Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(4): 138, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39147901

RESUMO

Artificial intelligence (AI) platforms have emerged as pivotal tools in genetics and molecular medicine, as in many other fields. The growth in patient data, identification of new diseases and phenotypes, discovery of new intracellular pathways, availability of greater sets of omics data, and the need to continuously analyse them have led to the development of new AI platforms. AI continues to weave its way into the fabric of genetics with the potential to unlock new discoveries and enhance patient care. This technology is setting the stage for breakthroughs across various domains, including dysmorphology, rare hereditary diseases, cancers, clinical microbiomics, the investigation of zoonotic diseases, omics studies in all medical disciplines. AI's role in facilitating a deeper understanding of these areas heralds a new era of personalised medicine, where treatments and diagnoses are tailored to the individual's molecular features, offering a more precise approach to combating genetic or acquired disorders. The significance of these AI platforms is growing as they assist healthcare professionals in the diagnostic and treatment processes, marking a pivotal shift towards more informed, efficient, and effective medical practice. In this review, we will explore the range of AI tools available and show how they have become vital in various sectors of genomic research supporting clinical decisions.


Assuntos
Inteligência Artificial , Medicina Molecular , Humanos , Medicina Molecular/métodos , Genética Médica/tendências , Genética Médica/métodos , Medicina de Precisão/métodos , Genômica/métodos
2.
Cell Biochem Funct ; 42(1): e3906, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269502

RESUMO

The majority of cancer cases are colorectal cancer, which is also the second largest cause of cancer-related deaths worldwide. Metastasis is the leading cause of death for patients with colorectal cancer. Metastatic colorectal cancer incidence are on the rise due to a tiny percentage of tumors developing resistant to medicines despite advances in treatment tactics. Cutting-edge targeted medications are now the go-to option for customized and all-encompassing CRC care. Specifically, multitarget kinase inhibitors, antivascular endothelial growth factors, and epidermal growth factor receptors are widely used in clinical practice for CRC-targeted treatments. Rare targets in metastatic colorectal cancer are becoming more well-known due to developments in precision diagnostics and the extensive use of second-generation sequencing technology. These targets include the KRAS mutation, the BRAF V600E mutation, the HER2 overexpression/amplification, and the MSI-H/dMMR. Incorporating certain medications into clinical trials has significantly increased patient survival rates, opening new avenues and bringing fresh viewpoints for treating metastatic colorectal cancer. These focused therapies change how cancer is treated, giving patients new hope and better results. These markers can significantly transform and individualize therapy regimens. They could open the door to precisely customized and more effective medicines, improving patient outcomes and quality of life. The fast-growing body of knowledge regarding the molecular biology of colorectal cancer and the latest developments in gene sequencing and molecular diagnostics are directly responsible for this advancement.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Medicina Molecular , Qualidade de Vida , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistência a Medicamentos
4.
Electron. j. biotechnol ; 16(6): 18-18, Nov. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-696559

RESUMO

DNA topoisomerases are essential enzymes that control the topological state of DNA replication during mitosis. These enzymes are classified based on their mechanisms and physical properties. During mitosis, superhelical DNA must be unwound or relaxed by DNA topoisomerases prior to a decoding step by DNA processing enzymes, such as DNA polymerase and RNA polymerase. By blocking the reaction of resealing the breaks in the DNA ultimately can result in cellular death. Compounds that inhibit the catalytic function of these enzymes can serve as potential anticancer agents. DNA topoisomerases are found in nature and used as high quality and well-validated targets for the screening of potential anticancer agents. Our current work focuses on determining potential anticancer agents from natural resources using DNA topoisomerases as the screening targets. Large scale production of these enzymes using recombinant DNA technology in our academic laboratory is utilised to avoid dependence on expensive commercially available enzymes. The in-house produced enzymes can also be used to enhance our research in the field of molecular medicine by providing an enzyme source that can be used to screen potential anticancer agents, and for other newly developed diagnostic and medical research projects in the near future as well as a step in moving our efforts into the industrial sector.


Assuntos
DNA Recombinante/metabolismo , DNA Topoisomerases/biossíntese , Indústria Farmacêutica , Medicina Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA