Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35298912

RESUMO

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Assuntos
Animais Selvagens/virologia , Doenças Transmissíveis Emergentes/virologia , Reservatórios de Doenças , Mamíferos/virologia , Viroma , Animais , China , Filogenia , Zoonoses
2.
Cell ; 157(1): 142-50, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24679532

RESUMO

The virome contains the most abundant and fastest mutating genetic elements on Earth. The mammalian virome is constituted of viruses that infect host cells, virus-derived elements in our chromosomes, and viruses that infect the broad array of other types of organisms that inhabit us. Virome interactions with the host cannot be encompassed by a monotheistic view of viruses as pathogens. Instead, the genetic and transcriptional identity of mammals is defined in part by our coevolved virome, a concept with profound implications for understanding health and disease.


Assuntos
Bacteriófagos/fisiologia , Mamíferos/virologia , Microbiota , Vírus/genética , Animais , Bactérias/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Interações Hospedeiro-Patógeno , Humanos , Mamíferos/genética , Mamíferos/imunologia , Vírus/classificação , Vírus/metabolismo
3.
Nature ; 622(7984): 810-817, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853121

RESUMO

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.


Assuntos
Aves , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Internacionalidade , Animais , África/epidemiologia , Animais Selvagens/virologia , Ásia/epidemiologia , Aves/virologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Surtos de Doenças/veterinária , Europa (Continente)/epidemiologia , Evolução Molecular , Especificidade de Hospedeiro , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/mortalidade , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mamíferos/virologia , Mutação , Filogenia , Aves Domésticas/virologia
4.
Mol Cell ; 81(24): 5099-5111.e8, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34919820

RESUMO

The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.


Assuntos
Mamíferos/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Epitopos/genética , Epitopos/imunologia , Células HEK293 , Humanos , Mamíferos/imunologia , Ligação Proteica/genética , Ligação Proteica/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Nature ; 607(7919): 555-562, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483403

RESUMO

At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals1,2. However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover-a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal-virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.


Assuntos
Mudança Climática , Mamíferos , Zoonoses Virais , Vírus , Migração Animal , Animais , Biodiversidade , Quirópteros/virologia , Mudança Climática/estatística & dados numéricos , Monitoramento Ambiental , Humanos , Mamíferos/classificação , Mamíferos/virologia , Filogeografia , Medição de Risco , Clima Tropical , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Vírus/isolamento & purificação
6.
Nature ; 584(7821): 398-402, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32759999

RESUMO

Land use change-for example, the conversion of natural habitats to agricultural or urban ecosystems-is widely recognized to influence the risk and emergence of zoonotic disease in humans1,2. However, whether such changes in risk are underpinned by predictable ecological changes remains unclear. It has been suggested that habitat disturbance might cause predictable changes in the local diversity and taxonomic composition of potential reservoir hosts, owing to systematic, trait-mediated differences in species resilience to human pressures3,4. Here we analyse 6,801 ecological assemblages and 376 host species worldwide, controlling for research effort, and show that land use has global and systematic effects on local zoonotic host communities. Known wildlife hosts of human-shared pathogens and parasites overall comprise a greater proportion of local species richness (18-72% higher) and total abundance (21-144% higher) in sites under substantial human use (secondary, agricultural and urban ecosystems) compared with nearby undisturbed habitats. The magnitude of this effect varies taxonomically and is strongest for rodent, bat and passerine bird zoonotic host species, which may be one factor that underpins the global importance of these taxa as zoonotic reservoirs. We further show that mammal species that harbour more pathogens overall (either human-shared or non-human-shared) are more likely to occur in human-managed ecosystems, suggesting that these trends may be mediated by ecological or life-history traits that influence both host status and tolerance to human disturbance5,6. Our results suggest that global changes in the mode and the intensity of land use are creating expanding hazardous interfaces between people, livestock and wildlife reservoirs of zoonotic disease.


Assuntos
Biodiversidade , Especificidade de Hospedeiro , Zoonoses/microbiologia , Zoonoses/parasitologia , Zoonoses/virologia , Animais , Aves/microbiologia , Aves/parasitologia , Aves/virologia , Humanos , Mamíferos/microbiologia , Mamíferos/parasitologia , Mamíferos/virologia , Especificidade da Espécie , Zoonoses/transmissão
7.
Nature ; 586(7829): 424-428, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33029010

RESUMO

Since 1814, when rubella was first described, the origins of the disease and its causative agent, rubella virus (Matonaviridae: Rubivirus), have remained unclear1. Here we describe ruhugu virus and rustrela virus in Africa and Europe, respectively, which are, to our knowledge, the first known relatives of rubella virus. Ruhugu virus, which is the closest relative of rubella virus, was found in apparently healthy cyclops leaf-nosed bats (Hipposideros cyclops) in Uganda. Rustrela virus, which is an outgroup to the clade that comprises rubella and ruhugu viruses, was found in acutely encephalitic placental and marsupial animals at a zoo in Germany and in wild yellow-necked field mice (Apodemus flavicollis) at and near the zoo. Ruhugu and rustrela viruses share an identical genomic architecture with rubella virus2,3. The amino acid sequences of four putative B cell epitopes in the fusion (E1) protein of the rubella, ruhugu and rustrela viruses and two putative T cell epitopes in the capsid protein of the rubella and ruhugu viruses are moderately to highly conserved4-6. Modelling of E1 homotrimers in the post-fusion state predicts that ruhugu and rubella viruses have a similar capacity for fusion with the host-cell membrane5. Together, these findings show that some members of the family Matonaviridae can cross substantial barriers between host species and that rubella virus probably has a zoonotic origin. Our findings raise concerns about future zoonotic transmission of rubella-like viruses, but will facilitate comparative studies and animal models of rubella and congenital rubella syndrome.


Assuntos
Mamíferos/virologia , Filogenia , Vírus da Rubéola/classificação , Vírus da Rubéola/isolamento & purificação , Sequência de Aminoácidos , Animais , Animais de Zoológico/imunologia , Animais de Zoológico/virologia , Membrana Celular/virologia , Quirópteros/virologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Equidae/imunologia , Equidae/virologia , Evolução Molecular , Feminino , Mapeamento Geográfico , Alemanha , Especificidade de Hospedeiro , Humanos , Masculino , Mamíferos/imunologia , Marsupiais/imunologia , Marsupiais/virologia , Fusão de Membrana , Camundongos , Modelos Animais , Modelos Moleculares , Rubéola (Sarampo Alemão)/congênito , Rubéola (Sarampo Alemão)/virologia , Vírus da Rubéola/química , Vírus da Rubéola/imunologia , Alinhamento de Sequência , Uganda , Proteínas do Envelope Viral/química
8.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39101471

RESUMO

Several mammalian genes have originated from the domestication of retrotransposons, selfish mobile elements related to retroviruses. Some of the proteins encoded by these genes have maintained virus-like features; including self-processing, capsid structure formation, and the generation of different isoforms through -1 programmed ribosomal frameshifting. Using quantitative approaches in molecular evolution and biophysical analyses, we studied 28 retrotransposon-derived genes, with a focus on the evolution of virus-like features. By analyzing the rate of synonymous substitutions, we show that the -1 programmed ribosomal frameshifting mechanism in three of these genes (PEG10, PNMA3, and PNMA5) is conserved across mammals and originates alternative proteins. These genes were targets of positive selection in primates, and one of the positively selected sites affects a B-cell epitope on the spike domain of the PNMA5 capsid, a finding reminiscent of observations in infectious viruses. More generally, we found that retrotransposon-derived proteins vary in their intrinsically disordered region content and this is directly associated with their evolutionary rates. Most positively selected sites in these proteins are located in intrinsically disordered regions and some of them impact protein posttranslational modifications, such as autocleavage and phosphorylation. Detailed analyses of the biophysical properties of intrinsically disordered regions showed that positive selection preferentially targeted regions with lower conformational entropy. Furthermore, positive selection introduces variation in binary sequence patterns across orthologues, as well as in chain compaction. Our results shed light on the evolutionary trajectories of a unique class of mammalian genes and suggest a novel approach to study how intrinsically disordered region biophysical characteristics are affected by evolution.


Assuntos
Evolução Molecular , Retroelementos , Animais , Seleção Genética , Mamíferos/genética , Mamíferos/virologia , Proteínas Intrinsicamente Desordenadas/genética , Mudança da Fase de Leitura do Gene Ribossômico , Humanos
9.
J Virol ; 97(11): e0137023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877722

RESUMO

The H6 subtype of avian influenza virus (AIV) is a pervasive subtype that is ubiquitously found in both wild bird and poultry populations across the globe. Recent investigations have unveiled its capacity to infect mammals, thereby expanding its host range beyond that of other subtypes and potentially facilitating its global transmission. This heightened breadth also endows H6 AIVs with the potential to serve as a genetic reservoir for the emergence of highly pathogenic avian influenza strains through genetic reassortment and adaptive mutations. Furthermore, alterations in key amino acid loci within the H6 AIV genome foster the evolution of viral infection mechanisms, which may enable the virus to surmount interspecies barriers and infect mammals, including humans, thus posing a potential threat to human well-being. In this review, we summarize the origins, dissemination patterns, geographical distribution, cross-species transmission dynamics, and genetic attributes of H6 influenza viruses. This study holds implications for the timely detection and surveillance of H6 AIVs.


Assuntos
Aves , Especificidade de Hospedeiro , Vírus da Influenza A , Influenza Aviária , Mamíferos , Zoonoses Virais , Animais , Humanos , Aves/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mamíferos/virologia , Aves Domésticas/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
10.
Microb Pathog ; 195: 106895, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39208965

RESUMO

Deadly outbreaks among poultry, wild birds, and carnivorous mammals by the highly pathogenic H5N1 virus of the clade 2.3.4.4b have been reported in South America. The increasing virus incidence in various mammal species poses a severe zoonotic and pandemic threat. In Uruguay, the clade 2.3.4.4b viruses were first detected in February 2023, affecting wild birds and backyard poultry. Three months after the first reported case in Uruguay, the disease affected a population of 23 coatis (Nasua) in an ecological park. Most animals became infected, likely directly or indirectly from wild birds in the park, and experienced sudden death. Five animals from the colony survived, and four of them developed antibodies. The genomes of the H5N1 strains infecting coatis belonged to the B3.2 genotype of the clade 2.3.4.4b. Genomes from coatis were closely associated with those infecting backyard poultry, but transmission likely occurred through wild birds. Notable, two genomes have a 627K substitution in the RNA polymerase PB2 subunit, a hallmark amino acid linked to mammalian adaptation. Our findings support the ability of the avian influenza virus of the 2.3.4.4b clade to infect and transmit among terrestrial mammals with high pathogenicity and undergo rapid adaptive changes. It also highlights the coatis' ability to develop immunity and naturally clear the infection.


Assuntos
Animais Selvagens , Genoma Viral , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Mutação , Filogenia , Procyonidae , Animais , Procyonidae/virologia , Influenza Aviária/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Genoma Viral/genética , Uruguai , Animais Selvagens/virologia , Aves/virologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Aves Domésticas/virologia , Genótipo , Mamíferos/virologia , América do Sul , Surtos de Doenças/veterinária
11.
PLoS Biol ; 19(4): e3001201, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872300

RESUMO

Most vertebrate RNA viruses show pervasive suppression of CpG and UpA dinucleotides, closely resembling the dinucleotide composition of host cell transcriptomes. In contrast, CpG suppression is absent in both invertebrate mRNA and RNA viruses that exclusively infect arthropods. Arthropod-borne (arbo) viruses are transmitted between vertebrate hosts by invertebrate vectors and thus encounter potentially conflicting evolutionary pressures in the different cytoplasmic environments. Using a newly developed Zika virus (ZIKV) model, we have investigated how demands for CpG suppression in vertebrate cells can be reconciled with potentially quite different compositional requirements in invertebrates and how this affects ZIKV replication and transmission. Mutant viruses with synonymously elevated CpG or UpA dinucleotide frequencies showed attenuated replication in vertebrate cell lines, which was rescued by knockout of the zinc-finger antiviral protein (ZAP). Conversely, in mosquito cells, ZIKV mutants with elevated CpG dinucleotide frequencies showed substantially enhanced replication compared to wild type. Host-driven effects on virus replication attenuation and enhancement were even more apparent in mouse and mosquito models. Infections with CpG- or UpA-high ZIKV mutants in mice did not cause typical ZIKV-induced tissue damage and completely protected mice during subsequent challenge with wild-type virus, which demonstrates their potential as live-attenuated vaccines. In contrast, the CpG-high mutants displayed enhanced replication in Aedes aegypti mosquitoes and a larger proportion of mosquitoes carried infectious virus in their saliva. These findings show that mosquito cells are also capable of discriminating RNA based on dinucleotide composition. However, the evolutionary pressure on the CpG dinucleotides of viral genomes in arthropod vectors directly opposes the pressure present in vertebrate host cells, which provides evidence that an adaptive compromise is required for arbovirus transmission. This suggests that the genome composition of arbo flaviviruses is crucial to maintain the balance between high-level replication in the vertebrate host and persistent replication in the mosquito vector.


Assuntos
Evolução Molecular , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Zika virus/genética , Células A549 , Aedes/virologia , Animais , Composição de Bases/fisiologia , Sequência de Bases/genética , Linhagem Celular , Chlorocebus aethiops , Ilhas de CpG/fisiologia , Fosfatos de Dinucleosídeos/análise , Fosfatos de Dinucleosídeos/genética , Adaptação ao Hospedeiro/genética , Humanos , Masculino , Mamíferos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , RNA Viral/química , RNA Viral/genética , Seleção Genética/fisiologia , Células Vero , Infecção por Zika virus/genética , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
12.
Med Sci Monit ; 30: e945315, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822579

RESUMO

Highly pathogenic avian influenza (HPAI) virus subtypes have been increasingly identified in poultry and wild birds since 2021. Between 2020-2023, 26 countries have reported that the H5N1 virus had infected more than 48 mammalian species. On 1 April 2024, a public health alert was issued in Texas when the first confirmed case of human infection with the H5N1 influenza virus was reported in a dairy worker. Cases of H5N1, clade 2.3.4.4b in dairy cows have been reported in several states in the US but were unexpected, even though H5N1 was previously identified in mammalian species, including cats, dogs, bears, foxes, tigers, coyotes, goats, and seals. On 29 April 2024, almost one month after the first reported cases of H5N1 infection in dairy cows, measures were to be implemented by the US Department of Agriculture (USDA) to prevent the progression of H5N1 viral transmission. This editorial summarizes what is currently known about the epidemiology, transmission, and surveillance of the HPAI virus of the H5N1 subtype in birds, mammals, and dairy cows, and why there are concerns regarding transmission to humans.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Animais , Bovinos , Virus da Influenza A Subtipo H5N1/patogenicidade , Humanos , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Humana/virologia , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/epidemiologia , Aves/virologia , Mamíferos/virologia , Indústria de Laticínios
13.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495343

RESUMO

Understanding the genetics and taxonomy of ancient viruses will give us great insights into not only the origin and evolution of viruses but also how viral infections played roles in our evolution. Endogenous viruses are remnants of ancient viral infections and are thought to retain the genetic characteristics of viruses from ancient times. In this study, we used machine learning of endogenous RNA virus sequence signatures to identify viruses in the human genome that have not been detected or are already extinct. Here, we show that the k-mer occurrence of ancient RNA viral sequences remains similar to that of extant RNA viral sequences and can be differentiated from that of other human genome sequences. Furthermore, using this characteristic, we screened RNA viral insertions in the human reference genome and found virus-like insertions with phylogenetic and evolutionary features indicative of an exogenous origin but lacking homology to previously identified sequences. Our analysis indicates that animal genomes still contain unknown virus-derived sequences and provides a glimpse into the diversity of the ancient virosphere.


Assuntos
Genoma Humano , Mutagênese Insercional/genética , Retroviridae/genética , Animais , Sequência de Bases , Humanos , Aprendizado de Máquina , Mamíferos/virologia , Nucleoproteínas/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33397804

RESUMO

Hepatitis delta virus (HDV) is an unusual RNA agent that replicates using host machinery but exploits hepatitis B virus (HBV) to mobilize its spread within and between hosts. In doing so, HDV enhances the virulence of HBV. How this seemingly improbable hyperparasitic lifestyle emerged is unknown, but it underpins the likelihood that HDV and related deltaviruses may alter other host-virus interactions. Here, we show that deltaviruses diversify by transmitting between mammalian species. Among 96,695 RNA sequence datasets, deltaviruses infected bats, rodents, and an artiodactyl from the Americas but were absent from geographically overrepresented Old World representatives of each mammalian order, suggesting a relatively recent diversification within the Americas. Consistent with diversification by host shifting, both bat and rodent-infecting deltaviruses were paraphyletic, and coevolutionary modeling rejected cospeciation with mammalian hosts. In addition, a 2-y field study showed common vampire bats in Peru were infected by two divergent deltaviruses, indicating multiple introductions to a single host species. One vampire bat-associated deltavirus was detected in the saliva of up to 35% of individuals, formed phylogeographically compartmentalized clades, and infected a sympatric bat, illustrating horizontal transmission within and between species on ecological timescales. Consistent absence of HBV-like viruses in two deltavirus-infected bat species indicated acquisitions of novel viral associations during the divergence of bat and human-infecting deltaviruses. Our analyses support an American zoonotic origin of HDV and reveal prospects for future cross-species emergence of deltaviruses. Given their peculiar life history, deltavirus host shifts will have different constraints and disease outcomes compared to ordinary animal pathogens.


Assuntos
Vírus da Hepatite B/genética , Vírus Delta da Hepatite/genética , Especificidade de Hospedeiro/genética , Vírus Satélites/genética , Animais , Quirópteros/virologia , Transmissão de Doença Infecciosa , Variação Genética/genética , Genoma Viral/genética , Hepatite B/genética , Hepatite B/transmissão , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Hepatite D/genética , Hepatite D/transmissão , Hepatite D/virologia , Vírus Delta da Hepatite/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Mamíferos/virologia , Filogenia , Roedores/virologia , Vírus Satélites/patogenicidade
15.
EMBO J ; 38(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872283

RESUMO

To protect against the harmful consequences of viral infections, organisms are equipped with sophisticated antiviral mechanisms, including cell-intrinsic means to restrict viral replication and propagation. Plant and invertebrate cells utilise mostly RNA interference (RNAi), an RNA-based mechanism, for cell-intrinsic immunity to viruses while vertebrates rely on the protein-based interferon (IFN)-driven innate immune system for the same purpose. The RNAi machinery is conserved in vertebrate cells, yet whether antiviral RNAi is still active in mammals and functionally relevant to mammalian antiviral defence is intensely debated. Here, we discuss cellular and viral factors that impact on antiviral RNAi and the contexts in which this system might be at play in mammalian resistance to viral infection.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Mamíferos/imunologia , Interferência de RNA , RNA Viral/genética , Viroses/imunologia , Vírus/imunologia , Animais , Antivirais/administração & dosagem , Interações Hospedeiro-Patógeno/genética , Mamíferos/genética , Mamíferos/virologia , Viroses/genética , Viroses/virologia , Replicação Viral , Vírus/isolamento & purificação
16.
J Virol ; 96(22): e0093322, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36300941

RESUMO

The genomes of eukaryotes preserve a vast diversity of ancient viruses in the form of endogenous viral elements (EVEs). Study of this genomic fossil record provides insights into the diversity, origin, and evolution of viruses across geological timescales. In particular, Mavericks have emerged as one of the oldest groups of endogenous viruses infecting vertebrates (≥419 million years [My]). They have been found in the genomes of fish, amphibians, birds, and nonavian reptiles but had been overlooked in mammals. Thus, their evolutionary history and the causes of their demise in mammals remain puzzling questions. Here, we conducted a detailed evolutionary study of two Maverick integrations found on human chromosomes 7 and 8. We performed a comparative analysis of the integrations and determined their orthology across placental mammals (Eutheria) via the syntenic arrangement of neighboring genes. The integrations were absent at the orthologous sites in the genomes of marsupials and monotremes. These observations allowed us to reconstruct a time-calibrated phylogeny and infer the age of their most recent common ancestor at 127 to 262 My. In addition, we estimate the age of the individual integrations at ~102 My, which represents the oldest nonretroviral EVEs found in the human genome. Our findings suggest that active Mavericks still existed in the ancestors of modern mammals ~172 My ago (Jurassic Period) and potentially to the end of the Early Cretaceous. We hypothesize that Mavericks could have gone extinct in mammals from the evolution of an antiviral defense system or from reduced opportunities for transmission in terrestrial hosts. IMPORTANCE The genomes of vertebrates preserve a large diversity of endogenous viral elements (remnants of ancient viruses that accumulate in host genomes over evolutionary time). Although retroviruses account for the vast majority of these elements, diverse DNA viruses have also been found and novel lineages are being described. Here, we analyzed two elements found in the human genome belonging to an ancient group of DNA viruses called Mavericks. We studied their evolutionary history, finding that the elements are shared between humans and many different species of placental mammals. These observations suggest that the elements inserted at least ~102 million years ago (Mya) in the most recent common ancestor of placentals. We further estimated the age of the viral ancestor at around 127 to 262 My. Our results provide evidence for some of the oldest viral integrations in the human genome and insights into the ancient interactions of viruses with the ancestors of modern-day mammals.


Assuntos
Vírus de DNA , DNA Antigo , Evolução Molecular , Mamíferos , Animais , Feminino , Humanos , Gravidez , Eutérios , Genoma Humano , Mamíferos/genética , Mamíferos/virologia , Marsupiais , Filogenia , Integração Viral , Vírus de DNA/genética
17.
J Virol ; 96(15): e0187421, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867575

RESUMO

RNA interference (RNAi) is a significant posttranscriptional gene silencing mechanism and can function as an antiviral immunity in eukaryotes. However, numerous viruses can evade this antiviral RNAi by encoding viral suppressors of RNA silencing (VSRs). Classical swine fever virus (CSFV), belonging to the genus Pestivirus, is the cause of classical swine fever (CSF), which has an enormous impact on animal health and the pig industry. Notably, little is known about how Pestivirus blocks RNAi in their host. In this paper, we uncovered that CSFV NS4A protein can antagonize RNAi efficiently in mammalian cells by binding to double-stranded RNA and small interfering RNA. In addition, the VSR activity of CSFV NS4A was conserved among Pestivirus. Furthermore, the replication of VSR-deficient CSFV was attenuated but could be restored by the deficiency of RNAi in mammalian cells. In conclusion, our studies uncovered that CSFV NS4A is a novel VSR that suppresses RNAi in mammalian cells and shed new light on knowledge about CSFV and other Pestivirus. IMPORTANCE It is well known that RNAi is an important posttranscriptional gene silencing mechanism that is also involved in the antiviral response in mammalian cells. While numerous viruses have evolved to block this antiviral immunity by encoding VSRs. Our data demonstrated that the NS4A protein of CSFV exhibited a potent VSR activity through binding to dsRNA and siRNA in the context of CSFV infection in mammalian cells, which are a conservative feature among Pestivirus. In addition, the replication of VSR-deficient CSFV was attenuated but could be restored by the deficiency of RNAi, providing a theoretical basis for the development of other important attenuated Pestivirus vaccines.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Pestivirus , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Peste Suína Clássica/genética , Vírus da Febre Suína Clássica/genética , Mamíferos/virologia , Pestivirus/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Suínos , Replicação Viral
18.
PLoS Pathog ; 17(6): e1009596, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061905

RESUMO

The rapid evolution of RNA viruses has been long considered to result from a combination of high copying error frequencies during RNA replication, short generation times and the consequent extensive fixation of neutral or adaptive changes over short periods. While both the identities and sites of mutations are typically modelled as being random, recent investigations of sequence diversity of SARS coronavirus 2 (SARS-CoV-2) have identified a preponderance of C->U transitions, proposed to be driven by an APOBEC-like RNA editing process. The current study investigated whether this phenomenon could be observed in datasets of other RNA viruses. Using a 5% divergence filter to infer directionality, 18 from 36 datasets of aligned coding region sequences from a diverse range of mammalian RNA viruses (including Picornaviridae, Flaviviridae, Matonaviridae, Caliciviridae and Coronaviridae) showed a >2-fold base composition normalised excess of C->U transitions compared to U->C (range 2.1x-7.5x), with a consistently observed favoured 5' U upstream context. The presence of genome scale RNA secondary structure (GORS) was the only other genomic or structural parameter significantly associated with C->U/U->C transition asymmetries by multivariable analysis (ANOVA), potentially reflecting RNA structure dependence of sites targeted for C->U mutations. Using the association index metric, C->U changes were specifically over-represented at phylogenetically uninformative sites, potentially paralleling extensive homoplasy of this transition reported in SARS-CoV-2. Although mechanisms remain to be functionally characterised, excess C->U substitutions accounted for 11-14% of standing sequence variability of structured viruses and may therefore represent a potent driver of their sequence diversification and longer-term evolution.


Assuntos
Mamíferos/virologia , Mutação , Vírus de RNA/genética , SARS-CoV-2/genética , Desaminases APOBEC/metabolismo , Animais , Sequência de Bases , COVID-19/virologia , Citidina/genética , Dano ao DNA/fisiologia , Evolução Molecular , Regulação Viral da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Humanos , Conformação de Ácido Nucleico , Filogenia , Edição de RNA/fisiologia , Vírus de RNA/classificação , RNA Viral/química , RNA Viral/genética , SARS-CoV-2/química , SARS-CoV-2/classificação , Análise de Sequência de RNA , Transcrição Gênica/genética , Uridina/genética
19.
Nature ; 546(7660): 646-650, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28636590

RESUMO

The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.


Assuntos
Especificidade de Hospedeiro , Mamíferos/virologia , Vírus/isolamento & purificação , Vírus/patogenicidade , Zoonoses/epidemiologia , Zoonoses/virologia , Animais , Biodiversidade , Interações Hospedeiro-Patógeno , Humanos
20.
Proc Natl Acad Sci U S A ; 117(17): 9423-9430, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284401

RESUMO

The notion that certain animal groups disproportionately maintain and transmit viruses to humans due to broad-scale differences in ecology, life history, and physiology currently influences global health surveillance and research in disease ecology, virology, and immunology. To directly test whether such "special reservoirs" of zoonoses exist, we used literature searches to construct the largest existing dataset of virus-reservoir relationships, consisting of the avian and mammalian reservoir hosts of 415 RNA and DNA viruses along with their histories of human infection. Reservoir host effects on the propensity of viruses to have been reported as infecting humans were rare and when present were restricted to one or two viral families. The data instead support a largely host-neutral explanation for the distribution of human-infecting viruses across the animal orders studied. After controlling for higher baseline viral richness in mammals versus birds, the observed number of zoonoses per animal order increased as a function of their species richness. Animal orders of established importance as zoonotic reservoirs including bats and rodents were unexceptional, maintaining numbers of zoonoses that closely matched expectations for mammalian groups of their size. Our findings show that variation in the frequency of zoonoses among animal orders can be explained without invoking special ecological or immunological relationships between hosts and viruses, pointing to a need to reconsider current approaches aimed at finding and predicting novel zoonoses.


Assuntos
Aves/virologia , Doenças Transmissíveis Emergentes/veterinária , Reservatórios de Doenças/veterinária , Mamíferos/virologia , Viroses/veterinária , Zoonoses/virologia , Animais , Aves/classificação , Doenças Transmissíveis Emergentes/virologia , Humanos , Mamíferos/classificação , Fatores de Risco , Especificidade da Espécie , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA