Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8015): 116-122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778110

RESUMO

Eukaryotes have evolved towards one of two extremes along a spectrum of strategies for remodelling the nuclear envelope during cell division: disassembling the nuclear envelope in an open mitosis or constructing an intranuclear spindle in a closed mitosis1,2. Both classes of mitotic remodelling involve key differences in the core division machinery but the evolutionary reasons for adopting a specific mechanism are unclear. Here we use an integrated comparative genomics and ultrastructural imaging approach to investigate mitotic strategies in Ichthyosporea, close relatives of animals and fungi. We show that species in this clade have diverged towards either a fungal-like closed mitosis or an animal-like open mitosis, probably to support distinct multinucleated or uninucleated states. Our results indicate that multinucleated life cycles favour the evolution of closed mitosis.


Assuntos
Evolução Biológica , Estágios do Ciclo de Vida , Mesomycetozoea , Mitose , Filogenia , Animais , Genômica , Mesomycetozoea/genética , Mesomycetozoea/fisiologia , Mesomycetozoea/citologia , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Fuso Acromático/metabolismo , Fungos/classificação
2.
Dis Aquat Organ ; 150: 61-67, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35833545

RESUMO

In recent decades, evidence has accumulated to suggest that the widespread and highly variable parasite Ichthyophonus hoferi is actually a species complex. Highly plastic morphology and a general lack of defining structures has contributed to the likely underestimate of biodiversity within this group. Molecular methods are a logical next step in the description of these parasites, but markers used to date have been too conserved to resolve species boundaries. Here we use mitochondrial encoded cytochrome-c oxidase (MTCO1) gene sequences and phylogenic analysis to compare Ichthyophonus spp. isolates from several marine and anadromous fish hosts. The resulting phylogeny displays lineage separation among isolates and possible host/niche segregation not previously described. The parasite type that infects Pacific herring Clupea pallasii, Atlantic herring C. harengus, Atlantic salmon Salmo salar, and Pacific staghorn sculpin Oligocottus maculosus (Clade A) is different from that which infects Chinook salmon Oncorhynchus tshawytscha, walleye pollock Gadus chalcogrammus, Greenland halibut Reinhardtius hippoglossoides, and Pacific halibut Hippoglossus stenolepsis (Clade B). MTCO1 sequences confirmed the presence of a more divergent Ichthyophonus sp. isolated from American shad Alosa sapidissima in rivers of eastern North America (Clade C), while American shad introduced to the Pacific Ocean are infected with the same parasite that infects Pacific herring (Clade A). Currently there are no consensus criteria for delimiting species within Ichthyophonidae, but MTCO1 sequences hold promise as a potential species identifying marker and useful epizootiological tool.


Assuntos
Doenças dos Peixes , Gadiformes , Mesomycetozoea , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Peixes , Genótipo , Mesomycetozoea/genética , Oceano Pacífico , Filogenia , Salmão
3.
Development ; 145(10)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29752387

RESUMO

How animals emerged from their unicellular ancestor remains a major evolutionary question. New genome data from the closest unicellular relatives of animals have provided important insights into the evolution of animal multicellularity. We know that the unicellular ancestor of animals had an unexpectedly complex genetic repertoire, including many genes that are key to animal development and multicellularity. Thus, assessing the function of these genes among unicellular relatives of animals is key to understanding how they were co-opted at the onset of the Metazoa. However, such analyses have been hampered by the lack of genetic tools. Progress has been made in choanoflagellates and teretosporeans, two of the three lineages closely related to animals, whereas no tools are yet available for functional analysis in the third lineage: the filastereans. Importantly, filastereans have a striking repertoire of genes involved in transcriptional regulation and other developmental processes. Here, we describe a reliable transfection method for the filasterean Capsaspora owczarzaki We also provide a set of constructs for visualising subcellular structures in live cells. These tools convert Capsaspora into a unique experimentally tractable organism to use to investigate the origin and evolution of animal multicellularity.


Assuntos
DNA/genética , Genoma de Protozoário/genética , Mesomycetozoea/genética , Plasmídeos/genética , Transfecção/métodos , Animais , Evolução Biológica , Evolução Molecular , Regulação da Expressão Gênica/genética
4.
Dis Aquat Organ ; 143: 129-138, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33570046

RESUMO

Ichthyophonus infection was first detected in Peruvian Oncorhynchus mykiss in 1986, but the occurrence of ichthyophonosis disease in the region is unknown. This study investigated the presence and distribution of Ichthyophonus sp. in Peruvian rainbow trout using traditional and DNA sequencing tools. Between 2007 and 2008, 205 rainbow trout from 13 hatcheries in the Mantaro river basin were examined for the presence of Ichthyophonus, and at that time only 3 farms were positive. This early study confirmed the presence of Ichthyophonus sp. in the Tranca Grande lagoon for the first time, at a prevalence of 50%. In 2012, examination of 240 trout from 24 fish farms in 2 Peruvian Departments found 9 infected farms. More recently, in 2018, Ichthyophonus sp. was found in Lake Titicaca, infecting a trout in the Ichu area (in the Department of Puno). Our molecular analysis of the infected trout showed that ichthyophonosis disease in the Peruvian trout was caused by Ichthyophonus sp. Clade C. The finding of this pathogen in Lake Titicaca should be an alert for nearby farms and entities dealing with fish of economic importance in the rivers of Peru.


Assuntos
Doenças dos Peixes , Mesomycetozoea , Oncorhynchus mykiss , Animais , Doenças dos Peixes/epidemiologia , Mesomycetozoea/genética , Peru/epidemiologia , Rios
5.
Mol Phylogenet Evol ; 151: 106891, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562822

RESUMO

Caullerya mesnili is a common and virulent parasite of the water flea, Daphnia. It was classified within the Haplosporidia (Rhizaria) for over a century. However, a recent molecular phylogeny based on the 18S rRNA gene suggested it belonged to the Ichthyosporea, a class of protists closely related to animals within the Opisthokonta clade. The exact phylogenetic position of C. mesnili remained uncertain because it appeared in the 18S rRNA tree with a very long branch and separated from all other taxa, suggesting that its position could be artifactual. A better understanding of its phylogenetic position has been constrained by a lack of molecular markers and the difficulty of obtaining a suitable quantity and quality of DNA from in vitro cultures, as this intracellular parasite cannot be cultured without its host. We isolated and collected spores of C. mesnili and sequenced genomic libraries. Phylogenetic analyses of a newly generated multi-protein data set (22 proteins, 4998 amino acids) and of sequences from the 18S rRNA gene both placed C. mesnili within the Ichthyophonida sub-clade of Ichthyosporea, as sister-taxon to Abeoforma whisleri and Pirum gemmata. Our study highlights the utility of metagenomic approaches for obtaining genomic information from intracellular parasites and for more accurate phylogenetic placement in evolutionary studies.


Assuntos
Daphnia/parasitologia , Mesomycetozoea/classificação , Mesomycetozoea/genética , Fases de Leitura Aberta/genética , Parasitos/classificação , Parasitos/genética , Filogenia , Animais , Sequência de Bases , Evolução Biológica , Funções Verossimilhança , RNA Ribossômico 18S/genética
6.
Parasitology ; 147(3): 360-370, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840622

RESUMO

Ichthyosporean parasites (order Dermocystida) can cause morbidity and mortality in amphibians, but their ecology and epidemiology remain understudied. We investigated the prevalence, gross and histologic appearance, and molecular phylogeny of a novel dermocystid in the state-endangered silvery salamander (Ambystoma platineum) and the co-occurring, non-threatened small-mouthed salamander (Ambystoma texanum) from Illinois. Silvery salamanders (N = 610) were sampled at six ephemeral wetlands from 2016 to 2018. Beginning in 2017, 1-3 mm raised, white skin nodules were identified in 24 silvery salamanders and two small-mouthed salamanders from five wetlands (prevalence = 0-11.1%). Skin biopsy histology (N = 4) was consistent with dermocystid sporangia, and necropsies (N = 3) identified infrequent hepatic sporangia. Parasitic 18S rRNA sequences (N = 5) from both salamander species were identical, and phylogenetic analysis revealed a close relationship to Dermotheca viridescens. Dermocystids were not identified in museum specimens from the same wetlands (N = 125) dating back to 1973. This is the first report of Dermotheca sp. affecting caudates in the Midwestern United States. Future research is needed to determine the effects of this pathogen on individual and population health, and to assess whether this organism poses a threat to the conservation of ambystomatid salamanders.


Assuntos
Ambystoma , Infecções por Mesomycetozoea/epidemiologia , Mesomycetozoea/fisiologia , Animais , Espécies em Perigo de Extinção , Illinois , Masculino , Mesomycetozoea/citologia , Mesomycetozoea/genética , Infecções por Mesomycetozoea/parasitologia , Prevalência , RNA Ribossômico 18S/análise
7.
Vet Pathol ; 57(2): 316-320, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32079507

RESUMO

Over a 3-year-period, 17 wild-caught opaleye (Girella nigricans) housed in a public display aquarium were found dead without premonitory signs. Grossly, 4 animals had pinpoint brown or black foci on coelomic adipose tissue. Histologically, liver, spleen, heart, and posterior kidney had mesomycetozoan granulomas in all cases; other organs were less commonly infected. Four opaleye had goiter; additional substantial lesions were not identified. Granulomas surrounded melanized debris, leukocytes, and mesomycetozoa represented by folded membranes (collapsed schizont walls), intact schizonts (50- to >200 µm in diameter with a multilaminate membrane), plasmodia (budding from schizonts or free in tissue), or rarely germinal tubes (budding from schizonts). Ichthyophonus was grown from fresh tissues in tissue explant broth cultures of the heart, liver, and/or spleen. Polymerase chain reaction using 18S ribosomal DNA primers amplified a 1730-bp region, and the DNA sequence was most similar to Ichthyophonus hoferi, which is often associated with freshwater aquaculture fish.


Assuntos
Doenças dos Peixes/parasitologia , Mesomycetozoea/isolamento & purificação , Perciformes/parasitologia , Animais , Primers do DNA/genética , Feminino , Doenças dos Peixes/patologia , Coração/parasitologia , Rim/parasitologia , Rim/patologia , Fígado/parasitologia , Fígado/patologia , Masculino , Mesomycetozoea/genética , Miocárdio , Filogenia , Reação em Cadeia da Polimerase/veterinária , Baço/parasitologia , Baço/patologia
8.
J Fish Dis ; 43(12): 1571-1577, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32914485

RESUMO

The Carpathian brook lamprey (Eudontomyzon danfordi Regan, 1911) is an endemic protected species of Cephalaspidomorphi in the Carpathian Basin. No parasites have become known from these jawless vertebrates to date. Here, the authors describe an infection from a single specimen manifesting in protuberant skin cysts 7-10 mm in diameter, scattered on the body surface. Similar dermal infection was observed in 25 of the 274 lampreys recorded in the population survey. Skin cysts filled with round spore-like structures of a dermocystid parasite were found. These particles measured 8-14 µm in diameter and had an about 0.5 µm thick wall, and containing mainly a granular mass and a relatively scarce plasma. No hyphae were recorded. Despite conspicuous morphological changes in the skin, no inflammatory reactions were found. The molecular analysis of 18S rDNA showed similarity to dermocystid species of several fish species but differed from them approximately by 2%. This is the first record of a dermocystid parasite infecting a jawless vertebrate.


Assuntos
Doenças dos Peixes/parasitologia , Lampreias , Mesomycetozoea/isolamento & purificação , Animais , Doenças dos Peixes/epidemiologia , Hungria/epidemiologia , Mesomycetozoea/genética , Infecções por Mesomycetozoea/epidemiologia , Pele/parasitologia
9.
Parasitology ; 146(7): 903-910, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30816081

RESUMO

Mesomycetozoean-induced infections (order Dermocystida, genus Amphibiocystidium) in European and North American amphibians are causing alarm. To date, the pathogenicity of these parasites in field conditions has been poorly studied, and demographic consequences on amphibian populations have not been explored. In this study, an Amphibiocystidium sp. infection is reported in a natural population of the Italian stream frog (Rana italica) of Central Italy, over a 7-year period from 2008 to 2014. Light and electron microscope examinations, as well as partial 18S rDNA sequence analysis were used to characterize the parasite. Moreover, a capture-mark-recapture study was conducted to assess the frog demographics in response to infection. Negative effects of amphibiocystidiosis on individual survival and population fitness were absent throughout the sampling period, despite the high estimates of disease prevalence. This might have been due to resistance and/or tolerance strategies developed by the frogs in response to the persistence of Amphibiocystidium infection in this system. We hypothesized that in the examined R. italica population, amphibiocystidiosis is an ongoing endemic/epidemic infection. However, ecological and host-specific factors, interacting in a synergistic fashion, might be responsible for variations in the susceptibility to Amphibiocystidium infection of both conspecific populations and heterospecific individuals of R. italica.


Assuntos
Infecções por Mesomycetozoea/epidemiologia , Mesomycetozoea/patogenicidade , Ranidae/parasitologia , Animais , Biópsia , Suscetibilidade a Doenças , Feminino , Interações Hospedeiro-Parasita , Itália/epidemiologia , Estudos Longitudinais , Masculino , Mesomycetozoea/genética , Prevalência , Rios/parasitologia , Pele/parasitologia , Pele/patologia
10.
Dis Aquat Organ ; 128(3): 215-224, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29862979

RESUMO

Parasites of the genus Ichthyophonus infect many fish species and have a non-uniform distribution within host tissues. Due in part to this uneven distribution, the comparative sensitivity and accuracy of using molecular-based detection methods versus culture to estimate parasite prevalence is under debate. We evaluated the analytical and diagnostic performance of an existing qPCR assay in comparison to the 'gold standard' culture method using Pacific herring Clupea pallasii with known exposure history. We determined that the assay is suitable for use in this host, and diagnostic specificity was consistently high (>98%) in both heart and liver tissues. Diagnostic sensitivity could not be fully assessed due to low infection rates, but our results suggest that qPCR is not as sensitive as culture under all circumstances. Diagnostic sensitivity of qPCR relative to culture is likely affected by the amount of sample processed. The prevalence values estimated by the 2 methods were not significantly different when sample amounts were equal (heart tissue), but when the assayed sample amounts were unequal (liver tissue), the culture method detected a significantly higher prevalence of the parasite than qPCR. Further, culture of liver also detected significantly more Ichthyophonus infections than culture of heart, suggesting that the density and distribution of parasites in tissues also plays a role in assay sensitivity. This sensitivity issue would be most problematic for fish with light infections. Although qPCR does not detect the presence of a live organism, DNA-based pathogen detection methods provide the opportunity for alternate testing strategies when culture is not possible.


Assuntos
Bioensaio/veterinária , Mesomycetozoea/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Animais , Bioensaio/métodos , Peixes , Mesomycetozoea/genética , Técnicas de Cultura de Tecidos
12.
Mol Phylogenet Evol ; 109: 447-464, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28219758

RESUMO

Trichomycetes is a group of microorganisms that was considered a class of fungi comprising four orders of commensal, gut-dwelling endosymbionts obligately associated with arthropods. Since molecular phylogenies revealed two of those orders (Amoebidiales and Eccrinales="protist trichos") to be closely related to members of the protist class Ichthyosporea (=Mesomycetozoea), trichomycetes have been considered an ecological association of both early-diverging fungi and protists. Understanding of the taxonomy, evolution, and diversity of the protist trichos is lacking largely due to the difficulties inherent in species collection that have contributed to undersampling and understudy. The most recent classification divides the protist trichos between two families, Amoebidiidae and Eccrinidae (suborder Trichomycina, order Eccrinida). However, there is no comprehensive molecular phylogeny available for this group and major questions about the systematics of protist trichos remain unanswered. Therefore, we generated 18S and 28S rDNA sequences for 106 protist tricho samples and combined them with publicly available Eccrinida sequences for phylogenetic analyses. We also sequenced a conserved protein-coding gene (heat-shock 70 protein) to obtain a multigene data set. We conducted ancestral state reconstruction (ASR) and Bayesian tip-association significance test (BaTS) analyses by mapping six morphological and ecological characters onto the resulting phylogenetic trees. Our results demonstrate: (1) several ecological and morphological character states (habitat, host type, host stage at time of infestation, location within host, spore production, and growth form) are significantly correlated with the phylogeny, and (2) two additional protist tricho families should be incorporated into the taxonomy to reflect phylogenetic relationships. Our data suggest that an integrated strategy that combines morphological, ecological, and molecular characters is needed to further resolve and clarify the systematics of the Eccrinida.


Assuntos
Evolução Biológica , Fungos/classificação , Mesomycetozoea/classificação , Animais , Teorema de Bayes , DNA Ribossômico , Evolução Molecular , Fungos/genética , Mesomycetozoea/genética , Filogenia
13.
Parasitology ; 144(4): 484-496, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27873566

RESUMO

Outbreaks of cutaneous infectious disease in amphibians are increasingly being attributed to an overlooked group of fungal-like pathogens, the Dermocystids. During the last 10 years on the Isle of Rum, Scotland, palmate newts (Lissotriton helveticus) have been reportedly afflicted by unusual skin lesions. Here we present pathological and molecular findings confirming that the pathogen associated with these lesions is a novel organism of the order Dermocystida, and represents the first formally reported, and potentially lethal, case of amphibian Dermocystid infection in the UK. Whilst the gross pathology and the parasite cyst morphology were synonymous to those described in a study from infected L. helveticus in France, we observed a more extreme clinical outcome on Rum involving severe subcutaneous oedema. Phylogenetic topologies supported synonymy between Dermocystid sequences from Rum and France and as well as their distinction from Amphibiocystidium spp. Phylogenetic analysis also suggested that the amphibian-infecting Dermocystids are not monophyletic. We conclude that the L. helveticus-infecting pathogen represents a single, novel species; Amphibiothecum meredithae.


Assuntos
Infecções por Mesomycetozoea/parasitologia , Mesomycetozoea/genética , Filogenia , Salamandridae/parasitologia , Animais , Ilhas , Infecções por Mesomycetozoea/epidemiologia , Infecções por Mesomycetozoea/patologia , Escócia/epidemiologia
14.
Dis Aquat Organ ; 120(2): 125-41, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27409236

RESUMO

Despite their widespread, global impact in both wild and cultured fishes, little is known of the diversity, transmission patterns, and phylogeography of parasites generally identified as Ichthyophonus. This study constructed a phylogeny based on the structural alignment of internal transcribed spacer (ITS) rDNA sequences to compare Ichthyophonus isolates from fish hosts in the Atlantic and Pacific oceans, and several rivers and aquaculture sites in North America, Europe, and Japan. Structure of the Ichthyophonus ITS1-5.8S-ITS2 transcript exhibited several homologies with other eukaryotes, and 6 distinct clades were identified within Ichthyophonus. A single clade contained a majority (71 of 98) of parasite isolations. This ubiquitous Ichthyophonus type occurred in 13 marine and anadromous hosts and was associated with epizootics in Atlantic herring, Chinook salmon, and American shad. A second clade contained all isolates from aquaculture, despite great geographic separation of the freshwater hosts. Each of the 4 remaining clades contained isolates from single host species. This study is the first to evaluate the genetic relationships among Ichthyophonus species across a significant portion of their host and geographic range. Additionally, parasite infection prevalence is reported in 16 fish species.


Assuntos
DNA Espaçador Ribossômico/genética , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Mesomycetozoea/genética , Filogenia , Animais , Especificidade de Hospedeiro , Especificidade da Espécie
15.
Proc Natl Acad Sci U S A ; 110(40): 16050-5, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043797

RESUMO

Developmental transcription factors are key players in animal multicellularity, being members of the T-box family that are among the most important. Until recently, T-box transcription factors were thought to be exclusively present in metazoans. Here, we report the presence of T-box genes in several nonmetazoan lineages, including ichthyosporeans, filastereans, and fungi. Our data confirm that Brachyury is the most ancient member of the T-box family and establish that the T-box family diversified at the onset of Metazoa. Moreover, we demonstrate functional conservation of a homolog of Brachyury of the protist Capsaspora owczarzaki in Xenopus laevis. By comparing the molecular phenotype of C. owczarzaki Brachyury with that of homologs of early branching metazoans, we define a clear difference between unicellular holozoan and metazoan Brachyury homologs, suggesting that the specificity of Brachyury emerged at the origin of Metazoa. Experimental determination of the binding preferences of the C. owczarzaki Brachyury results in a similar motif to that of metazoan Brachyury and other T-box classes. This finding suggests that functional specificity between different T-box classes is likely achieved by interaction with alternative cofactors, as opposed to differences in binding specificity.


Assuntos
Evolução Molecular , Proteínas Fetais/genética , Mesomycetozoea/genética , Família Multigênica/genética , Fenótipo , Filogenia , Proteínas com Domínio T/genética , Xenopus/genética , Animais , Histocitoquímica , Análise em Microsséries , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie
16.
Environ Microbiol ; 17(9): 3195-207, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25556908

RESUMO

The opisthokonts are one of the major super groups of eukaryotes. It comprises two major clades: (i) the Metazoa and their unicellular relatives and (ii) the Fungi and their unicellular relatives. There is, however, little knowledge of the role of opisthokont microbes in many natural environments, especially among non-metazoan and non-fungal opisthokonts. Here, we begin to address this gap by analysing high-throughput 18S rDNA and 18S rRNA sequencing data from different European coastal sites, sampled at different size fractions and depths. In particular, we analyse the diversity and abundance of choanoflagellates, filastereans, ichthyosporeans, nucleariids, corallochytreans and their related lineages. Our results show the great diversity of choanoflagellates in coastal waters as well as a relevant representation of the ichthyosporeans and the uncultured marine opisthokonts (MAOP). Furthermore, we describe a new lineage of marine fonticulids (MAFO) that appears to be abundant in sediments. Taken together, our work points to a greater potential ecological role for unicellular opisthokonts than previously appreciated in marine environments, both in water column and sediments, and also provides evidence of novel opisthokont phylogenetic lineages. This study highlights the importance of high-throughput sequencing approaches to unravel the diversity and distribution of both known and novel eukaryotic lineages.


Assuntos
Organismos Aquáticos/genética , Coanoflagelados/fisiologia , Animais , Sequência de Bases , Biodiversidade , Coanoflagelados/classificação , Coanoflagelados/genética , DNA Ribossômico/genética , Europa (Continente) , Fungos/classificação , Fungos/genética , Fungos/fisiologia , Variação Genética/genética , Sedimentos Geológicos , Mesomycetozoea/classificação , Mesomycetozoea/genética , Mesomycetozoea/fisiologia , Filogenia , RNA Ribossômico 18S/genética
17.
Mol Biol Evol ; 30(4): 802-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23329685

RESUMO

The Opisthokonta clade includes Metazoa, Fungi, and several unicellular lineages, such as choanoflagellates, filastereans, ichthyosporeans, and nucleariids. To date, studies of the evolutionary diversity of opisthokonts have focused exclusively on metazoans, fungi, and, very recently, choanoflagellates. Thus, very little is known about diversity among the filastereans, ichthyosporeans, and nucleariids. To better understand the evolutionary diversity and ecology of the opisthokonts, here we analyze published environmental data from nonfungal unicellular opisthokonts and report 18S ribosomal DNA phylogenetic analyses. Our data reveal extensive diversity among all unicellular opisthokonts, except for the filastereans. We identify several clades that consist exclusively of environmental sequences, especially among ichthyosporeans and choanoflagellates. Moreover, we show that the ichthyosporeans represent a significant percentage of overall unicellular opisthokont diversity, with a greater ecological role in marine environments than previously believed. Our results provide a useful phylogenetic framework for future ecological and evolutionary studies of these poorly known lineages.


Assuntos
Coanoflagelados/genética , Mesomycetozoea/genética , RNA Ribossômico 18S/genética , Animais , Organismos Aquáticos/genética , Ecossistema , Variação Genética , Funções Verossimilhança , Filogenia , Análise de Sequência de DNA
18.
Mol Biol Evol ; 30(9): 2013-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23770652

RESUMO

Filopodia are fine actin-based cellular projections used for both environmental sensing and cell motility, and they are essential organelles for metazoan cells. In this study, we reconstruct the origin of metazoan filopodia and microvilli. We first report on the evolutionary assembly of the filopodial molecular toolkit and show that homologs of many metazoan filopodial components, including fascin and myosin X, were already present in the unicellular or colonial progenitors of metazoans. Furthermore, we find that the actin crosslinking protein fascin localizes to filopodia-like structures and microvilli in the choanoflagellate Salpingoeca rosetta. In addition, homologs of filopodial genes in the holozoan Capsaspora owczarzaki are upregulated in filopodia-bearing cells relative to those that lack them. Therefore, our findings suggest that proteins essential for metazoan filopodia and microvilli are functionally conserved in unicellular and colonial holozoans and that the last common ancestor of metazoans bore a complex and specific filopodial machinery.


Assuntos
Evolução Biológica , Coanoflagelados/classificação , Mesomycetozoea/classificação , Microvilosidades/classificação , Filogenia , Pseudópodes/classificação , Actinas/classificação , Animais , Proteínas de Transporte/classificação , Movimento Celular/fisiologia , Coanoflagelados/genética , Gelsolina/classificação , Humanos , Mesomycetozoea/genética , Proteínas dos Microfilamentos/classificação , Microvilosidades/genética , Miosinas/classificação , Pseudópodes/genética , Proteína cdc42 de Ligação ao GTP/classificação
19.
Curr Biol ; 33(8): 1597-1605.e3, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36996815

RESUMO

The ratio of nuclear content to cytoplasmic volume (N/C ratio) is a key regulator driving the maternal-to-zygotic transition in most animal embryos. Altering this ratio often impacts zygotic genome activation and deregulates the timing and outcome of embryogenesis.1,2,3 Despite being ubiquitous across animals, little is known about when the N/C ratio evolved to control multicellular development. Such capacity either originated with the emergence of animal multicellularity or was co-opted from the mechanisms present in unicellular organisms.4 An effective strategy to tackle this question is to investigate the close relatives of animals exhibiting life cycles with transient multicellular stages.5 Among these are ichthyosporeans, a lineage of protists undergoing coenocytic development followed by cellularization and cell release.6,7,8 During cellularization, a transient multicellular stage resembling animal epithelia is generated, offering a unique opportunity to examine whether the N/C ratio regulates multicellular development. Here, we use time-lapse microscopy to characterize how the N/C ratio affects the life cycle of the best-studied ichthyosporean model, Sphaeroforma arctica. We uncover that the last stages of cellularization coincide with a significant increase in the N/C ratio. Increasing the N/C ratio by reducing the coenocytic volume accelerates cellularization, whereas decreasing the N/C ratio by lowering the nuclear content halts it. Moreover, centrifugation and pharmacological inhibitor experiments suggest that the N/C ratio is locally sensed at the cortex and relies on phosphatase activity. Altogether, our results show that the N/C ratio drives cellularization in S. arctica, suggesting that its capacity to control multicellular development predates animal emergence.


Assuntos
Eucariotos , Mesomycetozoea , Animais , Eucariotos/genética , Mesomycetozoea/genética , Núcleo Celular , Citosol , Genoma
20.
F1000Res ; 12: 542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38778808

RESUMO

Ichthyosporea, a clade of holozoans, represent a clade closely related to animals, and thus hold a key phylogenetic position for understanding the origin of animals. We have previously discovered that an ichthyosporean, Sphaeroforma arctica, contains microRNAs (miRNAs) as well as the miRNA processing machinery. This was the first discovery of miRNAs among the closest single-celled relatives of animals and raised intriguing questions about the roles of regulatory small RNAs in cell development and differentiation in unicellular eukaryotes. Like many ichthyosporeans, S. arctica also undergoes a transient multicellular developmental life cycle. As miRNAs are, among other roles, key regulators of gene expression during development in animals, we wanted to investigate the dynamics of miRNAs during the developmental cycle in S. arctica. Here we have therefore collected a comprehensive time-resolved small RNA transcriptome linked to specific life stages with a substantially higher sequencing depth than before, which can enable further discovery of functionally relevant small RNAs. The data consists of Illumina-sequenced small RNA libraries from two independent biological replicates of the entire life cycle of S. arctica with high temporal resolution. The dataset is directly linked and comes from the same samples as a previously published mRNA-seq dataset, thus enabling direct cross-functional analyses.


Assuntos
Transcriptoma , Mesomycetozoea/genética , MicroRNAs/genética , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA