RESUMO
Bioluminescence imaging (BLI) allows non-invasive visualization of cells and biochemical events in vivo and thus has become an indispensable technique in biomedical research. However, BLI in the central nervous system remains challenging because luciferases show relatively poor performance in the brain with existing substrates. Here, we report the discovery of a NanoLuc substrate with improved brain performance, cephalofurimazine (CFz). CFz paired with Antares luciferase produces greater than 20-fold more signal from the brain than the standard combination of D-luciferin with firefly luciferase. At standard doses, Antares-CFz matches AkaLuc-AkaLumine/TokeOni in brightness, while occasional higher dosing of CFz can be performed to obtain threefold more signal. CFz should allow the growing number of NanoLuc-based indicators to be applied to the brain with high sensitivity. Using CFz, we achieve video-rate non-invasive imaging of Antares in brains of freely moving mice and demonstrate non-invasive calcium imaging of sensory-evoked activity in genetically defined neurons.
Assuntos
Diagnóstico por Imagem , Medições Luminescentes , Camundongos , Animais , Medições Luminescentes/métodos , Encéfalo/diagnóstico por imagem , Luciferina de Vaga-Lumes , LuciferinasRESUMO
BioLuminescent OptoGenetics ("BL-OG") is a chemogenetic method that can evoke optogenetic reactions in the brain non-invasively. In BL-OG, an enzyme that catalyzes a light producing reaction (i.e., a luciferase) is tethered to an optogenetic element that is activated in response to bioluminescent light. Bioluminescence is generated by injecting a chemical substrate (luciferin, e.g., h-Coelenterazine; h-CTZ) that is catalyzed by the luciferase. By directly injecting the luciferin into the brain, we show that bioluminescent light is proportional to spiking activity, and this relationship scales as a function of luciferin dosage. Here, we build on these previous observations by characterizing the temporal dynamics and dose response curves of bioluminescence generated by luminopsins (LMOs), a proxy of BL-OG effects, to intravenous (IV) injections of the luciferin. We imaged bioluminescence through a thinned skull of mice running on a wheel, while delivering h-CTZ via the tail vein with different dosage concentrations and injection rates. The data reveal a systematic relationship between strength of bioluminescence and h-CTZ dosage, with higher concentration generating stronger bioluminescence. We also found that bioluminescent activity occurs rapidly (< 60 s after IV injection) regardless of concentration dosage. However, as expected, the onset time of bioluminescence is delayed as the injection rate decreases. Notably, the strength and time decay of bioluminescence is invariant to the injection rate of h-CTZ. Taken together, these data show that BL-OG effects are highly consistent across injection parameters of h-CTZ, highlighting the reliability of BL-OG as a minimally invasive neuromodulation method.
Assuntos
Medições Luminescentes , Optogenética , Animais , Optogenética/métodos , Camundongos , Medições Luminescentes/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Pirazinas/administração & dosagem , Pirazinas/farmacocinética , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Imidazóis/farmacocinética , Substâncias Luminescentes , Masculino , Luciferina de Vaga-Lumes/metabolismo , Luciferases/genética , Luciferases/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.
Assuntos
Luciferases , Medições Luminescentes , Potássio , Potássio/metabolismo , Potássio/química , Animais , Medições Luminescentes/métodos , Camundongos , Luciferases/química , Luciferases/metabolismo , Humanos , Engenharia de Proteínas , Substâncias Luminescentes/química , Luciferina de Vaga-Lumes/química , Luciferina de Vaga-Lumes/metabolismoRESUMO
Cypridina luciferin (CypL) is a marine natural product that functions as the luminous substrate for the enzyme Cypridina luciferase (CypLase). CypL has two enantiomers, (R)- and (S)-CypL, due to its one chiral center at the sec-butyl moiety. Previous studies reported that (S)-CypL or racemic CypL with CypLase produced light, but the luminescence of (R)-CypL with CypLase has not been investigated. Here, we examined the luminescence of (R)-CypL, which had undergone chiral separation from the enantiomeric mixture, with a recombinant CypLase. Our luminescence measurements demonstrated that (R)-CypL with CypLase produced light, indicating that (R)-CypL must be considered as the luminous substrate for CypLase, as in the case of (S)-CypL, rather than a competitive inhibitor for CypLase. Additionally, we found that the maximum luminescence intensity from the reaction of (R)-CypL with CypLase was approximately 10 fold lower than that of (S)-CypL with CypLase, but our kinetic analysis of CypLase showed that the Km value of CypLase for (R)-CypL was approximately 3 fold lower than that for (S)-CypL. Furthermore, the chiral high-performance liquid chromatography (HPLC) analysis of the reaction mixture of racemic CypL with CypLase showed that (R)-CypL was consumed more slowly than (S)-CypL. These results indicate that the turnover rate of CypLase for (R)-CypL was lower than that for (S)-CypL, which caused the less efficient luminescence of (R)-CypL with CypLase.
Assuntos
Crustáceos , Luciferinas , Animais , Cinética , Luciferases , Luciferina de Vaga-Lumes , Medições Luminescentes , LuminescênciaRESUMO
Luminescent technology based on the luciferin-luciferase reaction has been extensively employed across various disciplines as a quantitative imaging modality. Owing to its non-invasive imaging capacity, it has evolved as a valuable in vivo bioimaging tool, particularly in small animal models in fields such as gene and cell therapies. We have previously successfully generated rats with a systemic expression of the luciferase gene at the Rosa26 locus. In this study, we transplanted bone marrow from these rats into micro-mini pigs and used in vivo imaging to non-invasively analyze the dynamics of the transplanted cells. In addition, we established that the rat-to-pig transplantation system is a discordant system, similar to the pig-to-human transplantation system. Thus, rat-to-pig transplantation may provide a clinically appropriate large animal model for pig-to-human xenotransplantation.
Assuntos
Transplante de Medula Óssea , Luciferases , Porco Miniatura , Transplante Heterólogo , Animais , Suínos , Ratos , Transplante de Medula Óssea/métodos , Transplante Heterólogo/métodos , Luciferases/metabolismo , Luciferases/genética , Humanos , Medições Luminescentes/métodos , Xenoenxertos , Luciferina de Vaga-Lumes/metabolismo , Luciferina de Vaga-Lumes/químicaRESUMO
Multicomponent bioluminescence imaging in vivo requires an expanded collection of tissue-penetrant probes. Toward this end, we generated a new class of near-infrared (NIR) emitting coumarin luciferin analogues (CouLuc-3s). The scaffolds were easily accessed from commercially available dyes. Complementary mutant luciferases for the CouLuc-3 analogues were also identified. The brightest probes enabled sensitive imaging in vivo. The CouLuc-3 scaffolds are also orthogonal to popular bioluminescent reporters and can be used for multicomponent imaging applications. Collectively, this work showcases a new set of bioluminescent tools that can be readily implemented for multiplexed imaging in a variety of biological settings.
Assuntos
Luciferina de Vaga-Lumes , Luciferinas , Medições Luminescentes/métodos , Luciferases , CumarínicosRESUMO
Engineered luciferase-luciferin pairs have expanded the number of cellular targets that can be visualized in tandem. While light production relies on selective processing of synthetic luciferins by mutant luciferases, little is known about the origin of selectivity. The development of new and improved pairs requires a better understanding of the structure-function relationship of bioluminescent probes. In this work, we report a biochemical approach to assessing and optimizing two popular bioluminescent pairs: Cashew/d-luc and Pecan/4'-BrLuc. Single mutants derived from Cashew and Pecan revealed key residues for selectivity and thermal stability. Stability was further improved through a rational addition of beneficial residues. In addition to providing increased stability, the known stabilizing mutations surprisingly also improved selectivity. The resultant improved pair of luciferases are >100-fold selective for their respective substrates and highly thermally stable. Collectively, this work highlights the importance of mechanistic insight for improving bioluminescent pairs and provides significantly improved Cashew and Pecan enzymes which should be immediately suitable for multicomponent imaging applications.
Assuntos
Luciferina de Vaga-Lumes , Medições Luminescentes , Luciferina de Vaga-Lumes/química , Medições Luminescentes/métodos , Luciferases/genética , Luciferases/química , Luciferinas , MutaçãoRESUMO
The design of π-extended conjugation 'V'-shaped red shifted bioluminescent D-luciferin analogues based on a novel benzobisthiazole core is described. The divergent synthetic route allowed access to a range of amine donor substituents through an SN Ar reaction. In spectroscopic studies, the 'V'-shaped luciferins exhibited narrower optical band gaps, more red-shifted absorption and emission spectra than D-luciferin. Their bioluminescence characteristics were recorded against four different luciferases (PpyLuc, FlucRed, CBR2 and PLR3). With native luciferase PpyLuc, the 'V'-shaped luciferins demonstrated more red-shifted emissions than D-luciferin (λbl =561â nm) by 60 to 80â nm. In addition, the benzobisthiazole luciferins showed a wide range of bioluminescence spectra from the visible light region (λbl =500â nm) to the nIR window (>650â nm). The computational results validate the design concept which can be used as a guide for further novel D-luciferin analogues based upon other 'V'-shaped heterocyclic cores.
Assuntos
Luciferina de Vaga-Lumes , Luz , Luciferina de Vaga-Lumes/química , Luciferases/química , Análise Espectral , Medições Luminescentes/métodos , Luciferases de Vaga-LumeRESUMO
A new rationally designed fully rotationally restricted luciferin has been synthesised. This synthetic luciferin, based upon the structure of infraluciferin, has two intramolecular H-bonds to reduce degrees of freedom, an amine group to enhance ICT process, and an alkenyl group to increase π-conjugation. In the spectroscopic measurements and computational calculations, enamine luciferin showed more red-shifted absorption and fluorescence emission than LH2 and iLH2. With PpyWT luciferase enamine luciferin gave bioluminescence at 564 nm which is similar to LH2 at 561 nm. Further investigation by docking studies revealed that the emission wavelength of enamine luciferin might be attributed to the unwanted twisted structure caused by Asp531 within the enzyme. With mutant luciferase FlucRed, the major emission peak was shifted to 606 nm, a distinct shoulder above 700 nm, and 21% of its spectrum located in the nIR range.
Assuntos
Luciferina de Vaga-Lumes , Luciferinas , Simulação de Acoplamento Molecular , Luciferina de Vaga-Lumes/química , Luciferases/química , Medições Luminescentes/métodosRESUMO
The development of bioluminescence-based tools has seen steady growth in the field of chemical biology over the past few decades ranging in uses from reporter genes to assay development and targeted imaging. More recently, coelenterazine-utilizing luciferases such as Gaussia, Renilla, and the engineered nano-luciferases have been utilized due to their intense luminescence relative to firefly luciferin/luciferase. The emerging importance of these systems warrants investigations into the components that affect their light production. Previous work has reported that one marine luciferase, Gaussia, is potently inhibited by copper salt. The mechanism for inhibition was not elucidated but was hypothesized to occur via binding to the enzyme. In this study, we provide the first report of a group of nonhomologous marine luciferases also exhibiting marked decreases in light emission in the presence of copper (II). We investigate the mechanism of action behind this inhibition and demonstrate that the observed copper inhibition does not stem from a luciferase interaction but rather the chemical oxidation of imidazopyrazinone luciferins generating inert, dehydrated luciferins.
Assuntos
Cobre , Luciferases de Vaga-Lume , Cobre/farmacologia , Luciferases/genética , Oxirredução , Luciferases de Vaga-Lume/metabolismo , Luciferina de Vaga-Lumes , Medições Luminescentes/métodos , LuminescênciaRESUMO
Bioluminescence-based probes have long been used to quantify and visualize biological processes in vitro and in vivo. Over the past years, we have witnessed the trend of bioluminescence-driven optogenetic systems. Typically, bioluminescence emitted from coelenterazine-type luciferin-luciferase reactions activate light-sensitive proteins, which induce downstream events. The development of coelenterazine-type bioluminescence-induced photosensory domain-based probes has been applied in the imaging, sensing, and control of cellular activities, signaling pathways, and synthetic genetic circuits in vitro and in vivo. This strategy can not only shed light on the mechanisms of diseases, but also promote interrelated therapy development. Here, this review provides an overview of these optical probes for sensing and controlling biological processes, highlights their applications and optimizations, and discusses the possible future directions.
Assuntos
Fenômenos Biológicos , Medições Luminescentes , Medições Luminescentes/métodos , Luciferases/genética , Luciferases/metabolismo , Luciferina de Vaga-Lumes/metabolismoRESUMO
Mitochondrial membrane potential (ΔΨm) is a universal selective indicator of mitochondrial function and is known to play a central role in many human pathologies, such as diabetes mellitus, cancer and Alzheimer's and Parkinson's diseases. Here, we report the design, synthesis and several applications of mitochondria-activatable luciferin (MAL), a bioluminescent probe sensitive to ΔΨm, and partially to plasma membrane potential (ΔΨp), for non-invasive, longitudinal monitoring of ΔΨm in vitro and in vivo. We applied this new technology to evaluate the aging-related change of ΔΨm in mice and showed that nicotinamide riboside (NR) reverts aging-related mitochondrial depolarization, revealing another important aspect of the mechanism of action of this potent biomolecule. In addition, we demonstrated application of the MAL probe for studies of brown adipose tissue (BAT) activation and non-invasive in vivo assessment of ΔΨm in animal cancer models, opening exciting opportunities for understanding the underlying mechanisms and for discovery of effective treatments for many human pathologies.
Assuntos
Envelhecimento/genética , Diagnóstico por Imagem/métodos , Luciferina de Vaga-Lumes/química , Corantes Fluorescentes/química , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Potencial da Membrana Mitocondrial/genética , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Dioxóis/farmacologia , Feminino , Luciferina de Vaga-Lumes/metabolismo , Corantes Fluorescentes/metabolismo , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Neoplasias Mamárias Experimentais/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Nigericina/farmacologia , Compostos de PiridínioRESUMO
The firefly luciferase system is the most extensively utilized bioluminescence system in the field of life science at the moment. In this work, we designed and synthesized a series of alkene-conjugated luciferins to develop new firefly bioluminescence substrates, and further evaluated their activities in vitro and in vivo. It is worth noting that the maximum biological emission wavelength of novel luciferin analogue AL3 ((S,E)-2-(6-hydroxy-5-(3-methoxy-3-oxoprop-1-en-1-yl)benzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) is 100 nm red-shifted compared with D-luciferin, while that of analogue AL4 ((S,E)-2-(5-(2-cyanovinyl)-6-hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) is 75 nm red-shifted. The new substrate AL2 ((S,E)-2-(6-hydroxy-7-(3-methoxy-3-oxoprop-1-en-1-yl)benzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) showed better bioluminescence performance in vivo.
Assuntos
Luciferina de Vaga-Lumes , Luciferinas , Alcenos , Luciferases de Vaga-Lume , Medições Luminescentes/métodosRESUMO
Bioluminescence imaging (BLI) is a widely applied visual approach for real-time detecting many physiological and pathological processes in a variety of biological systems. Based on the caging strategy, lots of bioluminescent probes have been well developed. While the targets react with recognizable groups, caged luciferins liberate luciferase substrates, which react with luciferase generating a bioluminescent response. Among the various bioluminescent systems, the most widely utilized bioluminescent system is the firefly luciferin system. The H and carboxylic acid of luciferin are critically caged sites. The introduced self-immolative linker extends the applications of probes. Firefly luciferin system probes have been successfully applied for analyzing physiological processes, monitoring the environment, diagnosing diseases, screening candidate drugs, and evaluating the therapeutic effect. Here, we systematically review the general design strategies of firefly luciferin bioluminescence probes and their applications. Bioluminescence probes provide a new approach for facilitating investigation in a diverse range of fields. It inspires us to explore more robust light emission luciferin and novel design strategies to develop bioluminescent probes.
Assuntos
Luciferina de Vaga-LumesRESUMO
Bioluminescence is the fascinating natural phenomenon by which living creatures produce light. Bioluminescence occurs when the oxidation of a small-molecule luciferin is catalysed by an enzyme luciferase to form an excited-state species that emits light. There are over 30 known bioluminescent systems but the luciferin-luciferase pairs of only 11 systems have been characterised to-date, whilst other novel systems are currently under investigation. The different luciferin-luciferase pairs have different light emission wavelengths and hence are suitable for various applications. The last decade or so has seen great advances in protein engineering, synthetic chemistry, and physics which have allowed luciferins and luciferases to reach previously uncharted applications. The bioluminescence reaction is now routinely used for gene assays, the detection of protein-protein interactions, high-throughput screening (HTS) in drug discovery, hygiene control, analysis of pollution in ecosystems and in vivo imaging in small mammals. Moving away from sensing and imaging, the more recent highlights of the applications of bioluminescence in biomedicine include the bioluminescence-induced photo-uncaging of small-molecules, bioluminescence based photodynamic therapy (PDT) and the use of bioluminescence to control neurons. There has also been an increase in blue-sky research such as the engineering of various light emitting plants. This has led to lots of exciting multidisciplinary science across various disciplines. This review focuses on the past, present, and future applications of bioluminescence. We aim to make this review accessible to all chemists to understand how these applications were developed and what they rely upon, in simple understandable terms for a graduate chemist.
Assuntos
Biotecnologia , Luciferina de Vaga-Lumes/química , Luminescência , Medições Luminescentes , Animais , Vaga-Lumes , Luciferina de Vaga-Lumes/metabolismoRESUMO
Luciferases catalyze light-emitting reactions that produce a rainbow of colors from their substrates (luciferins), molecular oxygen, and often additional cofactors. These bioluminescence (BL) systems have afforded an incredible variety of basic research and medical applications. Driven by the importance of BL-based non-invasive animal imaging (BLI) applications, especially in support of cancer research, new BL systems have been developed by engineering beetle luciferase (Luc) variants and synthetic substrate combinations to produce red to near-infrared (nIR) light to improve imaging sensitivity and resolution. To stimulate the application of BLI research and advance the development of improved reagents for BLI, we undertook a systematic comparison of the spectroscopic and BL properties of seven beetle Lucs with LH2 and nine substrates, which included two new quinoline ring-containing analogs. The results of these experiments with purified Luc enzymes in vitro and in live HEK293T cells transfected with luc genes have enabled us to identify Luc/analog combinations with improved properties compared to those previously reported and to provide live cell BL data that may be relevant to in vivo imaging applications. Additionally, we found strong candidate enzyme/substrate pairs for in vitro biomarker applications requiring nIR sources with minimal visible light components. Notably, one of our new substrates paired with a previously developed Luc variant was demonstrated to be an excellent in vitro source of nIR and a potentially useful BL system for improved resolution in BLI.
Assuntos
Besouros , Luciferinas , Animais , Luciferina de Vaga-Lumes/química , Células HEK293 , Humanos , Raios Infravermelhos , Luciferases/química , Luciferases/genética , Medições Luminescentes/métodosRESUMO
This study demonstrates that the luciferin of the firefly squid Watasenia scintillans, which generally reacts with Watasenia luciferase, reacted with human albumin to emit light in proportion to the albumin concentration. The luminescence showed a peak wavelength at 540 nm and was eliminated by heat or protease treatment. We used urine samples collected from patients with diabetes to quantify urinary albumin concentration, which is essential for the early diagnosis of diabetic nephropathy. Consequently, we were able to measure urinary albumin concentrations by precipitating urinary proteins with acetone before the reaction with luciferin. A correlation was found with the result of the immunoturbidimetric method; however, the Watasenia luciferin method tended to produce lower albumin concentrations. This may be because the Watasenia luciferin reacts with only intact albumin. Therefore, the quantification method using Watasenia luciferin is a new principle of urinary albumin measurement that differs from already established methods such as immunoturbidimetry and high-performance liquid chromatography.
Assuntos
Decapodiformes , Vaga-Lumes , Albuminas/metabolismo , Albuminúria/diagnóstico , Animais , Decapodiformes/química , Vaga-Lumes/metabolismo , Luciferina de Vaga-Lumes/metabolismo , Humanos , LuciferinasRESUMO
The application of in vivo bioluminescent imaging in infectious disease research has significantly increased over the past years. The detection of transgenic parasites expressing wildtype firefly luciferase is however hampered by a relatively low and heterogeneous tissue penetrating capacity of emitted light. Solutions are sought by using codon-optimized red-shifted luciferases that yield higher expression levels and produce relatively more red or near-infrared light, or by using modified bioluminescent substrates with enhanced cell permeability and improved luminogenic or pharmacokinetic properties. In this study, the in vitro and in vivo efficacy of two modified bioluminescent substrates, CycLuc1 and AkaLumine-HCl, were compared with that of D-luciferin as a gold standard. Comparisons were made in experimental and insect-transmitted animal models of leishmaniasis (caused by intracellular Leishmania species) and African trypanosomiasis (caused by extracellular Trypanosoma species), using parasite strains expressing the red-shifted firefly luciferase PpyRE9. Although the luminogenic properties of AkaLumine-HCl and D-luciferin for in vitro parasite detection were comparable at equal substrate concentrations, AkaLumine-HCl proved to be unsuitable for in vivo infection follow-up due to high background signals in the liver. CycLuc1 presented a higher in vitro luminescence compared to the other substrates and proved to be highly efficacious in vivo, even at a 20-fold lower dose than D-luciferin. This efficacy was consistent across infections with the herein included intracellular and extracellular parasitic organisms. It can be concluded that CycLuc1 is an excellent and broadly applicable alternative for D-luciferin, requiring significantly lower doses for in vivo bioluminescent imaging in rodent models of leishmaniasis and African trypanosomiasis.
Assuntos
Parasitos , Tripanossomíase Africana , Animais , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Parasitos/metabolismo , Medições Luminescentes/métodos , Luciferases/genética , Luciferases/metabolismo , Luciferinas , Luciferina de Vaga-Lumes/metabolismoRESUMO
Luciferin is one of Nature's most widespread luminophores, and enzymes that catalyze luciferin luminescence are the basis of successful commercial "glow" assays for gene expression and metabolic ATP formation. Herein we report an electrochemical method to promote firefly's luciferin luminescence in the absence of its natural biocatalyst-luciferase. We have gained experimental and computational insights on the mechanism of the enzyme-free luciferin electrochemiluminescence, demonstrated its spectral tuning from green to red by means of electrolyte engineering, proven that the colour change does not require, as still debated, a keto/enol isomerization of the light emitter, and gained evidence of the electrostatic-assisted stabilization of the charge-transfer excited state by double layer electric fields. Luciferin's electrochemiluminescence, as well as the in situ generation of fluorescent oxyluciferin, are applied towards an optical measurement of diffusion coefficients.
Assuntos
Luciferina de Vaga-Lumes , Luciferinas , Luciferases/metabolismo , Luciferina de Vaga-Lumes/metabolismo , Luminescência , Catálise , Medições LuminescentesRESUMO
D-Luciferin (D-LH2 ), a substrate of firefly luciferase (Fluc), is important for a wide range of bioluminescence applications. This work reports a new and green method using enzymatic reactions (HELP, HadA Enzyme for Luciferin Preparation) to convert 19 phenolic derivatives to 8 D-LH2 analogues with ≈51 % yield. The method can synthesize the novel 5'-methyl-D-LH2 and 4',5'-dimethyl-D-LH2 , which have never been synthesized or found in nature. 5'-Methyl-D-LH2 emits brighter and longer wavelength light than the D-LH2 . Using HELP, we further developed LUMOS (Luminescence Measurement of Organophosphate and Derivatives) technology for in situ detection of organophosphate pesticides (OPs) including parathion, methyl parathion, EPN, profenofos, and fenitrothion by coupling the reactions of OPs hydrolase and Fluc. The LUMOS technology can detect these OPs at parts per trillion (ppt) levels. The method can directly detect OPs in food and biological samples without requiring sample pretreatment.