Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(8): 2347-2356, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39109930

RESUMO

Aerobic methanotrophs, or methane-consuming microbes, are strongly dependent on copper for their activity. To satisfy this requirement, some methanotrophs produce a copper-binding compound, or chalkophore, called methanobactin (MB). In addition to playing a critical role in methanotrophy, MB has also been shown to have great promise in treating copper-related human diseases, perhaps most significantly Wilson's disease. In this congenital disorder, copper builds up in the liver, leading to irreversible damage and, in severe cases, complete organ failure. Remarkably, MB has been shown to reverse such damage in animal models, and there is a great deal of interest in upscaling MB production for expanded clinical trials. Such efforts, however, are currently hampered as (1) the natural rate of MB production rate by methanotrophs is low, (2) the use of methane as a substrate for MB production is problematic as it is explosive in air, (3) there is limited understanding of the entire pathway of MB biosynthesis, and (4) the most attractive form of MB is produced by Methylocystis sp. strain SB2, a methanotroph that is genetically intractable. Herein, we report heterologous biosynthesis of MB from Methylocystis sp. strain SB2 in an alternative methanotroph, Methylosinus trichosporium OB3b, not only on methane but also on methanol. As a result, the strategy described herein not only facilitates enhanced MB production but also provides opportunities to construct various mutants to delineate the entire pathway of MB biosynthesis, as well as the creation of modified forms of MB that may have enhanced therapeutic value.


Assuntos
Imidazóis , Methylocystaceae , Methylosinus trichosporium , Oligopeptídeos , Methylosinus trichosporium/metabolismo , Methylosinus trichosporium/genética , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Methylocystaceae/metabolismo , Methylocystaceae/genética , Metano/metabolismo , Engenharia Metabólica/métodos
2.
Methods Enzymol ; 702: 171-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155110

RESUMO

Methanobactin (Mbn) is a ribosomally synthesized and post-translationally modified peptide (RiPP) natural product that binds Cu(I) with high affinity. The copper-chelating thioamide/oxazolone groups in Mbn are installed on the precursor peptide MbnA by the core enzyme complex, MbnBC, which includes the multinuclear non-heme iron-dependent oxidase (MNIO) MbnB and its RiPP recognition element-containing partner protein MbnC. For the extensively characterized Mbn biosynthetic gene cluster (BGC) from the methanotroph Methylosinus trichosporium OB3b, the tailoring aminotransferase MbnN further modifies MbnA after leader sequence cleavage by an unknown mechanism. Here we detail methods to express and purify M. trichosporium OB3b MbnBC and MbnN along with protocols for assessing MbnA modification by MbnBC and MbnN aminotransferase activity. In addition, we describe crystallization and structure determination of MbnBC. These procedures can be adapted for other MNIOs and partner proteins encoded in Mbn and Mbn-like BGCs. Furthermore, these methods provide a first step toward in vitro biosynthesis of Mbns and related natural products as potential therapeutics.


Assuntos
Imidazóis , Methylosinus trichosporium , Oligopeptídeos , Methylosinus trichosporium/enzimologia , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Imidazóis/metabolismo , Imidazóis/química , Oligopeptídeos/metabolismo , Oligopeptídeos/química , Transaminases/metabolismo , Transaminases/genética , Transaminases/química , Transaminases/isolamento & purificação , Família Multigênica , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA