Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.572
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2303385120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549284

RESUMO

Excessive cell-free DNA (cfDNA) in the serum and synovium is considered a causative factor of rheumatoid arthritis (RA). Thus, cfDNA scavenging by using cationic polymers has been an effective therapeutic avenue, while these stratagems still suffer from systemic toxicity and unstable capture of cfDNA. Here, inspired by the biological charge-trapping effects and active degradation function of enzyme-containing organelles in vivo, we proposed a cationic peptide dendrimer nanogel with deoxyribonuclease I (DNase I) conjugation for the treatment of RA. Benefitting from their naturally derived peptide components, the resultant nanogels were highly biocompatible. More attractively, by tailoring them with a larger size and higher surface charge density, these cationic nanogels could achieve the fastest targeting capability, highest accumulation amounts, longer persistence time, and superior DNA scavenging capacity in inflamed joints. Based on these features, we have demonstrated that the organelle mimicking cationic nanogels could significantly down-regulate toll-like receptor (TLR)-9 signaling pathways and attenuate RA symptoms in collagen-induced arthritis mice. These results make the bioinspired DNase I conjugated cationic nanogels an ideal candidate for treating RA and other immune dysregulation diseases.


Assuntos
Artrite Reumatoide , Ácidos Nucleicos Livres , Camundongos , Animais , Nanogéis/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Peptídeos/uso terapêutico , Desoxirribonuclease I
2.
Proc Natl Acad Sci U S A ; 119(12): e2122310119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290110

RESUMO

Immune-suppressive (M2-type) macrophages can contribute to the progression of cancer and fibrosis. In chronic liver diseases, M2-type macrophages promote the replacement of functional parenchyma by collagen-rich scar tissue. Here, we aim to prevent liver fibrosis progression by repolarizing liver M2-type macrophages toward a nonfibrotic phenotype by applying a pH-degradable, squaric ester­based nanogel carrier system. This nanotechnology platform enables a selective conjugation of the highly water-soluble bisphosphonate alendronate, a macrophage-repolarizing agent that intrinsically targets bone tissue. The covalent delivery system, however, promotes the drug's safe and efficient delivery to nonparenchymal cells of fibrotic livers after intravenous administration. The bisphosphonate payload does not eliminate but instead reprograms profibrotic M2- toward antifibrotic M1-type macrophages in vitro and potently prevents liver fibrosis progression in vivo, mainly via induction of a fibrolytic phenotype, as demonstrated by transcriptomic and proteomic analyses. Therefore, the alendronate-loaded squaric ester­based nanogels represent an attractive approach for nanotherapeutic interventions in fibrosis and other diseases driven by M2-type macrophages, including cancer.


Assuntos
Difosfonatos , Cirrose Hepática , Difosfonatos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Cirrose Hepática/tratamento farmacológico , Macrófagos , Nanogéis
3.
Nano Lett ; 24(5): 1717-1728, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270376

RESUMO

Surgery is the primary method to treat malignant melanoma; however, the residual microtumors that cannot be resected completely often trigger tumor recurrence, causing tumor-related mortality following melanoma resection. Herein, we developed a feasible strategy based on the combinational chemoimmunotherapy by cross-linking carboxymethyl chitosan (CMCS)-originated polymetformin (PolyMetCMCS) with cystamine to prepare stimuli-responsive nanogel (PMNG) owing to the disulfide bond in cystamine that can be cleaved by the massive glutathione (GSH) in tumor sites. Then, chemotherapeutic agent doxorubicin (DOX) was loaded in PMNG, which was followed by a hyaluronic acid coating to improve the overall biocompatibility and targeting ability of the prepared nanogel (D@HPMNG). Notably, PMNG effectively reshaped the tumor immune microenvironment by reprogramming tumor-associated macrophage phenotypes and recruiting intratumoral CD8+ T cells owing to the inherited immunomodulatory capability of metformin. Consequently, D@HPMNG treatment remarkably suppressed melanoma growth and inhibited its recurrence after surgical resection, proposing a promising solution for overcoming lethal melanoma recurrence.


Assuntos
Melanoma , Polietilenoglicóis , Polietilenoimina , Humanos , Nanogéis , Macrófagos Associados a Tumor , Cistamina , Linfócitos T CD8-Positivos , Doxorrubicina , Glutationa/química , Microambiente Tumoral , Linhagem Celular Tumoral
4.
J Am Chem Soc ; 146(8): 5118-5127, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363821

RESUMO

Using functional proteins for therapeutic purposes due to their high selectivity and/or catalytic properties can enable the control of various cellular processes; however, the transport of active proteins inside living cells remains a major challenge. In contrast, intracellular delivery of nucleic acids has become a routine method for a number of applications in gene therapy, genome editing, or immunization. Here we report a functionalizable platform constituting of DNA-protein nanogel carriers cross-linked through streptavidin-biotin or streptactin-biotin interactions and demonstrate its applicability for intracellular delivery of active proteins. We show that the nanogels can be loaded with proteins bearing either biotin, streptavidin, or strep-tag, and the resulting functionalized nanogels can be delivered into living cells after complexation with cationic lipid vectors. We use this approach for delivery of alkaline phosphatase enzyme, which is shown to keep its catalytic activity after internalization by mouse melanoma B16 cells, as demonstrated by the DDAO-phosphate assay. The resulting functionalized nanogels have dimensions on the order of 100 nm, contain around 100 enzyme molecules, and are shown to be transfectable at low lipid concentrations (charge ratio R± = 0.75). This ensures the low toxicity of our system, which in combination with high local enzyme concentration (∼100 µM) underlines potential interest of this nanoplatform for biomedical applications.


Assuntos
Biotina , Polietilenoglicóis , Animais , Camundongos , Nanogéis , Estreptavidina , Proteínas , DNA/metabolismo , Lipídeos , Portadores de Fármacos
5.
Small ; 20(32): e2311166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38693075

RESUMO

Thermoresponsive nanogels (tNGs) are promising candidates for dermal drug delivery. However, poor incorporation of hydrophobic drugs into hydrophilic tNGs limits the therapeutic efficiency. To address this challenge, ß-cyclodextrins (ß-CD) are functionalized by hyperbranched polyglycerol serving as crosslinkers (hPG-ßCD) to fabricate ßCD-tNGs. This novel construct exhibits augmented encapsulation of hydrophobic drugs, shows the appropriate thermal response to dermal administration, and enhances the dermal penetration of payloads. The structural influences on the encapsulation capacity of ßCD-tNGs for hydrophobic drugs are analyzed, while concurrently retaining their efficacy as skin penetration enhancers. Various synthetic parameters are considered, encompassing the acrylation degree and molecular weight of hPG-ßCD, as well as the monomer composition of ßCD-tNGs. The outcome reveals that ßCD-tNGs substantially enhance the aqueous solubility of Nile Red elevating to 120 µg mL-1 and augmenting its dermal penetration up to 3.33 µg cm-2. Notably, the acrylation degree of hPG-ßCD plays a significant role in dermal drug penetration, primarily attributed to the impact on the rigidity and hydrophilicity of ßCD-tNGs. Taken together, the introduction of the functionalized ß-CD as the crosslinker in tNGs presents a novel avenue to enhance the efficacy of hydrophobic drugs in dermatological applications, thereby offering promising opportunities for boosted therapeutic outcomes.


Assuntos
Glicerol , Interações Hidrofóbicas e Hidrofílicas , Nanogéis , Polímeros , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Glicerol/química , Nanogéis/química , Polímeros/química , Animais , Polietilenoimina/química , Reagentes de Ligações Cruzadas/química , Temperatura , Absorção Cutânea , Pele/metabolismo , Polietilenoglicóis/química , Oxazinas
6.
Small ; 20(6): e2303494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794621

RESUMO

Insufficient bone formation and excessive bone resorption caused by estrogen deficiency are the major factors resulting in the incidence of postmenopausal osteoporosis (PMOP). The existing drugs usually fail to re-establish the osteoblast/osteoclast balance from both sides and generate side-effects owing to the lack of bone-targeting ability. Here, engineered cell-membrane-coated nanogels PNG@mR&C capable of scavenging receptor activator of nuclear factor-κB ligand (RANKL) and responsively releasing therapeutic PTH 1-34 in the bone microenvironment are prepared from RANK and CXCR4 overexpressed bone mesenchymal stem cell (BMSC) membrane-coated chitosan biopolymers. The CXCR4 on the coated-membranes confer bone-targeting ability, and abundant RANK effectively absorb RANKL to inhibit osteoclastogenesis. Meanwhile, the release of PTH 1-34 triggered by osteoclast-mediated acid microenvironment promote osteogenesis. In addition, the dose and frequency are greatly reduced due to the smart release property, prolonged circulation time, and bone-specific accumulation. Thus, PNG@mR&C exhibits satisfactory therapeutic effects in the ovariectomized (OVX) mouse model. This study provides a new paradigm re-establishing the bone metabolic homeostasis from multitargets and shows great promise for the treatment of PMOP.


Assuntos
Osteoclastos , Osteoporose Pós-Menopausa , Humanos , Animais , Camundongos , Feminino , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/metabolismo , Nanogéis , Biomimética , Diferenciação Celular , Osteoblastos , Osteogênese , NF-kappa B/metabolismo
7.
Small ; 20(15): e2308872, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994300

RESUMO

Chemotherapy using a nanoscaled drug delivery system is an effective cancer therapy, but its high drug concentration often causes drug resistance in cancer cells and normal cell damage. Combination therapy involving two or more different cell signaling pathways can be a powerful tool to overcome the limitations of chemotherapy. Herein, this article presents nanogel (NG)-mediated co-delivery of a chemodrug camptothecin (CPT) and mitochondria-targeting monomer (MT monomer) for efficient activation of two modes of the programmed cell death pathway (apoptosis and necroptosis) and synergistic enhancement of cancer therapy. CPT and the monomer are incorporated together into the redox-degradable polymeric NGs for release in response to the intracellular glutathione. The MT monomer is shown to undergo reactive oxygen species (ROS)-triggered disulfide polymerization inside the cancerous mitochondria in cooperation with the chemotherapeutic CPT elevating the intracellular ROS level. The CPT/monomer interconnection in cell death mechanisms for mitochondrial dysfunction and enhanced cell death is evidenced by a series of cell analyses showing ROS generation, mitochondria damage, impacts on (non)cancerous or drug-resistant cells, and cell death modes. The presented work provides beneficial insights for utilizing combination therapy to facilitate a desired cell death mechanism and developing a novel nanosystem for more efficacious cancer treatment.


Assuntos
Dissulfetos , Neoplasias , Polietilenoglicóis , Polietilenoimina , Humanos , Nanogéis , Preparações Farmacêuticas , Dissulfetos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Polimerização , Morte Celular , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Camptotecina/farmacologia , Camptotecina/uso terapêutico
8.
Chemistry ; 30(45): e202401232, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38848047

RESUMO

We describe a facile method to prepare water-compatible molecularly imprinted polymer nanogels (MIP NGs) as synthetic antibodies against target glycans. Three different phenylboronic acid (PBA) derivatives were explored as monomers for the synthesis of MIP NGs targeting either α2,6- or α2,3-sialyllactose, taken as oversimplified models of cancer-related sT and sTn antigens. Starting from commercially available 3-acrylamidophenylboronic acid, also its 2-substituted isomer and the 5-acrylamido-2-hydroxymethyl cyclic PBA monoester derivative were initially evaluated by NMR studies. Then, a small library of MIP NGs imprinted with the α2,6-linked template was synthesized and tested by mobility shift Affinity Capillary Electrophoresis (msACE), to rapidly assess an affinity ranking. Finally, the best monomer 2-acrylamido PBA was selected for the synthesis of polymers targeting both sialyllactoses. The resulting MIP NGs display an affinity constant≈106 M-1 and selectivity towards imprinted glycans. This general procedure could be applied to any non-modified carbohydrate template possessing a reducing end.


Assuntos
Ácidos Borônicos , Lactose , Nanogéis , Ácidos Borônicos/química , Lactose/química , Lactose/análogos & derivados , Nanogéis/química , Polímeros Molecularmente Impressos/química , Impressão Molecular , Polímeros/química , Eletroforese Capilar , Polietilenoglicóis/química , Polissacarídeos/química , Ácidos Siálicos
9.
Langmuir ; 40(9): 4860-4870, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394629

RESUMO

Tildipirosin has no significant inhibitory effect on intracellular bacteria because of its poor membrane permeability. To this end, tildipirosin-loaded xanthan gum-gelatin composite nanogels were innovatively prepared to improve the cellular uptake efficiency. The formation of the nanogels via interactions between the positively charged gelatin and the negatively charged xanthan gum was confirmed by powder X-ray diffraction and Fourier transform infrared. The results indicate that the optimal tildipirosin composite nanogels possessed a 3D network structure and were shaped like a uniformly dispersed ellipse, and the particle size, PDI, and ζ potential were 229.4 ± 1.5 nm, 0.26 ± 0.04, and -33.2 ± 2.2 mV, respectively. Interestingly, the nanogels exhibited gelatinase-responsive characteristics, robust cellular uptake via clathrin-mediated endocytosis, and excellent sustained release. With those pharmaceutical properties provided by xanthan gum-gelatin composite nanogels, the anti-Staphylococcus aureus activity of tildipirosin was remarkably amplified. Further, tildipirosin composite nanogels demonstrated good biocompatibility and low in vivo and in vitro toxicities. Therefore, we concluded that tildipirosin-loaded xanthan gum-gelatin composite nanogels might be employed as a potentially effective gelatinase-responsive drug delivery for intracellular bacterial infection.


Assuntos
Gelatina , Gelatinases , Polissacarídeos Bacterianos , Tilosina/análogos & derivados , Nanogéis , Gelatina/química
10.
Biomacromolecules ; 25(2): 1340-1350, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38242644

RESUMO

The ability to fine-tune the volume phase transition temperature (VPTT) of thermoresponsive nanoparticles is essential to their successful application in drug delivery. The rational design of these materials is limited by our understanding of the impact that nanoparticle-protein interactions have on their thermoresponsive behavior. In this work, we demonstrate how the formation of protein corona impacts the transition temperature values of acrylamide-based nanogels and their reversibility characteristics, in the presence of lysozyme, given its relevance for the ocular and intranasal administration route. Nanogels were synthesized with N-isopropylacrylamide or N-n-propylacrylamide as backbone monomers, methylenebis(acrylamide) (2.5-20 molar %) as a cross-linker, and functionalized with negatively charged monomers 2-acrylamido-2-methylpropanesulfonic acid, N-acryloyl-l-proline, or acrylic acid; characterization showed comparable particle diameter (c.a.10 nm), but formulation-dependent thermoresponsive properties, in the range 28-54 °C. Lysozyme was shown to form a complex with the negatively charged nanogels, lowering their VPTT values; the hydrophilic nature of the charged comonomer controlled the drop in VPTT upon complex formation, while matrix rigidity only had a small, yet significant effect. The cross-linker content was found to play a major role in determining the reversibility of the temperature-dependent transition of the complexes, with only 20 molar % cross-linked-nanogels displaying a fully reversible transition. These results demonstrate the importance of evaluating protein corona formation in the development of drug delivery systems based on thermoresponsive nanoparticles.


Assuntos
Coroa de Proteína , Nanogéis , Muramidase , Acrilamida , Portadores de Fármacos , Temperatura , Acrilamidas
11.
Biomacromolecules ; 25(2): 605-613, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844272

RESUMO

Taking inspiration from spider silk protein spinning, we developed a method to produce tough filaments using extrusion-based 3D bioprinting and salting-out of the protein. To enhance both stiffness and ductility, we have designed a blend of partially crystalline, thermally sensitive natural polymer gelatin and viscoelastic G-polymer networks, mimicking the components of spider silk. Additionally, we have incorporated inorganic nanoparticles as a rheological modifier to fine-tune the 3D printing properties. This self-healing nanocomposite hydrogel exhibits exceptional mechanical properties, biocompatibility, shear thinning behavior, and a well-controlled gelation mechanism for 3D printing.


Assuntos
Bioimpressão , Engenharia Tecidual , Nanogéis , Impressão Tridimensional , Seda , Polímeros , Hidrogéis/química , Alicerces Teciduais/química
12.
Biomacromolecules ; 25(2): 809-818, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181098

RESUMO

Enzyme immobilization in nanoparticles is of interest for boosting their catalytic applications, yet rational approaches to designs achieving both high enzyme loading and activation remain a challenge. Herein, we report an electrostatically mediated in situ polymerization strategy that simultaneously realizes enzyme immobilization and activation. This was achieved by copolymerizing cationic monomers with a cross-linker in the presence of the enzyme lipase (anionic) as the template, which produces enzyme-loaded nanogels. The effects of different control factors such as pH, lipase dosage, and cross-linker fraction on nanogel formation are investigated systematically, and optimal conditions for enzyme loading and activation have been determined. A central finding is that the cationic polymer network of the nanogel creates a favorable environment that not only protects the enzyme but also boosts enzymatic activity nearly 2-fold as compared to free lipase. The nanogels improve the stability of the lipase to tolerate a broader working range of pH (5.5-8.5) and temperature (25-70 °C) and allow recycling such that after six cycles of reaction, 70% of the initial activity is conserved. The established fabrication strategy can be applied generally to different cationic monomers, and most of these nanogels exhibit adequate immobilization and activation of lipase. Our study confirms that in situ polymerization based on electrostatic interaction provides a facile and robust strategy for enzyme immobilization and activation. The wide variety of ionic monomers, therefore, features great potential for developing functional platforms toward satisfying enzyme immobilization and demanding applications.


Assuntos
Enzimas Imobilizadas , Lipase , Polietilenoglicóis , Polietilenoimina , Nanogéis , Estabilidade Enzimática , Polimerização , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Concentração de Íons de Hidrogênio
13.
Biomacromolecules ; 25(8): 4697-4714, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995854

RESUMO

Stimulating the release of small nanoparticles (NPs) from a larger NP via the application of an exogenous stimulus offers the potential to address the different size requirements for circulation versus penetration that hinder chemotherapeutic drug delivery. Herein, we report a size-switching nanoassembly-based drug delivery system comprised of ultrasmall starch nanoparticles (SNPs, ∼20-50 nm major size fraction) encapsulated in a poly(oligo(ethylene glycol) methyl ether methacrylate) nanogel (POEGMA, ∼150 nm major size fraction) cross-linked via supramolecular PEG/α-cyclodextrin (α-CD) interactions. Upon heating the nanogel using a non-invasive, high-intensity focused ultrasound (HIFU) trigger, the thermoresponsive POEGMA-CD nanoassemblies are locally de-cross-linked, inducing in situ release of the highly penetrative drug-loaded SNPs. HIFU triggering increased the release of nanoassembly-loaded DOX from 17 to 37% after 3 h, a result correlated with significantly more effective tumor killing relative to nanoassemblies in the absence of HIFU or drug alone. Furthermore, 1.5× more total fluorescence was observed inside a tumor spheroid when nanoassemblies prepared with fluorophore-labeled SNPs were triggered with HIFU relative to the absence of HIFU. We anticipate this strategy holds promise for delivering tunable doses of chemotherapeutic drugs both at and within a tumor site using a non-invasive triggering approach.


Assuntos
Doxorrubicina , Polietilenoglicóis , Humanos , Polietilenoglicóis/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Nanogéis/química , Nanopartículas/química , alfa-Ciclodextrinas/química , Sistemas de Liberação de Medicamentos/métodos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Animais , Portadores de Fármacos/química , Linhagem Celular Tumoral , Polietilenoimina/química
14.
Photochem Photobiol Sci ; 23(4): 665-679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443738

RESUMO

Nanosized alginate-based particles (NAPs) were obtained in a one-pot solvent-free synthesis procedure, achieving the design of a biocompatible nanocarrier for the encapsulation of IbM6 antimicrobial peptide (IbM6). IbM6 is integrated in the nascent nanosized hydrogel self-assembly guided by electrostatic interactions and by weak interactions, typical of soft matter. The formation of the nanogel is a dynamic and complex process, which presents an interesting temporal evolution. In this work, we optimized the synthesis conditions of IbM6-NAPs based on small-angle X-ray scattering (SAXS) measurements and evaluated its time evolution over several weeks by sensing the IbM6 environment in IbM6-NAPs from photochemical experiments. Fluorescence deactivation experiments revealed that the accessibility of different quenchers to the IbM6 peptide embedded in NAPs is dependent on the aging time of the alginate network. Lifetimes measurements indicate that the deactivation paths of the excited state of the IbM6 in the nanoaggregates are reduced when compared with those exhibited by the peptide in aqueous solution, and are also dependent on the aging time of the nanosized alginate network. Finally, the entrapment of IbM6 in NAPs hinders the degradation of the peptide by trypsin, increasing its antimicrobial activity against Escherichia coli K-12 in simulated operation conditions.


Assuntos
Alginatos , Escherichia coli K12 , Polietilenoglicóis , Polietilenoimina , Nanogéis , Peptídeos Antimicrobianos , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeos/farmacologia , Escherichia coli
15.
Chem Rev ; 122(13): 11675-11700, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35671377

RESUMO

Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.


Assuntos
Nanogéis/química , Polietilenoglicóis/química , Polietilenoimina , Coloides , Polietilenoimina/química , Polímeros/química
16.
Macromol Rapid Commun ; 45(14): e2400049, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685191

RESUMO

Hydrogels are usually depicted as a homogenous polymer block with a distinct surface. While defects in the polymer structure are looked into frequently, structural irregularities on the hydrogel surface are often neglected. In this work, thin hydrogel layers of ≈100 nm thickness (nanogels) are synthesized and characterized for their structural irregularities, as they represent the surface of macrogels. The nanogels contain a main-chain responsiveness (thermo responsive) and a responsiveness in the cross-linking points (redox responsive). By combining data from ellipsometry using box-model and two-segment-model analysis, as well as atomic force microscopy, a more defined model of the nanogel surface can be developed. Starting with a more densely cross-linked network at the silica wafer surface, the density of cross-linking gradually decreases toward the hydrogel-solvent interface. Thermo-responsive behavior of the main chain affects the entire network equally as all chain segments change solubility. Cross-linker-based redox-responsiveness, on the other hand, is only governed by the inner, more cross-linked layers of the network. Such dual responsive nanogels hence allow for developing a more detailed model of a hydrogel surface from free radical polymerization. It provides a better understanding of structural defects in hydrogels and how they are affected by responsive functionalities.


Assuntos
Nanogéis , Oxirredução , Propriedades de Superfície , Nanogéis/química , Hidrogéis/química , Temperatura , Polietilenoglicóis/química , Tamanho da Partícula , Polietilenoimina/química , Microscopia de Força Atômica
17.
Environ Res ; 242: 117568, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979930

RESUMO

Phenols, dyes, and metal ions present in industrial wastewater can adversely affect the environment and leach biological carcinogens. Given that the current research focuses only on the removal of one or two of those categories. Herein, this work reports a novel ZIF-8@IL-MXene/Poly(N-isopropylacrylamide) (NIPAM) nanocomposite hydrogel that can efficiently and conveniently absorb and separate multiple pollutants from industrial wastewater. Ionic liquid (IL) was grafted onto MXene surfaces using a one-step method, and then incorporated into NIPAM monomer solutions to obtain the IL-MXene/PNIPAM composite hydrogel via in-situ polymerization. ZIF-8@IL-MXene/PNIPAM nanocomposite hydrogels were obtained by in-situ growth of ZIF-8 on the pore walls of composite hydrogels. As-prepared nanocomposite hydrogel showed excellent mechanical properties and can withstand ten repeated compressions without any damage, the specific surface area increased by 100 times, and the maximum adsorption capacities for p-nitrophenol (4-NP), crystal violet (CV), and copper ion (Cu2+) were 198.40, 325.03, and 285.65 mg g-1, respectively, at room temperature. The VPTTs of all hydrogels ranged from 33 to 35 °C, so the desorption process can be achieved in deionized water at 35-40 °C, and its adsorption capacities after five adsorption-desorption cycles decreased to 79%, 91%, and 29% for 4-NP, CV, and Cu2+, respectively. The adsorption data fitting results follow pseudo-second-order kinetics and Freundlich models, which is based on multiple interactions between the functional groups contained in hydrogels and adsorbent molecules. The hydrogel is the first to realize the high-efficiency adsorption of phenols, dyes and metal ions in industrial wastewater simultaneously, and the preparation process of hydrogels is environmentally friendly. Also, giving hydrogel multifunctional adsorption is beneficial to promote the development of multifunctional adsorption materials.


Assuntos
Acrilamidas , Líquidos Iônicos , Nitritos , Elementos de Transição , Poluentes Químicos da Água , Cobre , Nanogéis , Águas Residuárias , Adsorção , Corantes , Hidrogéis/química , Íons , Fenóis , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
18.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561720

RESUMO

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Polietilenoglicóis , Polietilenoimina , Pseudomonas putida , Titânio , Animais , Antioxidantes , Nanogéis , Dieta , Suplementos Nutricionais , Ração Animal/análise , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia
19.
J Nanobiotechnology ; 22(1): 54, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326903

RESUMO

The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.


Assuntos
Osteogênese , Fosfatidilinositol 3-Quinases , Ratos , Animais , Nanogéis , Osso e Ossos/diagnóstico por imagem , Hidrogéis/farmacologia
20.
J Nanobiotechnology ; 22(1): 326, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858673

RESUMO

BACKGROUND: Properly designed second near-infrared (NIR-II) nanoplatform that is responsive tumor microenvironment can intelligently distinguish between normal and cancerous tissues to achieve better targeting efficiency. Conventional photoacoustic nanoprobes are always "on", and tumor microenvironment-responsive nanoprobe can minimize the influence of endogenous chromophore background signals. Therefore, the development of nanoprobe that can respond to internal tumor microenvironment and external stimulus shows great application potential for the photoacoustic diagnosis of tumor. RESULTS: In this work, a low-pH-triggered thermal-responsive volume phase transition nanogel gold nanorod@poly(n-isopropylacrylamide)-vinyl acetic acid (AuNR@PNIPAM-VAA) was constructed for photoacoustic detection of tumor. Via an external near-infrared photothermal switch, the absorption of AuNR@PNIPAM-VAA nanogel in the tumor microenvironment can be dynamically regulated, so that AuNR@PNIPAM-VAA nanogel produces switchable photoacoustic signals in the NIR-II window for tumor-specific enhanced photoacoustic imaging. In vitro results show that at pH 5.8, the absorption and photoacoustic signal amplitude of AuNR@PNIPAM-VAA nanogel in NIR-II increases up obviously after photothermal modulating, while they remain slightly change at pH 7.4. Quantitative calculation presents that photoacoustic signal amplitude of AuNR@PNIPAM-VAA nanogel at 1064 nm has ~ 1.6 folds enhancement as temperature increases from 37.5 °C to 45 °C in simulative tumor microenvironment. In vivo results show that the prepared AuNR@PNIPAM-VAA nanogel can achieve enhanced NIR-II photoacoustic imaging for selective tumor detection through dynamically responding to thermal field, which can be precisely controlled by external light. CONCLUSIONS: This work will offer a viable strategy for the tumor-specific photoacoustic imaging using NIR light to regulate the thermal field and target the low pH tumor microenvironment, which is expected to realize accurate and dynamic monitoring of tumor diagnosis and treatment.


Assuntos
Resinas Acrílicas , Ouro , Nanogéis , Técnicas Fotoacústicas , Microambiente Tumoral , Técnicas Fotoacústicas/métodos , Animais , Ouro/química , Camundongos , Concentração de Íons de Hidrogênio , Resinas Acrílicas/química , Nanogéis/química , Humanos , Linhagem Celular Tumoral , Polietilenoglicóis/química , Nanotubos/química , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Camundongos Nus , Raios Infravermelhos , Feminino , Polietilenoimina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA