Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 692: 108511, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32710883

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 µM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling.


Assuntos
Envelhecimento/metabolismo , Catequina/análogos & derivados , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Proteínas Musculares/biossíntese , Atrofia Muscular/metabolismo , Miostatina/biossíntese , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Envelhecimento/patologia , Animais , Catequina/química , Catequina/farmacologia , Linhagem Celular , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Proteínas Musculares/genética , Atrofia Muscular/genética , Atrofia Muscular/patologia , Miostatina/genética , Chá/química
2.
Biol Pharm Bull ; 42(9): 1437-1445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474705

RESUMO

Chronic kidney disease (CKD), a chronic catabolic condition, is characterized by muscle wasting and decreased muscle endurance. Many insights into the molecular mechanisms of muscle wasting in CKD have been obtained. A persistent imbalance between protein degradation and synthesis in muscle causes muscle wasting. During muscle wasting, high levels of reactive oxygen species (ROS) and inflammatory cytokines are detected in muscle. These increased ROS and inflammatory cytokine levels induce the expression of myostatin. The myostatin binding to its receptor activin A receptor type IIB stimulates the expression of atrogenes such as atrogin-1 and muscle ring factor 1, members of the muscle-specific ubiquitin ligase family. Impaired mitochondrial function also contributes to reducing muscle endurance. The increased protein-bound uremic toxin, parathyroid hormone, glucocorticoid, and angiotensin II levels that are observed in CKD all have a negative effect on muscle mass and endurance. Among the protein-bound uremic toxins, indoxyl sulfate, an indole-containing compound has the potential to induce muscle atrophy by stimulating ROS-mediated myostatin and atrogenes expression. Indoxyl sulfate also impairs mitochondrial function. Some potential therapeutic approaches based on the muscle wasting mechanisms in CKD are currently in the testing stages.


Assuntos
Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Insuficiência Renal Crônica/complicações , Sarcopenia/etiologia , Citocinas/imunologia , Humanos , Indicã/biossíntese , Músculo Esquelético/imunologia , Miostatina/biossíntese , Estresse Oxidativo/imunologia , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo , Sarcopenia/imunologia , Sarcopenia/metabolismo
3.
Biochem Biophys Res Commun ; 503(3): 1409-1414, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30025893

RESUMO

Muscle atrophy in metabolic conditions like chronic kidney disease (CKD) and diabetes are associated with glucocorticoid production, dysfunctional insulin/Akt/FoxO3 signaling and increased myostatin expression. We recently found that CREB, a transcription factor proposed to regulate myostatin expression, is highly phosphorylated in some wasting conditions. Based on a novel Akt-PDE3/4 signaling paradigm, we hypothesized that reduced Akt signaling contributes to CREB activation and myostatin expression. C2C12 myotubes were incubated with dexamethasone (Dex), an atrophy-inducing synthetic glucocorticoid. Akt/CREB signaling and myostatin expression were evaluated by immunoblot and qPCR analyses. Inhibitors of Akt, phosphodiesterase (PDE)-3/4, and protein kinase A (PKA) signaling were used to test our hypothesis. Incubating myotubes with Dex for 3-24 h inhibited Akt phosphorylation and enhanced CREB phosphorylation as well as myostatin mRNA and protein. Inhibition of PI3K/Akt signaling with LY294002 similarly increased CREB phosphorylation. Isobutyl-methylxanthine (IBMX, a pan PDE inhibitor), milrinone (PDE3 inhibitor) and rolipram (PDE4 inhibitor) augmented CREB phosphorylation and myostatin expression. Inhibition of protein kinase A by PKI reverted Dex- or IBMX-induced CREB phosphorylation and myostatin expression. Our study provides evidence supporting a newly identified mechanism by which a glucocorticoid-related reduction in Akt signaling contributes to myostatin expression via CREB activation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Glucocorticoides/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Miostatina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Miostatina/biossíntese , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Int J Med Sci ; 13(9): 680-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27647997

RESUMO

Effects of myostatin (MSTN)-suppression on the regeneration of injured skeletal muscle under unloading condition were investigated by using transgenic mice expressing a dominant-negative form of MSTN (MSTN-DN). Both MSTN-DN and wild-type (WT) mice were subjected to continuous hindlimb suspension (HS) for 6 weeks. Cardiotoxin (CTX) was injected into left soleus muscle under anesthesia 2 weeks after the initiation of HS. Then, the soleus muscles were excised following 6-week HS (4 weeks after CTX-injection). CTX-injection caused to reduce the soleus fiber cross-sectional area (CSA) in WT mice under both unloading and weight-bearing conditions, but not in MSTN-DN mice. Under unloading condition, CTX-injected muscle weight and fiber CSA in MSTN-DN mice were significantly higher than those in WT mice. CTX-injected muscle had many damaged and regenerating fibers having central nuclei in both WT and MSTN-DN mice. Significant increase in the population of Pax7-positive nuclei in CTX-injected muscle was observed in MSTN-DN mice, but not in WT mice. Evidences indicate that the suppression of MSTN cause to increase the regenerative potential of injured soleus muscle via the increase in the population of muscle satellite cells regardless of unloading conditions.


Assuntos
Membro Posterior/crescimento & desenvolvimento , Músculo Esquelético/crescimento & desenvolvimento , Miostatina/biossíntese , Regeneração , Animais , Cardiotoxinas/administração & dosagem , Membro Posterior/efeitos dos fármacos , Membro Posterior/lesões , Membro Posterior/fisiopatologia , Humanos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Miostatina/antagonistas & inibidores , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Suporte de Carga
5.
J Biol Chem ; 289(6): 3288-93, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344126

RESUMO

Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2) has broad de-SUMOylation activities in vitro, which is essential for embryonic heart development. Here, we show that myostatin, a key factor in skeletal muscle development, is markedly reduced in Senp2(-/-) mouse embryonic fibroblast cells and embryos. SENP2 regulates the transcription of myostatin mainly through de-SUMOylation of MEF2A. Silencing SENP2 can reduce myostatin expression and, therefore, promote myogenesis of skeletal muscle. These results reveal the important role of SENP2 in the regulation of myostatin expression and myogenesis.


Assuntos
Cisteína Endopeptidases/metabolismo , Regulação da Expressão Gênica/fisiologia , Desenvolvimento Muscular/fisiologia , Miostatina/biossíntese , Animais , Linhagem Celular , Cisteína Endopeptidases/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Camundongos Knockout , Miostatina/genética , Sumoilação/fisiologia
6.
IUBMB Life ; 67(8): 589-600, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26305594

RESUMO

Myostatin is a secreted growth and differentiation factor that belongs to the TGF-ß superfamily. Myostatin is predominantly synthesized and expressed in skeletal muscle and thus exerts a huge impact on muscle growth and function. In keeping with its negative role in myogenesis, myostatin expression is tightly regulated at several levels including epigenetic, transcriptional, post-transcriptional, and post-translational. New revelations regarding myostatin regulation also offer mechanisms that could be exploited for developing myostatin antagonists. Increasingly, it is becoming clearer that besides its conventional role in muscle, myostatin plays a critical role in metabolism. Hence, molecular mechanisms by which myostatin regulates several key metabolic processes need to be further explored.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Miostatina/genética , Fator de Crescimento Transformador beta/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Miostatina/biossíntese , Miostatina/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional
7.
Calcif Tissue Int ; 97(6): 602-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26340892

RESUMO

Vitamin D deficiency is associated with muscle weakness, pain, and atrophy. Serum vitamin D predicts muscle strength and age-related muscle changes. However, precise mechanisms by which vitamin D affects skeletal muscle are unclear. To address this question, this study characterizes the muscle phenotype and gene expression of mice with deletion of vitamin D receptor (VDRKO) or diet-induced vitamin D deficiency. VDRKO and vitamin D-deficient mice had significantly weaker grip strength than their controls. Weakness progressed with age and duration of vitamin D deficiency, respectively. Histological assessment showed that VDRKO mice had muscle fibers that were significantly smaller in size and displayed hyper-nuclearity. Real-time PCR also indicated muscle developmental changes in VDRKO mice with dysregulation of myogenic regulatory factors (MRFs) and increased myostatin in quadriceps muscle (>2-fold). Vitamin D-deficient mice also showed increases in myostatin and the atrophy marker E3-ubiqutin ligase MuRF1. As a potential explanation for grip strength weakness, both groups of mice had down-regulation of genes encoding calcium-handling and sarco-endoplasmic reticulum calcium transport ATPase (Serca) channels. This is the first report of reduced strength, morphological, and gene expression changes in VDRKO and vitamin D-deficient mice where confounding by calcium, magnesium, and phosphate have been excluded by direct testing. Although suggested in earlier in vitro work, this study is the first to report an in vivo association between vitamin D, myostatin, and the regulation of muscle mass. These findings support a direct role for vitamin D in muscle function and corroborate earlier work on the presence of VDR in this tissue.


Assuntos
Força da Mão , Fibras Musculares Esqueléticas/patologia , Miostatina/biossíntese , Receptores de Calcitriol/deficiência , Deficiência de Vitamina D/fisiopatologia , Animais , Modelos Animais de Doenças , Força da Mão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Deficiência de Vitamina D/metabolismo
8.
Muscle Nerve ; 51(3): 434-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24916884

RESUMO

INTRODUCTION: We investigated the effect of resistance exercise intensity and exercise-induced metabolic stress on the activation of anabolic signaling and expression of myogenic genes in skeletal muscle. METHODS: Ten strength-trained athletes performed high-intensity [HI, 74% of 1-repetition maximum (RM)], middle-intensity (MI, 54% 1RM), or middle-intensity (54% 1RM) no-relaxation exercise (MIR). Kinase phosphorylation level and myogenic gene expression in muscle samples were evaluated before, 45 min, 5 h, and 20 h after exercise. RESULTS: The lactate concentration in MI was approximately 2-fold lower than in the 2 other sessions, and was highest in MIR. The phosphorylation level of extracellular kinase 1/2Thr202/Tyr204 after exercise was related to metabolic stress. Metabolic stress induced a decrease in myostatin mRNA expression, whereas mechano-growth factor mRNA level depended on exercise intensity. CONCLUSIONS: This study demonstrates that both intensity and exercise-induced metabolic stress can be manipulated to affect muscle anabolic signaling.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Músculo Esquelético/metabolismo , Miostatina/biossíntese , Treinamento Resistido/métodos , Fator de Transcrição STAT5/biossíntese , Estresse Fisiológico/fisiologia , Proteínas Supressoras de Tumor/biossíntese , Regulação da Expressão Gênica , Humanos , Masculino , Adulto Jovem
9.
Artigo em Inglês | MEDLINE | ID: mdl-24875565

RESUMO

Glucocorticoids (GCs) strongly regulate myostatin expression in mammals via glucocorticoid response elements (GREs), and bioinformatics methods suggest that this regulatory mechanism is conserved among many vertebrates. However, the multiple myostatin genes found in some fishes may be an exception. In silico promoter analyses of the three putative rainbow trout (Oncorhynchus mykiss) myostatin promoters have failed to identify putative GREs, suggesting a divergence in myostatin function. Therefore, we hypothesized that myostatin mRNA expression is not regulated by glucocorticoids in rainbow trout. In this study, both juvenile rainbow trout and primary trout myoblasts were treated with cortisol to examine the effects on myostatin mRNA expression. Results suggest that exogenous cortisol does not regulate myostatin-1a and -1b expression in vivo, as myostatin mRNA levels were not significantly affected by cortisol treatment in either red or white muscle tissue. In red muscle, myostatin-2a levels were significantly elevated in the cortisol treatment group relative to the control, but not the vehicle control, at both 12 h and 24 h post-injection. As such, it is unclear if cortisol was acting alone or in combination with the vehicle. Cortisol increased myostatin-1b expression in a dose-dependent manner in vitro. Further work is needed to determine if this response is the direct result of cortisol acting on the myostatin-1b promoter or through an alternative mechanism. These results suggest that regulation of myostatin by cortisol may not be as highly conserved as previously thought and support previous work that describes potential functional divergence of the multiple myostatin genes in fishes.


Assuntos
Hidrocortisona/farmacologia , Miostatina/biossíntese , Regiões Promotoras Genéticas , Transcrição Gênica/efeitos dos fármacos , Animais , Simulação por Computador , Regulação da Expressão Gênica/efeitos dos fármacos , Miostatina/efeitos dos fármacos , Oncorhynchus mykiss/crescimento & desenvolvimento , RNA Mensageiro/biossíntese
10.
BMC Genomics ; 14: 798, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24246134

RESUMO

BACKGROUND: Systems biology enables the identification of gene networks that modulate complex traits. Comprehensive metabolomic analyses provide innovative phenotypes that are intermediate between the initiator of genetic variability, the genome, and raw phenotypes that are influenced by a large number of environmental effects. The present study combines two concepts, systems biology and metabolic analyses, in an approach without prior functional hypothesis in order to dissect genes and molecular pathways that modulate differential growth at the onset of puberty in male cattle. Furthermore, this integrative strategy was applied to specifically explore distinctive gene interactions of non-SMC condensin I complex, subunit G (NCAPG) and myostatin (GDF8), known modulators of pre- and postnatal growth that are only partially understood for their molecular pathways affecting differential body weight. RESULTS: Our study successfully established gene networks and interacting partners affecting growth at the onset of puberty in cattle. We demonstrated the biological relevance of the created networks by comparison to randomly created networks. Our data showed that GnRH (Gonadotropin-releasing hormone) signaling is associated with divergent growth at the onset of puberty and revealed two highly connected hubs, BTC and DGKH, within the network. Both genes are known to directly interact with the GnRH signaling pathway. Furthermore, a gene interaction network for NCAPG containing 14 densely connected genes revealed novel information concerning the functional role of NCAPG in divergent growth. CONCLUSIONS: Merging both concepts, systems biology and metabolomic analyses, successfully yielded new insights into gene networks and interacting partners affecting growth at the onset of puberty in cattle. Genetic modulation in GnRH signaling was identified as key modifier of differential cattle growth at the onset of puberty. In addition, the benefit of our innovative concept without prior functional hypothesis was demonstrated by data suggesting that NCAPG might contribute to vascular smooth muscle contraction by indirect effects on the NO pathway via modulation of arginine metabolism. Our study shows for the first time in cattle that integration of genetic, physiological and metabolomics data in a systems biology approach will enable (or contribute to) an improved understanding of metabolic and gene networks and genotype-phenotype relationships.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Hormônio Liberador de Gonadotropina/genética , Complexos Multiproteicos/genética , Miostatina/genética , Maturidade Sexual/genética , Biologia de Sistemas , Animais , Peso Corporal/genética , Bovinos , Epistasia Genética , Perfilação da Expressão Gênica , Variação Genética , Masculino , Redes e Vias Metabólicas/genética , Metabolômica , Miostatina/biossíntese , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
11.
Biochem Biophys Res Commun ; 440(2): 258-64, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24064350

RESUMO

Myostatin, a member of the Transforming Growth Factor beta (TGF-ß) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP3/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA-CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Mioblastos Esqueléticos/metabolismo , Miostatina/biossíntese , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Diferenciação Celular/fisiologia , Cromonas/farmacologia , Regulação da Expressão Gênica , Genisteína/farmacologia , Morfolinas/farmacologia , Miostatina/genética , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosfolipase C gama/fisiologia , Fosforilação , RNA Mensageiro/metabolismo , Ratos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/fisiologia , Transdução de Sinais/fisiologia , Sulfonamidas/farmacologia
12.
Genet Mol Res ; 12(4): 6733-42, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24391014

RESUMO

To confirm the entire developmental process and transition point of embryonic Pekin duck pectoral muscle, and to investigate the association between pectoral muscle development and their regulating genes, anatomical and morphological analyses of embryonic Pekin duck skeletal muscles were performed, and the expression patterns of its regulating genes were investigated. The anatomical analysis revealed that body weight increased with age, while increases in pectoral muscle weight nearly ceased after the embryo was 20 days of hatching (E20). The developmental morphological characteristics of Pekin duck pectoral muscle at the embryonic stage showed that E20 was the transition point (from proliferation to fusion) of Pekin duck pectoral muscle. The expression patterns of MRF4, MyoG, and MSTN indicated that E19 or E20 was the fastest point of pectoral muscle development and the crucial transition for Pekin duck pectoral muscle development during the embryonic stage. Together, these findings imply that E20 is the crucial transition point (from proliferation to fusion) of Pekin duck pectoral muscle and that there is no muscle fiber hypertrophy after E20. Results of this study provide further understanding of the developmental process and transition point of Pekin duck pectoral muscle during the embryo stage.


Assuntos
Patos/embriologia , Perfilação da Expressão Gênica/veterinária , Músculos Peitorais/embriologia , Animais , Peso Corporal , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Regulação Miogênica/biossíntese , Fatores de Regulação Miogênica/genética , Miogenina/biossíntese , Miogenina/genética , Miostatina/biossíntese , Miostatina/genética , Músculos Peitorais/anatomia & histologia , Músculos Peitorais/crescimento & desenvolvimento , RNA Mensageiro/biossíntese
13.
J Formos Med Assoc ; 112(10): 635-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24120154

RESUMO

BACKGROUND/PURPOSE: MicroRNA-208a (miR208a) and mechanical stress play a key role in cardiac hypertrophy. The relationship between miR208a and mechanical stress in cultured cardiomyocytes has not been investigated. The molecular mechanisms underlying miR208a-induced hypertrophy of cardiomyocytes by mechanical stress is poorly understood. This study investigated whether miR208a is a critical regulator in cardiomyocyte hypertrophy under mechanical stretch. METHODS: Neonatal rat cardiomyocytes grown on a flexible membrane base were stretched at 60 cycles/minute. MiR real-time quantitative assays were used to quantify miRs. A quantitative sandwich enzyme immunoassay technique was used to measure transforming growth factor-ß1 (TGF-ß1). A (3)H-proline incorporation assay was used to measure protein synthesis. RESULTS: Mechanical stretch significantly enhanced miR208a expression. Stretch significantly induced cardiomyocyte hypertrophic protein expression such as ß-myosin heavy chain (MHCß), thyroid hormone receptor-associated protein 100, myostatin, connexin 40, GATA4, and brain natriuretic peptide. MHCα was not induced by stretch. Overexpression of miR208a significantly increased MHCß protein expression while pretreatment with antagomir208a significantly attenuated MHCß protein expression induced by stretch and overexpression of miR208a. Mechanical stretch significantly increased the secretion of TGF-ß1 from cultured cardiomyocytes. Exogenous addition of TGF-ß1 recombinant protein significantly increased miR208a expression and pretreatment with TGF-ß1 antibody attenuated miR208a expression induced by stretch. Mechanical stretch and overexpression of miR208a increased protein synthesis while antagomir208a attenuated protein synthesis induced by stretch and overexpression of miR208a. CONCLUSION: Cyclic stretch enhances miR208a expression in cultured rat cardiomyocytes. MiR208a plays a role in stretch-induced cardiac hypertrophy. The stretch-induced miR208a is mediated by TGF-ß1.


Assuntos
MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Mecânico , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Conexinas/biossíntese , Fator de Transcrição GATA4/biossíntese , Hipertrofia , Complexo Mediador/biossíntese , MicroRNAs/antagonistas & inibidores , Cadeias Pesadas de Miosina/biossíntese , Miostatina/biossíntese , Peptídeo Natriurético Encefálico/biossíntese , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Fator de Crescimento Transformador beta1/farmacologia , Proteína alfa-5 de Junções Comunicantes
14.
Am J Physiol Endocrinol Metab ; 303(5): E614-23, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22739107

RESUMO

Physical activity is required to attenuate the loss of skeletal muscle mass with aging. Short periods of muscle disuse, due to sickness or hospitalization, reduce muscle protein synthesis rates, resulting in rapid muscle loss. The present study investigates the capacity of neuromuscular electrical stimulation (NMES) to increase in vivo skeletal muscle protein synthesis rates in older type 2 diabetes patients. Six elderly type 2 diabetic men (70 ± 2 yr) were subjected to 60 min of one-legged NMES. Continuous infusions with L-[ring-¹³C6]phenylalanine were applied, with blood and muscle samples being collected regularly to assess muscle protein synthesis rates in both the stimulated (STIM) and nonstimulated control (CON) leg during 4 h of recovery after NMES. Furthermore, mRNA expression of key genes implicated in the regulation of muscle mass were measured over time in the STIM and CON leg. Muscle protein synthesis rates were greater in the STIM compared with the CON leg during recovery from NMES (0.057 ± 0.008 vs. 0.045 ± 0.008%/h, respectively, P < 0.01). Skeletal muscle myostatin mRNA expression in the STIM leg tended to increase immediately following NMES compared with the CON leg (1.63- vs. 1.00-fold, respectively, P = 0.07) but strongly declined after 2 and 4 h of recovery in the STIM leg only. In conclusion, this is the first study to show that NMES directly stimulates skeletal muscle protein synthesis rates in vivo in humans. NMES likely represents an effective interventional strategy to attenuate muscle loss in elderly individuals during bed rest and/or in other disuse states.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Terapia por Estimulação Elétrica , Proteínas Musculares/biossíntese , Junção Neuromuscular/fisiopatologia , Músculo Quadríceps/metabolismo , Sarcopenia/prevenção & controle , Idoso , Atrofia/etiologia , Atrofia/metabolismo , Atrofia/patologia , Atrofia/prevenção & controle , Repouso em Cama/efeitos adversos , Biópsia por Agulha , Isótopos de Carbono , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Terapia por Estimulação Elétrica/métodos , Regulação da Expressão Gênica , Humanos , Imobilização/efeitos adversos , Cinética , Masculino , Proteínas Musculares/genética , Miostatina/biossíntese , Miostatina/genética , Fenilalanina/sangue , Fenilalanina/metabolismo , Músculo Quadríceps/patologia , Músculo Quadríceps/fisiopatologia , RNA Mensageiro/metabolismo , Sarcopenia/complicações , Sarcopenia/etiologia
15.
Biochem Biophys Res Commun ; 427(1): 36-40, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22995402

RESUMO

AMP-activated protein kinase (AMPK) is a master regulator of energy metabolism in skeletal muscle; AMPK induces muscle protein degradation but the underlying mechanisms are unclear. Myostatin is a powerful negative regulator of skeletal muscle mass and growth in mammalian species. We hypothesized that AMPK stimulates myostatin expression, which provides an explanation for the negative role of AMPK in muscle growth. The objective of this study is to demonstrate that AMPK stimulates myostatin expression using C2C12 cells as a model. Activation of AMPK by 5-aminoimidazole-4-carboxamide-1-ß-d-riboruranoside (AICAR) dramatically increased the mRNA expression and protein content of myostatin in C2C12 myotubes, and to a lesser degree in myoblasts. Metformin, another AMPK activator, also stimulated myostatin expression at low concentrations. In addition, ectopic expression of AMPK wild-type α subunit (enhancing AMPK activity) and AMPK K45R mutant (knockdown AMPK activity) enhanced and reduced myostatin expression, respectively. These results indicate that AMPK stimulates myostatin expression in C2C12 cells, providing an explanation for the negative effect of AMPK on muscle growth.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Miostatina/biossíntese , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Linhagem Celular , Ativação Enzimática , Metformina/farmacologia , Camundongos , Camundongos Knockout , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Miostatina/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ribonucleotídeos/farmacologia
16.
Hum Reprod ; 27(8): 2476-83, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22693174

RESUMO

STUDY QUESTION: What is the role of myostatin and its relationship with obesity, androgens and follistatin levels in women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWERS: The myostatin level was positively correlated to the risk of abdominal obesity, but negatively associated with circulating levels of dehydroepiandrosterone sulfate (DHEAS) and follistatin in women with PCOS. WHAT IS KNOWN AND WHAT THIS PAPER ADDS: Myostatin is a well-known negative regulator of skeletal muscle and is involved in metabolism; however, little is known about the role of myostatin in women with PCOS. In this study, we found that the myostatin level was positively related to the risk of abdominal obesity, but negatively related to the circulating levels of DHEAS and follistatin in women with PCOS. Such a relationship might imply a potential regulatory role of androgens and follistatin in the metabolism of skeletal muscle in women with PCOS. DESIGN: A cross-sectional case-control study. PARTICIPANTS AND SETTING: A total of 239 untreated, consecutive women with PCOS and 38 healthy volunteer women without PCOS were enrolled and studied in a tertiary medical center. MAIN RESULTS AND THE ROLE OF CHANCE: Myostatin level was higher in women with PCOS than those without PCOS (16.6±15.6 and 14.2±9.7, P=0.025), but were not significantly different between non-obese women with and without PCOS after considering the effect of obesity (P=0.09). Stepwise multivariate regression analysis in women revealed that only the presence of PCOS (ß=0.256, P=0.0001), total testosterone (ß=0.159, P=0.031), DHEAS (ß=-0.188, P=0.0003) and follistatin (ß=-0.171, P=0.0001) levels were left in the final model and were significantly related to the myostatin level after considering all the explanatory variables. By using stepwise multivariate regression analysis, the total testosterone levels (ß=0.196, P=0.003) were positively, but the DHEAS (ß=-0.196, P<0.0001) and follistatin (ß=-0.151, P=0.0001) levels were negatively, related to myostatin levels in women with PCOS after adjustment for age, anthropometric measurements, insulin sensitivity index and hormonal profiles. The high myostatin level was associated with the increased risk of abdominal obesity after further adjusting the androgens and follistatin levels in women with PCOS. LIMITATION, REASONS FOR CAUTION: This study is a cross-sectional case-control design, and therefore, cannot answer the cause-effect relationship among the androgens, follistatin and myostatin levels. The small sample size and non-obese control group may also limit the application of the conclusion of the present study to general population other than women with PCOS. In addition, lack of data regarding muscle mass is another limitation in this study that prevents clarification of the relationship between myostatin, lean mass and obesity and therefore restricts the clinical application of the results. WIDER IMPLICATIONS OF THE FINDINGS: Future studies to investigate the efficacy of exercise and lifestyle modification in treating women with PCOS should consider the myostatin, follistatin and androgen levels as well as the effect of muscle mass and BMI. STUDY FUNDING/COMPETING INTEREST: This study was supported by grants NSC97-2314-B002-079-MY3, NSC98-2314-B002-105-MY3 and NSC 100-2314-B002-027-MY3 from the National Science Council of Taiwan. There is no competing interest declared in this study.


Assuntos
Androgênios/sangue , Folistatina/sangue , Regulação da Expressão Gênica , Miostatina/biossíntese , Miostatina/fisiologia , Obesidade Abdominal/metabolismo , Síndrome do Ovário Policístico/sangue , Adulto , Antropometria/métodos , Estudos de Casos e Controles , Estudos Transversais , Sulfato de Desidroepiandrosterona/sangue , Feminino , Humanos , Modelos Biológicos , Mutação , Miostatina/metabolismo , Obesidade , Síndrome do Ovário Policístico/metabolismo
17.
Clin Exp Pharmacol Physiol ; 39(5): 417-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22332899

RESUMO

Myostatin (MSTN) has been implicated in metabolic adaptation to physiological stimuli, such as physical exercise, which is linked to improved glucose homeostasis. The aim of the present study was to evaluate the influence of exercise on the expression of MSTN, MSTN receptors (ActRIIB and ALK4) and follistatin (FS) in the muscle and fat of streptozotocin-induced diabetic rats. Control and diabetic rats were randomly assigned to a swimming training group (EC and ED, respectively) and a sedentary group (SC and SD, respectively). Exercising animals swam for 45 min at 0900 and 1700 hours, 5 day/week, for 4 weeks. The mRNA expression of MSTN, ActRIIB, ALK4 and FS mRNA was quantified by real-time reverse transcription-polymerase chain reaction. Expression of MSTN and FS mRNA increased in the muscle and subcutaneous fat of SD compared with SC rats. Expression of ActRIIB mRNA was increased in the muscle, mesenteric fat and brown adipose tissue (BAT) of SD compared with SC rats, whereas ALK4 mRNA expression was only increased in the BAT of SD compared with SC rats. After training, MSTN and ActRIIB expression was lower in the BAT of EC compared with SC rats. Expression of MSTN mRNA increased in the mesenteric fat of ED compared with SD rats, whereas FS mRNA expression decreased in the muscle, mesenteric and subcutaneous fat and BAT. Lower ALK4 mRNA expression was noted in the BAT of ED compared with SD rats. These results indicate that MSTN, its receptors and FS expression change in both the muscle and fat of diabetic rats and that the expression of these factors can be modulated by exercise in diabetes.


Assuntos
Receptores de Ativinas Tipo I/biossíntese , Diabetes Mellitus Experimental/metabolismo , Folistatina/biossíntese , Miostatina/biossíntese , Condicionamento Físico Animal/fisiologia , Receptores de Ativinas Tipo I/antagonistas & inibidores , Receptores de Ativinas Tipo I/genética , Tecido Adiposo Marrom/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/terapia , Folistatina/genética , Regulação da Expressão Gênica , Masculino , Músculo Esquelético/metabolismo , Miostatina/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , Distribuição Aleatória , Ratos , Ratos Wistar
18.
Artigo em Inglês | MEDLINE | ID: mdl-35010726

RESUMO

The primary role of myostatin is to negatively regulate skeletal muscle growth. The gait speed is a noninvasive, reliable parameter that predicts cardiovascular risk and mortality. This study evaluated the relationship between serum myostatin concentrations and gait speeds in patients who had undergone kidney transplantation (KT). A total of 84 KT recipients were evaluated. A speed of less than 1.0 m/s was categorized into the low gait speed group. We measured serum myostatin concentrations with a commercial enzyme-linked immunosorbent assay. KT recipients in the low gait speed group had significantly older age, as well as higher body weight, body mass index (BMI), skeletal muscle index, serum triglyceride levels, glucose levels, and blood urea nitrogen levels, lower estimated glomerular filtration rates and serum myostatin levels, a higher percentage of steroid use, and a lower proportion of mycophenolate mofetil use. Multivariable logistic regression analysis revealed that lower myostatin levels and lower frequency of mycophenolate mofetil use were independently associated with low gait speed. In multivariable stepwise linear regression analysis, myostatin levels were positively correlated with gait speeds, and age and BMI were negatively correlated with gait speeds. In the study, serum myostatin levels were significantly lower in the low gait speed group. Subjects in the low gait speed group also had greater BMI and older age.


Assuntos
Transplante de Rim , Miostatina , Velocidade de Caminhada , Idoso , Índice de Massa Corporal , Humanos , Músculo Esquelético , Miostatina/biossíntese
19.
Stroke ; 42(2): 416-20, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21164115

RESUMO

BACKGROUND AND PURPOSE: Stroke survivors experience disproportionate muscle atrophy and other detrimental tissue composition changes on the paretic side. The purpose was to determine whether myostatin levels are higher in paretic vs nonparetic muscle and the effects of resistive training (RT) on paretic and nonparetic mid-thigh muscle composition and myostatin mRNA expression in stroke survivors. METHODS: Fifteen stroke survivors (50-76 years) underwent bilateral multi-slice thigh CT scanning from the knee to the hip, bilateral vastus lateralis skeletal muscle tissue biopsies, a total body scan by dual-energy X-ray absorptiometry, and 1-repetition maximum strength test before and after a 12-week, (3 times/week) RT intervention. RESULTS: Total body fat mass and fat-free mass did not change. Bilateral leg press and leg extension 1-repetition maximum strength increased 31% to 56% with RT (P<0.001). Paretic and nonparetic muscle area of the mid-thigh increased 13% (P<0.01) and 9% (P<0.05), respectively, after RT. Muscle attenuation of the mid-thigh increased 15% and 8% (both P<0.01) in the paretic and nonparetic thigh, respectively, representing reduced intramuscular fat. Muscle volume increased 14% (P<0.001) in the paretic thigh and 16% (P<0.05) in the nonparetic thigh after RT. Myostatin mRNA expression levels were 40% higher in the paretic than nonparetic muscle (P=0.001) at baseline and decreased 49% in the paretic muscle (P<0.005) and 27% in the nonparetic muscle (P=0.06) after RT. CONCLUSIONS: Progressive RT stimulates significant muscle hypertrophy and intramuscular fat reductions in disabled stroke survivors. The increased myostatin mRNA in the paretic thigh and reduction with RT imply an important regulatory role for myostatin after stroke.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miostatina/biossíntese , Treinamento Resistido/métodos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia , Sobreviventes , Idoso , Feminino , Humanos , Hipertrofia , Masculino , Pessoa de Meia-Idade , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Miostatina/antagonistas & inibidores , Miostatina/metabolismo , Acidente Vascular Cerebral/patologia
20.
Am J Physiol Endocrinol Metab ; 300(5): E790-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21304067

RESUMO

Arthritis is a chronic inflammatory illness that induces cachexia, which has a direct impact on morbidity and mortality. Fenofibrate, a selective PPARα activator prescribed to treat human dyslipidemia, has been reported to decrease inflammation in rheumatoid arthritis patients. The aim of this study was to elucidate whether fenofibrate is able to ameliorate skeletal muscle wasting in adjuvant-induced arthritis, an experimental model of rheumatoid arthritis. On day 4 after adjuvant injection, control and arthritic rats were treated with 300 mg/kg fenofibrate until day 15, when all rats were euthanized. Fenofibrate decreased external signs of arthritis and liver TNFα and blocked arthritis-induced decreased in PPARα expression in the gastrocnemius muscle. Arthritis decreased gastrocnemius weight, which results from a decrease in cross-section area and myofiber size, whereas fenofibrate administration to arthritic rats attenuated the decrease in both gastrocnemius weight and fast myofiber size. Fenofibrate treatment prevented arthritis-induced increase in atrogin-1 and MuRF1 expression in the gastrocnemius. Neither arthritis nor fenofibrate administration modify Akt-FoxO3 signaling. Myostatin expression was not modified by arthritis, but fenofibrate decreased myostatin expression in the gastrocnemius of arthritic rats. Arthritis increased muscle expression of MyoD, PCNA, and myogenin in the rats treated with vehicle but not in those treated with fenofibrate. The results indicate that, in experimental arthritis, fenofibrate decreases skeletal muscle atrophy through inhibition of the ubiquitin-proteasome system and myostatin.


Assuntos
Artrite Experimental/patologia , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Proteínas Musculares/biossíntese , Músculo Esquelético/patologia , Miostatina/biossíntese , Miostatina/genética , PPAR gama/agonistas , Proteínas Ligases SKP Culina F-Box/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Animais , Artrite Experimental/tratamento farmacológico , Atrofia , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Lipídeos/sangue , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/genética , Fatores de Regulação Miogênica/biossíntese , Fatores de Regulação Miogênica/genética , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA