Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 634
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(1): 107-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057632

RESUMO

PURPOSE: Reactive oxygen species and mitochondrial dysfunction play a crucial role in the pathophysiology of Duchenne muscular dystrophy (DMD). The light-emitting diode therapy (LEDT) showed beneficial effects on the dystrophic muscles. However, the mechanisms of this therapy influence the molecular pathways in the dystrophic muscles, particularly related to antioxidant effects, which still needs to be elucidated. The current study provides muscle cell-specific insights into the effect of LEDT, 48 h post-irradiation, on oxidative stress and mitochondrial parameters in the dystrophic primary muscle cells in culture. METHODS: Dystrophic primary muscle cells were submitted to LEDT, at multiple wavelengths (420 nm, 470 nm, 660 nm and 850 nm), 0.5 J dose, and evaluated after 48 h based on oxidative stress markers, antioxidant enzymatic system and biogenesis, and functional mitochondrial parameters. RESULTS: The mdx muscle cells treated with LEDT showed a significant reduction of H2O2 production and 4-HNE, catalase, SOD-2, and GR levels. Upregulation of UCP3 was observed with all wavelengths while upregulation of PGC-1α and a slight upregulation of electron transport chain complexes III and V was only observed following 850 nm LEDT. In addition, the mitochondrial membrane potential and mitochondrial mass mostly tended to be increased following LEDT, while parameters like O2·- production tended to be decreased. CONCLUSION: The data shown here highlight the potential of LEDT as a therapeutic agent for DMD through its antioxidant action by modulating PGC-1α and UCP3 levels.


Assuntos
Antioxidantes , Músculo Esquelético , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Músculo Esquelético/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Células Musculares/metabolismo
2.
Lasers Med Sci ; 39(1): 132, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758297

RESUMO

Photobiomodulation therapy (PBMT) was introduced as an ergogenic aid for sport performance in healthy individuals is still controversial. The main aim of this study is to assess the potential enhancements in muscle endurance and recovery from muscle strength and injuries mediated by PBMT among individuals exhibiting diverse activity levels. Randomized controlled trials (RCT) of PBMT interventions for healthy people (both trained and untrained individuals) exercising were searched (up to January 16, 2024) in four electronic databases: Web of Science, PubMed, Scopus and Embase. Primary outcome measures included muscle endurance, muscle strength and creatine kinase (CK) levels; secondary outcome measure included Lactate dehydrogenase (LDH) levels. Subgroup analyses based on physical activity levels were conducted for each outcome measure. Thirty-four RCTs were included based on the article inclusion and exclusion criteria. Statistical results showed that PBMT significantly improved muscle endurance (standardized mean difference [SMD] = 0.31, 95%CI 0.11, 0.51, p < 0.01), indicating a moderate effect size. It also facilitated the recovery of muscle strength (SMD = 0.24, 95%CI 0.10, 0.39, p < 0.01) and CK (mean difference [MD] = -77.56, 95%CI -112.67, -42.44, p < 0.01), indicating moderate and large effect sizes, respectively. Furthermore, pre-application of PBMT significantly improved muscle endurance, recovery of muscle strength and injuries in physically inactive individuals and athletes (p < 0.05), while there was no significant benefit for physically active individuals. Pre-application of PBMT improves muscle endurance and promotes recovery from muscle strength and injury (includes CK and LDH) in athletes and sedentary populations, indicating moderate to large effect sizes, but is ineffective in physically active populations. This may be due to the fact that physically active people engage in more resistance training, which leads to a decrease in the proportion of red muscle fibres, thus affecting photobiomodulation.


Assuntos
Terapia com Luz de Baixa Intensidade , Força Muscular , Resistência Física , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Força Muscular/efeitos da radiação , Força Muscular/fisiologia , Resistência Física/efeitos da radiação , Resistência Física/fisiologia , Exercício Físico/fisiologia , Creatina Quinase/sangue , Músculo Esquelético/efeitos da radiação , Músculo Esquelético/fisiologia
3.
Lasers Med Sci ; 39(1): 145, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819613

RESUMO

Photobiomodulation therapy (PBMT) has been advocated as a potential intervention to improve muscle performance and recovery in the health and sports context. However, the short- and long-term effects of PBMT on endurance running performance remain under-researched and controversial. The purpose of this study was to investigate the acute dose-response effect of PBMT with light-emitting diodes (LEDs) on endurance performance and rating of perceived exertion (RPE; 6-20 Borg) during a 5-km running trial in recreational runners. In a crossover design, eighteen young adult runners (28.7 ± 7.8 years) were randomized to receive 1 of 4 PBMT conditions (placebo, 300, 900, and 1260 Joules [J]) 60 min before the 5-km running trial on four occasions, separated by a 2-wk washout period. The treatments were applied to the quadriceps, hamstrings, and gastrocnemius muscles of both legs using a device containing 200 LEDs (100 red and 100 infrared). The following variables were assessed: endurance performance (i.e. total time, mean velocity, and velocity in the split distances at the initial 200 m and every 400 m lap) and RPE in the split distances at the initial 200 m and every 400 m lap. Data normality and homogeneity were tested using Shapiro-Wilk's and Levene's tests, respectively. Differences between treatment conditions were assessed using the analysis of variance tests (one- or two-way ANOVA, depending on the comparisons), complemented by the Bonferroni post hoc test. There were significant time effects for the running velocity and RPE in the split distances (p < 0.0001), with no significant treatment-by-time interaction (running velocity, p = 0.59; RPE, p = 0.95). The mean velocity (p = 0.997), total time (p = 0.998), and total mean of the RPE (p = 0.91) were similar between treatment conditions. In conclusion, acute PBMT with LEDs at doses of 300, 900, and 1260 J is not recommended for improving endurance performance and RPE in the 5-km running trial in recreational runners.


Assuntos
Estudos Cross-Over , Terapia com Luz de Baixa Intensidade , Corrida , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Terapia com Luz de Baixa Intensidade/instrumentação , Corrida/fisiologia , Adulto , Masculino , Método Duplo-Cego , Adulto Jovem , Feminino , Resistência Física/efeitos da radiação , Músculo Esquelético/efeitos da radiação , Músculo Esquelético/fisiologia , Desempenho Atlético/fisiologia
4.
Lasers Med Sci ; 39(1): 171, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965082

RESUMO

To evaluate the effects of red and infrared wavelengths, separately and combined, on the inflammatory process and collagen deposition in muscle damage caused by B. leucurus venom. 112 mice were inoculated with diluted venom (0.6mg/kg) in the gastrocnemius muscle. The animals were divided into four groups: one control (CG) and three treatments, namely: 1) red laser (λ=660 nm) (RG), 2) infrared laser (λ=808 nm) (IG) and 3) red laser (λ=660 nm) + infrared (λ=808 nm) (RIG). Each group was subdivided into four subgroups, according to the duration of treatment application (applications every 24 hours over evaluation times of up to 144 hours). A diode laser was used (0.1 W, CW, 1J/point, ED: 10 J/cm2). Both wavelengths reduced the intensity of inflammation and the combination between them significantly intensified the anti-inflammatory response. Photobiomodulation also changed the type of inflammatory infiltrate observed and RIG had the highest percentage of mononuclear cells in relation to the other groups. Hemorrhage intensity was significantly lower in treated animals and RIG had the highest number of individuals in which this variable was classified as mild. As for collagen deposition, there was a significant increase in RG in relation to CG, in RIG in relation to CG and in RIG in relation to IG. Photobiomodulation proved to be effective in the treatment of inflammation and hemorrhage caused by B. leucurus venom and stimulated collagen deposition. Better results were obtained with the combined wavelengths.


Assuntos
Bothrops , Colágeno , Venenos de Crotalídeos , Hemorragia , Inflamação , Terapia com Luz de Baixa Intensidade , Músculo Esquelético , Animais , Camundongos , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/efeitos da radiação , Músculo Esquelético/efeitos dos fármacos , Hemorragia/patologia , Colágeno/metabolismo , Colágeno/análise , Venenos de Crotalídeos/toxicidade , Raios Infravermelhos , Masculino , Lasers Semicondutores/uso terapêutico , Mordeduras de Serpentes/radioterapia
5.
J Sci Food Agric ; 104(10): 6242-6251, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38456730

RESUMO

BACKGROUND: The pickling process with NaCl is an essential step for pork preservation. This study aimed to investigate the effect of different ultrasonic intensities of tri-frequency simultaneous ultrasound (TSIU) pickling on the NaCl content and quality of pork (longissimus dorsi). After 30 min pickling, the NaCl content, moisture content, pickling yield, cooking loss, textural properties, color, pH, moisture migration and distribution as well as microstructure of pork were assessed. RESULTS: Results showed that among all the ultrasonic treatment intensities (85-150 W L-1), the NaCl content of the sample pickled by an intensity of 101.3 W L-1 was higher than that of other intensities. TSIU 101.3 W L-1 showed 59.95% higher NaCl content than the control sample. In addition, the sample treated with TSIU of 101.3 W L-1 had higher pickling yield and moisture content, better textural properties of pork (including hardness and chewiness), and less cooking loss. The results of the low-field nuclear magnetic resonance showed that, compared with the control group, the relaxation time T21 of the ultrasound-assisted pickling samples increased, while the proportion of T22 (A22) reduction ranged from 175.0% to 379.9%. The microstructure designated that the ultrasonic treatment could facilitate changes in meat texture. CONCLUSION: Ultrasound marination of different intensities promoted the diffusion of NaCl and affected the quality of pork tenderloins. The TSIU at 101.3 W L-1 could better accelerate NaCl transport and homogeneous distribution on meat, thereby improving the sample quality. © 2024 Society of Chemical Industry.


Assuntos
Culinária , Manipulação de Alimentos , Cloreto de Sódio , Animais , Cloreto de Sódio/química , Cloreto de Sódio/análise , Suínos , Manipulação de Alimentos/métodos , Culinária/métodos , Melhoria de Qualidade , Ultrassom/métodos , Produtos da Carne/análise , Conservação de Alimentos/métodos , Cor , Músculo Esquelético/química , Músculo Esquelético/efeitos da radiação
6.
Cytokine ; 137: 155318, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045525

RESUMO

Macrophages play a fundamental role in the different stages of muscle regeneration although the precise mechanisms involved are not entirely understood. Here we investigated the types of macrophages and cytokines that appeared in muscles after local gamma irradiation of mini-pigs that underwent no subsequent treatment or received three successive adipose tissue-derived stem cell (ASC) injections. Although some variability was observed among the three animals included in each study group, a general picture emerged. No macrophages appeared in control muscles from regions that had not been irradiated nor in muscles from irradiated regions derived from two animals. A third irradiated, but untreated animal, with characteristic muscle fibrosis and necrosis due to irradiation, showed invasion of M2 macrophages within small muscle lesions. In contrast, among the three ASC-treated and irradiated animals, one of them had completely recovered normal muscle architecture at the time of sampling with no invading macrophages, muscle from a second one contained mostly M1 macrophages and some M2-like macrophages whereas muscle from a third one displayed granulomas and giant cells. ASC treatment was associated with the presence of similar levels of pro-inflammatory cytokines within the two animals in the process of muscle regeneration whereas the levels of IL-4 and IL-10 expression were distinct from one animal to another. Microspectrofluorimetry and in situ hybridization revealed strong expression of TGF-ß1 and TNFα in regenerating muscle. Overall, the data confirm the critical role of macrophages in muscle regeneration and suggest the involvement of a complex network of cytokine expression for successful recovery.


Assuntos
Raios gama , Células Gigantes/efeitos da radiação , Granuloma/metabolismo , Macrófagos/efeitos da radiação , Músculo Esquelético/efeitos da radiação , Regeneração/efeitos da radiação , Animais , Citocinas/genética , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Células Gigantes/metabolismo , Granuloma/genética , Granuloma/patologia , Hibridização In Situ/métodos , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/fisiopatologia , Regeneração/genética , Suínos , Porco Miniatura , Fator de Crescimento Transformador beta1/genética , Fator de Necrose Tumoral alfa/genética
7.
Photochem Photobiol Sci ; 20(4): 571-583, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33895984

RESUMO

Envenoming caused by snakebites is a very important neglected tropical disease worldwide. The myotoxic phospholipases present in the bothropic venom disrupt the sarcolemma and compromise the mechanisms of energy production, leading to myonecrosis. Photobiomodulation therapy (PBMT) has been used as an effective tool to treat diverse cases of injuries, such as snake venom-induced myonecrosis. Based on that, the aim of this study was to analyze the effects of PBMT through low-level laser irradiation (904 nm) on the muscle regeneration after the myonecrosis induced by Bothrops jararacussu snake venom (Bjssu) injection, focusing on myogenic regulatory factors expression, such as Pax7, MyoD, and Myogenin (MyoG). Male Swiss mice (Mus musculus), 6-8-week-old, weighing 22 ± 3 g were used. Single sub-lethal Bjssu dose or saline was injected into the right mice gastrocnemius muscle. At 3, 24, 48, and 72 h after injections, mice were submitted to PBMT treatment. When finished the periods of 48 and 72 h, mice were euthanized and the right gastrocnemius were collected for analyses. We observed extensive inflammatory infiltrate in all the groups submitted to Bjssu injections. PBMT was able to reduce the myonecrotic area at 48 and 72 h after envenomation. There was a significant increase of MyoG mRNA expression at 72 h after venom injection. The data suggest that beyond the protective effect promoted by PBMT against Bjssu-induced myonecrosis, the low-level laser irradiation was able to stimulate the satellite cells, thus enhancing the muscle repair by improving myogenic differentiation.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Regulação da Expressão Gênica/efeitos da radiação , Terapia a Laser , Miogenina/metabolismo , Necrose/terapia , Animais , Diferenciação Celular , Terapia com Luz de Baixa Intensidade , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/efeitos da radiação , Miogenina/genética
8.
Am J Dermatopathol ; 43(5): 362-364, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956095

RESUMO

ABSTRACT: Radiation can induce changes to skeletal muscle cells that may mimic and thus be confused with cells of atypical fibroxanthoma (AFX), pleomorphic dermal sarcoma, spindle cell squamous cell carcinoma, and other spindle soft-tissue tumors. An 80-year-old White man presented for Mohs micrographic surgery of an AFX on the left lateral neck. The medical history was notable for a tongue squamous cell carcinoma 9 years before that had been treated with wide local excision, left neck dissection, and radiation to the oral cavity and left neck. Frozen sections from the first stage of Mohs did not show typical AFX, but did reveal patchy clusters of atypical spindled and epithelioid cells, some with multiple nuclei. Because of the unusual appearance of these cells, Mohs micrographic surgery was halted, and the frozen tissue block was sent for permanent pathology examination. The cells on permanent sections stained positive for desmin, revealing them to be of skeletal muscle origin (in this case damaged platysma muscle because of late postradiation changes). It is thus important for the Mohs surgeon and the consultant dermatopathologist to be aware of the unusual histologic appearance of irradiated skeletal muscle to avoid confusion with other spindle cell tumors.


Assuntos
Histiocitoma Fibroso Maligno/diagnóstico , Cirurgia de Mohs , Músculo Esquelético/patologia , Lesões por Radiação/patologia , Neoplasias Cutâneas/diagnóstico , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Secções Congeladas , Histiocitoma Fibroso Maligno/patologia , Humanos , Masculino , Músculo Esquelético/efeitos da radiação , Segunda Neoplasia Primária/diagnóstico , Segunda Neoplasia Primária/patologia , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Neoplasias da Língua/radioterapia
9.
Lasers Med Sci ; 36(4): 791-802, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32638240

RESUMO

Compensatory hypertrophy (CH) occurs due to excessive mechanical load on a muscle, promoting an increase in the size of muscle fibers. In clinical practice, situations such as partial nerve injuries, denervation, and muscle imbalance caused by trauma to muscles and nerves or diseases that promote the loss of nerve conduction can induce CH in muscle fibers. Photobiomodulation (PBM) has demonstrated beneficial effects on muscle tissue during CH. The aim of the present study was to evaluate the effect of PBM on the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) as well as type 2 metalloproteinases (MMP-2) during the process of CH due to excessive load on the plantaris muscle in rats. Forty-five Wistar rats weighing 250 g were divided into three groups: control group (n = 10), hypertrophy (H) group (n = 40), and H + PBM group (n = 40). CH was induced through the ablation of synergist muscles of the plantaris muscle. The tendons of the gastrocnemius and soleus muscles were isolated and sectioned to enable the partial removal of each of muscle. The preserved plantaris muscle below the removed muscles was submitted to excessive functional load. PBM was performed with low-level laser (AsGaAl, λ = 780 nm; 40 mW; energy density: 10 J/cm2; 10 s on each point, 8 points; 3.2 J). Animals from each group were euthanized after 7 and 14 days. The plantaris muscles were carefully removed and sent for analysis of the gene and protein expression of IL-6 and TNF-α using qPCR and ELISA, respectively. MMP-2 activity was analyzed using zymography. The results were submitted to statistical analysis (ANOVA + Tukey's test, p < 0.05). The protein expression analysis revealed an increase in IL-6 levels in the H + PBM group compared to the H group and a reduction in the H group compared to the control group. A reduction in TNF-α was found in the H and H + PBM groups compared to the control group at 7 days. The gene expression analysis revealed an increase in IL-6 in the H + PBM group compared to the H group at 14 days as well as an increase in TNF-α in the H + PBM group compared to the H group at 7 days. Increases in MMP-2 were found in the H and H + PBM groups compared to the control group at both 7 and 14 days. Based on findings in the present study, it is concluded that PBM was able to modulate pro-inflammatory cytokines that are essential for the compensatory hypertrophy process. However, it has not shown a modulation effect directly in MMP-2 activity during the same period evaluated.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/patologia , Músculo Esquelético/efeitos da radiação , Animais , Hipertrofia/metabolismo , Hipertrofia/patologia , Hipertrofia/radioterapia , Interleucina-6/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Tendões/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829990

RESUMO

Low-intensity pulsed ultrasound (LIPUS) has been proved to promote the proliferation of myoblast C2C12. However, whether LIPUS can effectively prevent muscle atrophy has not been clarified, and if so, what is the possible mechanism. The aim of this study is to evaluate the effects of LIPUS on muscle atrophy in hindlimb unloading rats, and explore the mechanisms. The rats were randomly divided into four groups: normal control group (NC), hindlimb unloading group (UL), hindlimb unloading plus 30 mW/cm2 LIPUS irradiation group (UL + 30 mW/cm2), hindlimb unloading plus 80 mW/cm2 LIPUS irradiation group (UL + 80 mW/cm2). The tails of rats in hindlimb unloading group were suspended for 28 days. The rats in the LIPUS treated group were simultaneously irradiated with LIPUS on gastrocnemius muscle in both lower legs at the sound intensity of 30 mW/cm2 or 80 mW/cm2 for 20 min/d for 28 days. C2C12 cells were exposed to LIPUS at 30 or 80 mW/cm2 for 5 days. The results showed that LIPUS significantly promoted the proliferation and differentiation of myoblast C2C12, and prevented the decrease of cross-sectional area of muscle fiber and gastrocnemius mass in hindlimb unloading rats. LIPUS also significantly down regulated the expression of MSTN and its receptors ActRIIB, and up-regulated the expression of Akt and mTOR in gastrocnemius muscle of hindlimb unloading rats. In addition, three metabolic pathways (phenylalanine, tyrosine and tryptophan biosynthesis; alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism) were selected as important metabolic pathways for hindlimb unloading effect. However, LIPUS promoted the stability of alanine, aspartate and glutamate metabolism pathway. These results suggest that the key mechanism of LIPUS in preventing muscle atrophy induced by hindlimb unloading may be related to promoting protein synthesis through MSTN/Akt/mTOR signaling pathway and stabilizing alanine, aspartate and glutamate metabolism.


Assuntos
Diferenciação Celular/efeitos da radiação , Atrofia Muscular/terapia , Ondas Ultrassônicas , Receptores de Activinas Tipo II/genética , Animais , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos da radiação , Membro Posterior/patologia , Membro Posterior/efeitos da radiação , Elevação dos Membros Posteriores/métodos , Humanos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/efeitos da radiação , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Músculo Esquelético/efeitos da radiação , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mioblastos/efeitos da radiação , Miostatina/genética , Ratos , Terapia por Ultrassom/métodos
11.
Bull Exp Biol Med ; 170(3): 294-298, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33452974

RESUMO

We studied the effect of long-term light deprivation which began at different stages of ontogeny on the content of α-tocopherol in rats during the first 3 months of postnatal development. In the offspring postnatally exposed to constant darkness, the level of α-tocopherol in the liver, kidneys, heart, skeletal muscles, and lungs was significantly decreased at the early stages of postnatal ontogeny (2 weeks and 1 month). In rats kept under constant darkness after birth, the content of α-tocopherol in the lungs was also reduced at the age of 1 month. The modulating effect of light deprivation on the level of α-tocopherol can be associated both with the impact of disturbed circadian rhythms and with increased content of melatonin in the body.


Assuntos
Rim/metabolismo , Luz , Fígado/metabolismo , Pulmão/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , alfa-Tocoferol/metabolismo , Animais , Feminino , Rim/efeitos da radiação , Fígado/efeitos da radiação , Pulmão/efeitos da radiação , Masculino , Músculo Esquelético/efeitos da radiação , Ratos , Ratos Wistar , alfa-Tocoferol/efeitos da radiação
12.
Bioelectromagnetics ; 41(1): 3-20, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31854006

RESUMO

Wireless wearable and implantable devices are continuing to grow in popularity, and as this growth occurs, so too does the need to consider the safety of such devices. Wearable and implantable devices require the transmitting and receiving of electromagnetic waves near and through the body, which at high enough exposure levels may damage proximate tissues. The specific absorption rate (SAR) is the quantity commonly used to enumerate exposure levels, and various national and international organizations have defined regulations limiting exposure to ensure safe operation. In this paper, we comprehensively review dosimetric studies reported in the literature up to the year 2019 for wearables and implants. We discuss antenna designs for wearables and implants as they relate to SAR values and field and thermal distributions in tissue, present designs that have made steps to reduce SAR, and then review SAR considerations as they relate to applied devices. As compared with previous review papers, this paper is the first review to focus on dosimetry aspects relative to wearable and implantable devices. Bioelectromagnetics. 2020;41:3-20 © 2019 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.


Assuntos
Radiometria/instrumentação , Tecnologia sem Fio/instrumentação , Campos Eletromagnéticos , Humanos , Músculo Esquelético/efeitos da radiação , Próteses e Implantes , Exposição à Radiação/análise , Temperatura , Dispositivos Eletrônicos Vestíveis
13.
Toxicol Ind Health ; 36(2): 119-131, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32279651

RESUMO

The aim of the present study was to systematically investigate the effects of chronic exposure to extremely low-frequency electromagnetic field (ELF-EMF) on electrophysiological, histological and biochemical properties of the diaphragm muscle in rats. Twenty-nine newly weaned (24 days old, 23-80 g) female (n = 15) and male (n = 14) Wistar Albino rats were used in this study. The animals were randomly divided into two groups: the control group and the electromagnetic field (EMF) group. The control group was also randomly divided into two groups: the control female group and the control male group. The EMF exposure group was also randomly divided into two groups: the ELF-EMF female group and the ELF-EMF male group. The rats in the ELF-EMF groups were exposed for 4 h daily for up to 7 months to 50 Hz frequency, 1.5 mT magnetic flux density. Under these experimental conditions, electrophysiological parameters (muscle bioelectrical activity parameters: intracellular action potential and resting membrane potential and muscle mechanical activity parameter: force-frequency relationship), biochemical parameters (Na+, K+, Cl- and Ca+2 levels in the blood serum of rats; Na+-K+ ATPase enzyme-specific activities in muscle tissue; and free radical metabolism in both muscle tissue and serum) and transmission electron microscopic morphometric parameters of the diaphragm muscle were determined. We found that chronic exposure to ELF-EMF had no significant effect on the histological structure and mechanical activity of the muscle and on the majority of muscle bioelectrical activity parameters, with the exception of some parameters of muscle bioelectrical activity. However, the changes in some bioelectrical activity parameters were relatively small and unlikely to be clinically relevant.


Assuntos
Diafragma/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Músculo Esquelético/efeitos da radiação , Animais , Diafragma/patologia , Feminino , Masculino , Músculo Esquelético/patologia , Distribuição Aleatória , Ratos , Ratos Wistar
14.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255352

RESUMO

We introduce a new benchtop microgravity simulator (MGS) that is scalable and easy to use. Its working principle is similar to that of random positioning machines (RPM), commonly used in research laboratories and regarded as one of the gold standards for simulating microgravity. The improvement of the MGS concerns mainly the algorithms controlling the movements of the samples and the design that, for the first time, guarantees equal treatment of all the culture flasks undergoing simulated microgravity. Qualification and validation tests of the new device were conducted with human bone marrow stem cells (bMSC) and mouse skeletal muscle myoblasts (C2C12). bMSC were cultured for 4 days on the MGS and the RPM in parallel. In the presence of osteogenic medium, an overexpression of osteogenic markers was detected in the samples from both devices. Similarly, C2C12 cells were maintained for 4 days on the MGS and the rotating wall vessel (RWV) device, another widely used microgravity simulator. Significant downregulation of myogenesis markers was observed in gravitationally unloaded cells. Therefore, similar results can be obtained regardless of the used simulated microgravity devices, namely MGS, RPM, or RWV. The newly developed MGS device thus offers easy and reliable long-term cell culture possibilities under simulated microgravity conditions. Currently, upgrades are in progress to allow real-time monitoring of the culture media and liquids exchange while running. This is of particular interest for long-term cultivation, needed for tissue engineering applications. Tissue grown under real or simulated microgravity has specific features, such as growth in three-dimensions (3D). Growth in weightlessness conditions fosters mechanical, structural, and chemical interactions between cells and the extracellular matrix in any direction.


Assuntos
Diferenciação Celular/efeitos da radiação , Células-Tronco Mesenquimais/efeitos da radiação , Músculo Esquelético/efeitos da radiação , Osteogênese/efeitos da radiação , Animais , Reatores Biológicos , Técnicas de Cultura de Células , Humanos , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/efeitos da radiação , Engenharia Tecidual/métodos , Ausência de Peso , Simulação de Ausência de Peso
15.
J Manipulative Physiol Ther ; 43(7): 700-707, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32896420

RESUMO

OBJECTIVE: Traumatic injuries are common and may promote disruption of neuromuscular communication, triggering phenomena that lead to nerve degeneration and affect muscle function. A laser accelerates tissue recovery; however, the parameters used are varied, making it difficult to compare studies. The purpose of this study was to evaluate the effect of low-level laser therapy, at 660- and 830-nm wavelengths, on the tibialis anterior muscle of Wistar rats after sciatic nerve compression. METHODS: Twenty animals were separated into 4 groups: control, sciatic nerve injury, lesion + 660-nm laser, and lesion + 830-nm laser. In the lesion groups, the right sciatic nerve was surgically exposed and compressed with hemostatic forceps for 30 seconds. After the third postoperative day, the groups with laser therapy were submitted to treatment for 2 weeks totaling 10 applications, performed directly on the surgical scar of the nerve injury. Grip strength was analyzed before and after the nerve injury and during the treatment period. The tibialis anterior muscle was processed for light microscopy, area measurement, smaller diameter, number of fibers, nuclei, and connective tissue. RESULTS: The animals submitted to the injury experienced muscular atrophy and morphological changes in the number of muscle fibers and nuclei. In the connective tissue morphometry, there was a decrease in the treated groups compared with the untreated groups. CONCLUSION: The laser treatment at different wavelengths showed no improvement in the tibialis anterior muscle of Wistar rats within the morphological and functional aspects evaluated.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/efeitos da radiação , Traumatismos dos Nervos Periféricos/radioterapia , Neuropatia Ciática/radioterapia , Animais , Tecido Conjuntivo/patologia , Ratos , Ratos Wistar , Nervo Isquiático/efeitos da radiação , Neuropatia Ciática/fisiopatologia
17.
J Exp Biol ; 222(Pt 12)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31160425

RESUMO

An animal's pace of life is mediated by the physiological demands and stressors it experiences (e.g. reproduction) and one likely mechanism that underlies these effects is oxidative stress. Reproduction has been shown to increase or reduce oxidative stress under different conditions and to modify mitochondrial performance. We hypothesized that the changes associated with reproduction can alter how animals respond to future oxidative stressors. We tested this theory by comparing the organ-specific mitochondrial response in wild-derived female house mice. Specifically, we examined the effect of an oxidant (X-irradiation) on virgin mice and on mice that had reproduced. We measured liver and skeletal muscle mitochondrial density, respiratory performance, enzyme activity and oxidant production, as well as markers of oxidative damage to tissues. In the liver, prior reproduction prevented a radiation-induced reduction in mitochondrial density and increased mitochondrial respiratory performance. In skeletal muscle, prior reproduction resulted in a radiation-induced decline in mitochondrial density which could reduce the bioenergetic capacity of skeletal muscle mitochondria. Yet, electron transport chain complex I activity in skeletal muscle, which dropped after reproduction, returned to control levels following oxidant exposure. The results of this investigation indicate that prior reproduction alters the response of mitochondria to an oxidative challenge in an organ-specific manner. Such changes could have differential effects on future reproductive performance and risk of death.


Assuntos
Fígado/efeitos da radiação , Mitocôndrias/fisiologia , Músculo Esquelético/efeitos da radiação , Estresse Oxidativo , Reprodução , Raios X/efeitos adversos , Animais , Feminino , Fígado/fisiologia , Camundongos , Mitocôndrias/efeitos da radiação , Músculo Esquelético/fisiologia , Oxirredução , Paridade
18.
Support Care Cancer ; 27(7): 2657-2664, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30478673

RESUMO

PURPOSE: Sarcopenia is associated with reduced survival in cancer. Currently, data on sarcopenia at presentation and muscle loss throughout treatment are unknown in patients receiving chemoradiation therapy (CRT) for non-small cell lung cancer (NSCLC). This study evaluated skeletal muscle changes in NSCLC patients receiving CRT and relationship with survival. METHODS: Secondary analysis of 41 patients with NSCLC treated with CRT assessed for skeletal muscle area and muscle density by computed tomography pre-treatment and 3 months post-treatment. Images at week 4 of treatment were available for 32 (78%) patients. Linear mixed models were applied to determine changes in skeletal muscle over time and related to overall survival using Kaplan-Meier plots. RESULTS: Muscle area and muscle density decreased significantly by week 4 of CRT (- 6.6 cm2, 95% CI - 9.7 to - 3.1, p < 0.001; - 1.3 HU, 95% CI - 1.9 to - 0.64, p < 0.001, respectively), with minimal change between week 4 of CRT and 3 months post-CRT follow-up (- 0.2 cm2, 95% CI - 3.6-3.1, p = 0.91; - 0.27, 95% CI - 0.91-0.36, p = 0.36, respectively). Sarcopenia was present in 25 (61%) and sarcopenic obesity in 6 (14%) of patients prior to CRT, but not associated with poorer survival. Median survival was shorter in patients with low muscle density prior to treatment although not statistically significant (25 months + 8.3 vs 53 months + 13.0, log-rank p = 0.17). CONCLUSION: Significant loss of muscle area and muscle density occurs in NSCLC patients early during CRT. A high proportion of patients are sarcopenic prior to CRT; however, this was not significantly associated with poorer survival.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/efeitos da radiação , Sarcopenia/patologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Quimiorradioterapia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Sarcopenia/etiologia , Sarcopenia/mortalidade , Análise de Sobrevida , Tomografia Computadorizada por Raios X
19.
Eur J Appl Physiol ; 119(1): 279-289, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30367258

RESUMO

PURPOSE: The purpose of this study was to investigate the effects of photobiomodulation therapy (PBMT) combined with resistance training on knee extensors muscle mass, strength and functional capacity in elderly men. METHODS: In this randomized double-blinded placebo-controlled trial, healthy elderly men (age 60-80 years) completed 12 weeks of resistance training (2×/week) with application of placebo (n = 13) or active PBMT (n = 11) on quadriceps muscles (850 nm, 240 J per limb) before each training session. Leg press and knee extension one-repetition maximum (1RM) tests, isometric and concentric peak torques, rectus femoris (RF) and vastus lateralis (VL) muscle thickness, timed up-and-go (TUG) and chair rise-to-standing (CRS) tests were performed before and after the intervention period. RESULTS: There were significant improvements in all outcomes for both groups (p < 0.05), except for RF muscle thickness for the placebo group (p = 0.09). Large effect sizes (ES > 0.8) were observed for leg press and leg extension 1RM and CRS tests for both groups, as well as for TUG test for PBMT group. Isokinetic peak torque for both groups and TUG for placebo group had moderate increases (ES > 0.5). Muscle thicknesses and isometric peak torque had small increases (ES > 0.2) in both groups. Both null hypothesis analysis and magnitude-based inference support similar effects of PBMT and placebo treatments. CONCLUSION: Different than previously evidenced in young subjects, PBMT with the parameters used in this study did not provide any additional benefits in comparison to placebo application on muscle mass, strength and functional capacity of healthy elderly men engaged in a resistance training program.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Idoso , Idoso de 80 Anos ou mais , Humanos , Joelho/fisiologia , Terapia com Luz de Baixa Intensidade/efeitos adversos , Masculino , Pessoa de Meia-Idade , Força Muscular , Músculo Esquelético/efeitos da radiação
20.
Lasers Med Sci ; 34(5): 991-999, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30456534

RESUMO

Cryotherapy and phototherapy have been suggested as recovery methods due to their anti-inflammatory effects. They may also induce mitochondrial biogenesis, thus favoring endurance training adaptation. The aim of this study was to evaluate the anti-inflammatory and ergogenic effects of phototherapy or cold water immersion (CWI) applied daily after exercise in rats. Thirty-five rats were divided into five groups: control (CO), non-exercised (CE), passive recovery (PR), cold water immersion (CWI), and LED therapy (LED). The CO and CE groups were not submitted to training; however, the CE were submitted to an exhaustion test after the training period. Low-intensity swimming training (21 sessions, 45 min) was performed followed by passive recovery (PR), CWI (10 °C, 5 min), or infrared irradiation (940 nm, 4 J/cm2). Forty-eight hours after the final training session, the CE, PR, CWI, and LED animals were submitted to an exhaustion test. The animals were euthanized 24 h later and submitted to hematological, creatine kinase (CK), and C-reactive protein (PCR) analysis. Gastrocnemius and soleus muscles were submitted to histological analysis. No differences in blood cell counts, CK, and PCR were detected between groups. The CE group presented an increased number of areas with necrosis in the gastrocnemius and soleus muscles. The PR group presented the highest frequency of areas with edema and inflammation followed by CWI and LED groups. None of the recovery methods improved the performance in the exhaustion test. Successive applications of recovery methods do not improve exercise performance, but downmodulate the inflammation and prevent muscle necrosis.


Assuntos
Temperatura Baixa , Imersão , Músculo Esquelético/efeitos da radiação , Fototerapia , Condicionamento Físico Animal , Água , Animais , Peso Corporal/efeitos da radiação , Proteína C-Reativa/metabolismo , Creatina Quinase/sangue , Edema/patologia , Inflamação/patologia , Masculino , Necrose , Tamanho do Órgão/efeitos da radiação , Ratos Wistar , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA