuntos
Poliaminas/química , ATPases Translocadoras de Prótons/química , Animais , Transporte Biológico , Catálise , Microscopia Crioeletrônica , Citosol/metabolismo , Humanos , Lipídeos/química , Lisossomos/química , Simulação de Dinâmica Molecular , Doença de Parkinson/metabolismo , Fosforilação , Conformação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , SpodopteraRESUMO
Mutations in ATP13A2, also known as PARK9, cause a rare monogenic form of juvenile-onset Parkinson's disease named Kufor-Rakeb syndrome and other neurodegenerative diseases. ATP13A2 encodes a neuroprotective P5B P-type ATPase highly enriched in the brain that mediates selective import of spermine ions from lysosomes into the cytosol via an unknown mechanism. Here we present three structures of human ATP13A2 bound to an ATP analog or to spermine in the presence of phosphomimetics determined by cryoelectron microscopy. ATP13A2 autophosphorylation opens a lysosome luminal gate to reveal a narrow lumen access channel that holds a spermine ion in its entrance. ATP13A2's architecture suggests physical principles underlying selective polyamine transport and anticipates a "pump-channel" intermediate that could function as a counter-cation conduit to facilitate lysosome acidification. Our findings establish a firm foundation to understand ATP13A2 mutations associated with disease and bring us closer to realizing ATP13A2's potential in neuroprotective therapy.
Assuntos
Encéfalo/metabolismo , Poliaminas/química , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Sítio Alostérico , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Humanos , Íons/química , Lisossomos/química , Mutação , Fosforilação , Domínios Proteicos , Proteínas Recombinantes/química , Espermina/metabolismo , Especificidade por SubstratoRESUMO
Lysosomes play fundamental roles in material digestion, cellular clearance, recycling, exocytosis, wound repair, Ca2+ signaling, nutrient signaling, and gene expression regulation. The organelle also serves as a hub for important signaling networks involving the mTOR and AKT kinases. Electrophysiological recording and molecular and structural studies in the past decade have uncovered several unique lysosomal ion channels and transporters, including TPCs, TMEM175, TRPMLs, CLN7, and CLC-7. They underlie the organelle's permeability to major ions, including K+, Na+, H+, Ca2+, and Cl-. The channels are regulated by numerous cellular factors, ranging from H+ in the lumen and voltage across the lysosomal membrane to ATP in the cytosol to growth factors outside the cell. Genetic variations in the channel/transporter genes are associated with diseases that include lysosomal storage diseases and neurodegenerative diseases. Recent studies with human genetics and channel activators suggest that lysosomal channels may be attractive targets for the development of therapeutics for the prevention of and intervention in human diseases.
Assuntos
Canais Iônicos , Doenças Neurodegenerativas , Humanos , Canais Iônicos/metabolismo , Transdução de Sinais , Lisossomos/química , Lisossomos/metabolismo , Doenças Neurodegenerativas/metabolismoRESUMO
The lysosome is an acid organelle that contains a variety of hydrolytic enzymes and plays a significant role in intracellular degradation to maintain cellular homeostasis. Genetic variants in lysosome-related genes can lead to severe congenital diseases, such as lysosomal storage diseases. In the present study, we investigated the impact of depleting lysosomal acid lipase A (LIPA), a lysosomal esterase that metabolizes esterified cholesterol or triglyceride, on lysosomal function. Under nutrient-rich conditions, LIPA gene KO (LIPAKO) cells exhibited impaired autophagy, whereas, under starved conditions, they showed normal autophagy. The cause underlying the differential autophagic activity was increased sensitivity of LIPAKO cells to ammonia, which was produced from l-glutamine in the medium. Further investigation revealed that ammonia did not affect upstream signals involved in autophagy induction, autophagosome-lysosome fusion, and hydrolytic enzyme activities in LIPAKO cells. On the other hand, LIPAKO cells showed defective lysosomal acidity upon ammonia loading. Microscopic analyses revealed that lysosomes of LIPAKO cells enlarged, whereas the amount of lysosomal proton pump V-ATPase did not proportionally increase. Since the enlargement of lysosomes in LIPAKO cells was not normalized under starved conditions, this is the primary change that occurred in the LIPAKO cells, and autophagy was affected by impaired lysosomal function under the specific conditions. These findings expand our comprehension of the pathogenesis of Wolman's disease, which is caused by a defect in the LIPA gene, and suggest that conditions, such as hyperlipidemia, may easily disrupt lysosomal functions.
Assuntos
Autofagia , Lipase , Lisossomos , Humanos , Amônia/metabolismo , Autofagia/fisiologia , Lipase/genética , Lipase/metabolismo , Lisossomos/química , Lisossomos/enzimologia , Doença de Wolman/enzimologia , Doença de Wolman/genética , Células HeLa , Concentração de Íons de Hidrogênio , Técnicas de Inativação de GenesRESUMO
VPS13 is a eukaryotic lipid transport protein localized at membrane contact sites. Previous studies suggested that it may transfer lipids between adjacent bilayers by a bridge-like mechanism. Direct evidence for this hypothesis from a full-length structure and from electron microscopy (EM) studies in situ is still missing, however. Here, we have capitalized on AlphaFold predictions to complement the structural information already available about VPS13 and to generate a full-length model of human VPS13C, the Parkinson's disease-linked VPS13 paralog localized at contacts between the endoplasmic reticulum (ER) and endo/lysosomes. Such a model predicts an â¼30-nm rod with a hydrophobic groove that extends throughout its length. We further investigated whether such a structure can be observed in situ at ER-endo/lysosome contacts. To this aim, we combined genetic approaches with cryo-focused ion beam (cryo-FIB) milling and cryo-electron tomography (cryo-ET) to examine HeLa cells overexpressing this protein (either full length or with an internal truncation) along with VAP, its anchoring binding partner at the ER. Using these methods, we identified rod-like densities that span the space separating the two adjacent membranes and that match the predicted structures of either full-length VPS13C or its shorter truncated mutant, thus providing in situ evidence for a bridge model of VPS13 in lipid transport.
Assuntos
Retículo Endoplasmático , Metabolismo dos Lipídeos , Proteínas , Transportadores de Cassetes de Ligação de ATP , Proteínas da Membrana Bacteriana Externa , Transporte Biológico , Membrana Celular/química , Microscopia Crioeletrônica , Retículo Endoplasmático/química , Células HeLa , Humanos , Lisossomos/química , Proteínas/químicaRESUMO
Autophagy is an evolutionarily conserved process whereby damaged and redundant components of the cell are degraded in structures called autophagolysosomes. Currently, three main types of autophagy are recognized: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). However, we still know little about some specific types of autophagy that are linked to various intracellular compartments and their roles in the physiology of the whole organism and connections to various diseases. Here, we aim to shed light on the latest insights on and mechanisms of several selective forms of autophagy.
Assuntos
Autofagia , Animais , Humanos , Lisossomos/química , Lisossomos/metabolismo , Lisossomos/patologiaRESUMO
Lysosomes transcend the role of degradation stations, acting as key nodes for interorganelle crosstalk and signal transduction. Lysosomes communicate with the nucleus through physical proximity and functional interaction. In response to external and internal stimuli, lysosomes actively adjust their distribution between peripheral and perinuclear regions and modulate lysosome-nucleus signaling pathways; in turn, the nucleus fine-tunes lysosomal biogenesis and functions through transcriptional controls. Changes in coordination between these two essential organelles are associated with metabolic disorders, neurodegenerative diseases, and aging. In this review, we address recent advances in lysosome-nucleus communication by multi-tiered regulatory mechanisms and discuss how these regulations couple metabolic inputs with organellar motility, cellular signaling, and transcriptional network.
Assuntos
Núcleo Celular/metabolismo , Lisossomos/metabolismo , Animais , Núcleo Celular/química , Núcleo Celular/genética , Redes Reguladoras de Genes , Humanos , Lisossomos/química , Lisossomos/genética , Transdução de SinaisRESUMO
Lysosome targeting chimeras (LYTACs) have emerged as a powerful modality that can eliminate traditionally undruggable extracellular tumor-related pathogenic proteins, but their low bioavailability and nonspecific distribution significantly restrict their efficacy in precision tumor therapy. Developing a LYTAC system that can selectively target tumor tissues and enable a modular design is crucial but challenging. We here report a programmable nanoplatform for tumor-specific degradation of multipathogenic proteins using an intelligent modular DNA LYTAC (IMTAC) nanodevice. We employ circular DNA origami to integrate predesigned modular multitarget protein binding sites and pH-responsive protein degradation promoters that specifically recognize cell-surface lysosome-shuttling receptors in tumor tissues. By precisely manipulating the stoichiometry and modularity of promoters and ligands targeting diverse proteins, the IMTAC nanodevice enables accurate localization and delivery into tumor tissues, where the acidic tumor microenvironment triggers degradation switch activation, multivalent binding, and efficient degradation of various prespecified proteins. The tissue-specificity and multiple ligands in IMTACs significantly improve the drug utilization rate while reducing off-target effects. Importantly, this system demonstrates the capability of collabo-rative degradation of EGFR and PDL1 in tumor tissue for combined targeting and immunity therapy of hepatocellular carcinoma (HCC), resulting in obvious tumor necrosis and inhibition of tumor growth in vivo even at low concentrations. This study presents a unique strategy for building a general, intelligent, modular, and simple encoded nanoplatform for designing precision medicine degraders and developing proprietary antitumor drugs.
Assuntos
Lisossomos , Lisossomos/metabolismo , Lisossomos/química , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/química , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , DNA/química , Medicina de Precisão , DNA Circular/química , Linhagem Celular TumoralRESUMO
The emergence of lysosome-targeting chimeras (LYTACs), which represents a promising strategy for membrane protein degradation based on lysosomal pathways, has attracted much attention in disease intervention and treatment. However, the expression level of commonly used lysosome-targeting receptors (LTRs) varies in different cell lines, thus limiting the broad applications of LYTACs. To overcome this difficulty, we herein report the development of integrin α3ß1 (ITGA3B1)-facilitated bispecific aptamer chimeras (ITGBACs) as a platform for the degradation of membrane proteins. ITGBACs consist of two aptamers, one targeting ITGA3B1 and another binding to the membrane-associated protein of interest (POI), effectively transporting the POI into lysosomes for degradation. Our findings demonstrate that ITGBACs effectively eliminate pathological membrane proteins, such as CD71 and PTK7, inducing significant cell-cycle arrest and apoptosis and markedly inhibiting tumor growth in tumor-bearing mice models. Therefore, this work provides a novel and versatile membrane protein degradation platform, offering a promising targeted therapy based on tumor-specific LTRs.
Assuntos
Aptâmeros de Nucleotídeos , Receptores da Transferrina , Humanos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Animais , Camundongos , Receptores da Transferrina/metabolismo , Proteínas de Membrana/metabolismo , Proteólise/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/química , Integrina alfa3beta1/metabolismo , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Receptores Proteína Tirosina QuinasesRESUMO
Aggrephagy describes lysosomal transport and degradation of protein aggregates via cellular macroautophagy, a key mechanism to prevent neurodegenerative diseases. Here, we develop a dual-probe method to visualize the aggrephagy process and resolve its viscosity heterogeneity using fluorescence lifetime imaging (FLIM). The dual-probe system consists of (1) a near-infrared lysosomal targeting FLIM probe (Lyso-P1) that is derived from a rhodamine scaffold with a tailored pKa value to accommodate an acidic lysosomal environment and (2) a green BODIPY-based FLIM probe (Agg-P2) that reports on degradation of cellular aggregates via HaloTag. Both probes exhibit acid-resistant, viscosity-dependent fluorescence intensity and lifetime (τ) responses, which are ready for intensity- and FLIM-based imaging. Photochemical, theoretical, and biochemical characterizations reveal the probes' mechanism-of-actions. In cells, we exploit Lyso-P1 and Agg-P2 to simultaneously quantify both lysosomal and protein aggegates' viscosity changes upon the aggrephagy process via FLIM. We reveal orthogonal changes in microenvironmental viscosities and morphological heterogeneity upon various cellular stresses. Overall, we provide an imaging toolset to quantitatively study aggrephay, which may benefit screening of aggrephay modulators for disease intervention.
Assuntos
Corantes Fluorescentes , Lisossomos , Imagem Óptica , Viscosidade , Corantes Fluorescentes/química , Humanos , Lisossomos/química , Lisossomos/metabolismo , Agregados Proteicos , Células HeLa , Compostos de Boro/química , Rodaminas/químicaRESUMO
The mitochondria, as one of the essential organelles in cells, are closely associated with numerous biological processes. Therefore, the realization of clear and real-time imaging for tracking mitochondria is of profound significance. Here, we present a mitochondria-targeting fluorescent probe, N(CH2)3-PD-NEt, for the real-time fluorescence imaging of mitochondria in living cells. Using the probe, the fluorescence changes of mitochondria stimulated by different drugs were successfully observed by fluorescence imaging. In addition, the dynamic processes of mitochondria and lysosomes during apoptosis were also explored. Importantly, we observed several novel dynamic interaction patterns between mitochondria and lysosomes. Among them, the most prominent pattern involved the noncontact movements of two lysosomes, that is, one lysosome gradually approached the other lysosome over time, eventually coming into contact and merging with it while gradually combining with mitochondria to form new mitochondria. Notably, the protrusions of the mitochondria became increasingly evident during this process. Meanwhile, we successfully observed the dynamic changes of mitochondria with SIM super-resolution imaging. The study provides promising help for the in-depth study of the dynamic processes of mitochondrial physiology and pathology and the study of the interactions between organelles.
Assuntos
Apoptose , Corantes Fluorescentes , Lisossomos , Mitocôndrias , Lisossomos/metabolismo , Lisossomos/química , Mitocôndrias/metabolismo , Corantes Fluorescentes/química , Humanos , Imagem Óptica , Células HeLaRESUMO
Ultraphotostable phosphorescent nanosensors have been designed for continuously sensing the lysosome pH over a long duration. The nanosensors exhibited excellent photostability, high accuracy, and capability to measure pH values during cell proliferation for up to 7 days. By arranging a metal-ligand complex of long phosphorescence lifetime and pH indicator in silica nanoparticles, we discover efficient Förster resonance energy transfer, which converts the pH-responsive UV-vis absorption signal of the pH indicator into a phosphorescent signal. Both the phosphorescent intensity and lifetime change at different pH values, and intracellular pH values can be accurately measured by our custom-built rapid phosphorescent lifetime imaging microscopy. The excellent photostability, high accuracy, and good biocompatibility prove that these nanosensors are a useful tool for tracing the fluctuation of pH values during endocytosis. The methodology can be easily adapted to design new nanosensors with different pKa or for different kinds of intracellular ions, as there are hundreds of pH and ion indicators readily available.
Assuntos
Lisossomos , Nanopartículas , Concentração de Íons de Hidrogênio , Lisossomos/química , Lisossomos/metabolismo , Humanos , Nanopartículas/química , Transferência Ressonante de Energia de Fluorescência , Análise de Célula Única , Dióxido de Silício/química , Células HeLa , NanotecnologiaRESUMO
Cellular trace proteins are critical for maintaining normal cell functions, with their quantitative analysis in individual cells aiding our understanding of the role of cell proteins in biological processes. This study proposes a strategy for the quantitative analysis of alpha-fetoprotein in single cells, utilizing a lysosome microenvironment initiation and a DNAzyme-assisted intracellular signal amplification technique based on electrophoretic separation. A nanoprobe targeting lysosomes was prepared, facilitating the intracellular signal amplification of alpha-fetoprotein. Following intracellular signal amplification, the levels of alpha-fetoprotein (AFP) in 20 HepG2 hepatoma cells and 20 normal HL-7702 hepatocytes were individually evaluated using microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF). Results demonstrated overexpression of alpha-fetoprotein in hepatocellular carcinoma cells. This strategy represents a novel technique for single-cell protein analysis and holds significant potential as a powerful tool for such analyses.
Assuntos
Carcinoma Hepatocelular , DNA Catalítico , Eletroforese em Microchip , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas/análise , Eletroforese em Microchip/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Lisossomos/química , Carcinoma Hepatocelular/patologia , Microambiente TumoralRESUMO
Lysosomes are multifunctional organelles vital for cellular homeostasis with distinct subpopulations characterized by varying levels of Cl-, Ca2+, and H+. In situ visualization of these parameters is crucial for lysosomal research, yet developing probes that can simultaneously detect multiple ions remains challenging. Herein, we developed a lysosome-targeting ternary recognition ratiometric fluorescent probe based on tetrahedral DNA nanostructures (TDNs) to analyze lysosome subpopulations by Cl-, Ca2+, and pH. The TDN probe is assembled from four single-stranded DNAs, each end-modified with responsive fluorophores (Pr-Cl for Cl-, Pr-Ca for Ca2+, and Pr-pH for pH) or a reference fluorophore (Cy5). The fluorophores are integrated at the vertices of the rigid TDN to minimize mutual interference, and their fixed stoichiometry establishes a robust ternary recognition ratiometric fluorescence sensor for in situ resolution of lysosome subpopulations in living cells. Accordingly, a rise in lysosome subpopulations 2/6 characterized by low [Cl-], medium/high [Ca2+], and high pH was observed in the Niemann-Pick disease model cells but seldom observed in the control group. Conversely, there was a marked decline in the fraction of subpopulations 1/4/5 characterized by high [Cl-], medium to low [Ca2+], and pH. These changes were substantially reversed upon treatment. The probe holds great promise for studying lysosome subpopulations and the diagnosis and treatment of related diseases.
Assuntos
Cálcio , Corantes Fluorescentes , Lisossomos , Lisossomos/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Humanos , Cálcio/química , Cálcio/análise , Cálcio/metabolismo , DNA/química , Nanoestruturas/químicaRESUMO
This study explores the synthesis and characterization of aggregation-induced emission enhancement (AIEE)-active gold nanoclusters (AuNCs), focusing on their near-infrared luminescence properties and potential applications in biological imaging. These AIEE-active AuNCs were synthesized via the NaBH4-mediated reduction of HAuCl4 in the presence of peptides. We systematically investigated the influence of the peptide sequence on the optical features of the AuNCs, highlighting the role of glutamic acid in enhancing their quantum yield (QY). Among the synthesized peptide-stabilized AuNCs, EECEE-stabilized AuNCs exhibited the maximum QY and a pronounced AIEE effect at pH 5.0, making them suitable for the luminescence imaging of intracellular lysosomes. The AIEE characteristic of the EECEE-stabilized AuNCs was demonstrated through examinations using transmission electron microscopy, dynamic light scattering, zeta potential analysis, and single-particle imaging. The formation of the EECEE-stabilized AuNCs was confirmed by size-exclusion chromatography and mass spectrometry. Spectroscopic and electrochemical examinations uncover the formation process of EECEE-stabilized AuNCs, comprising EECEE-mediated reduction, NaBH4-induced nucleation, complex aggregation, and subsequent cluster growth. Furthermore, we demonstrated the utility of these AuNCs as luminescent probes for intracellular lysosomal imaging, leveraging their pH-responsive AIEE behavior. Additionally, cyclic arginylglycylaspartic acid (RGD)-modified AIEE dots, derived from cyclic RGD-linked peptide-induced aggregation of EECEE-stabilized AuNCs, were developed for single- and two-photon luminescence imaging of αvß3 integrin receptor-positive cancer cells.
Assuntos
Ouro , Integrina alfaVbeta3 , Lisossomos , Nanopartículas Metálicas , Imagem Óptica , Humanos , Ouro/química , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/análise , Lisossomos/química , Lisossomos/metabolismo , Nanopartículas Metálicas/química , Peptídeos/química , FótonsRESUMO
Ferroptosis is an iron-dependent programmed cell death that is characterized by the dysregulation of lipid reactive oxygen species (ROS) production, causing abnormal changes in hypochlorous acid (HClO) levels in lysosomes. Super-resolution imaging can observe the fine structure of the lysosome at the nanometer level; therefore, it can be used to detect lysosome HClO levels during ferroptosis at the suborganelle level. Herein, we utilize a ratiometric fluorescent probe, SRF-HClO, for super-resolution imaging of lysosome HClO. Structured-illumination microscopy (SIM) improves the accuracy of lysosome targeting and enables the probe SRF-HClO to be successfully applied to rapidly monitor the up-regulated lysosome HClO at the nanoscale during inflammation and ferroptosis. Importantly, the probe SRF-HClO can also detect HClO changes in inflammatory and ferroptosis mice and evaluate the inhibitory effect of ferroptosis on mice tumors.
Assuntos
Ferroptose , Corantes Fluorescentes , Ácido Hipocloroso , Lisossomos , Ferroptose/efeitos dos fármacos , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Ácido Hipocloroso/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Animais , Camundongos , Humanos , Imagem Óptica , Células RAW 264.7RESUMO
Lysosomes are membrane-enclosed organelles that play key roles in degrading and recycling cellular debris, cellular signaling, and energy metabolism processes. Confinement of amphiphilic peptides in the lysosome to construct functional nanostructures through noncovalent interactions is an emerging approach to tune the homeostasis of lysosome. After briefly introducing the importance of lysosome and its functions, we discuss the advantages of lysosomal nanostructure formation for disease therapy. We next discuss the strategy for triggering the self-assembly of peptides in the lysosome, followed by a concise outlook of the future perspective about this emerging research direction.