Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(37): 22639-22648, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32900936

RESUMO

Despite an abundant literature on gold nanoparticles use for biomedicine, only a few of the gold-based nanodevices are currently tested in clinical trials, and none of them are approved by health agencies. Conversely, ionic gold has been used for decades to treat human rheumatoid arthritis and benefits from 70-y hindsight on medical use. With a view to open up new perspectives in gold nanoparticles research and medical use, we revisit here the literature on therapeutic gold salts. We first summarize the literature on gold salt pharmacokinetics, therapeutic effects, adverse reactions, and the present repurposing of these ancient drugs. Owing to these readings, we evidence the existence of a common metabolism of gold nanoparticles and gold ions and propose to use gold salts as a "shortcut" to assess the long-term effects of gold nanoparticles, such as their fate and toxicity, which remain challenging questions nowadays. Moreover, one of gold salts side effects (i.e., a blue discoloration of the skin exposed to light) leads us to propose a strategy to biosynthesize large gold nanoparticles from gold salts using light irradiation. These hypotheses, which will be further investigated in the near future, open up new avenues in the field of ionic gold and gold nanoparticles-based therapies.


Assuntos
Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Nanomedicina/tendências , Artrite Reumatoide/tratamento farmacológico , Ouro/efeitos adversos , Humanos , Nanopartículas Metálicas/efeitos adversos , Nanomedicina/métodos
2.
BMC Plant Biol ; 22(1): 255, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35606722

RESUMO

BACKGROUND: Biogenic metallic nanoparticles have been emerging as a promising alternative for the control of phytopathogens and as nanofertilizers. In this way, it is essential to investigate the possible impacts of these new nanomaterials on plants. In this study, the effects of soil contamination with biogenic silver (AgNPs) and iron (FeNPs) with known antifungal potential were investigated on morphological, physiological and biochemical parameters of soybean seedlings. RESULTS: The exposure of plants/seedlings to AgNPs induced the reduction of root dry weight followed by oxidative stress in this organ, however, adaptive responses such as a decrease in stomatal conductance without impacts on photosynthesis and an increase in intrinsic water use efficiency were also observed. The seedlings exposed to FeNPs had shown an increase in the levels of oxygen peroxide in the leaves not accompanied by lipid peroxidation, and an increase in the expression of POD2 and POD7 genes, indicating a defense mechanism by root lignification. CONCLUSION: Our results demonstrated that different metal biogenic nanoparticles cause different effects on soybean seedlings and these findings highlight the importance of investigating possible phytotoxic effects of these nanomaterials for the control of phytopathogens or as nanofertilizers.


Assuntos
Glycine max , Nanopartículas Metálicas , Plântula , Ferro/efeitos adversos , Ferro/metabolismo , Nanopartículas Metálicas/efeitos adversos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Prata/efeitos adversos , Prata/metabolismo , Poluentes do Solo/efeitos adversos , Poluentes do Solo/farmacologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo
3.
Transfusion ; 62(12): 2648-2652, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36325695

RESUMO

BACKGROUND: We describe here the first patient with recurrent hemolysis related to disinfectant containing silver nanoparticles (AgNps). METHODS: A 58-year-old chemist repeatedly experienced DAT-negative (Coombs-negative) hemolysis during the last 5 years. He was treated with a number of immunosuppressive drugs including 18 times rituximab. The attempt to treat him with cyclosporine A served only to increase the rate of hemolysis. Only by chance, we revealed that the patient regularly used a hand disinfectant containing AgNps. Serological testing was performed using standard techniques. Eryptosis was measured by binding annexin to exposed phosphatidylserine (PS) of the circulating red blood cells (RBCs). RESULTS: Antiglobulin tests remained negative, and PS exposing RBCs were detected two times during the last hemolytic episodes. Hemolysis completely disappeared following discontinuation of AgNp containing products. CONCLUSION: AgNps are increasingly being used in a large variety of products. Recently, it was reported that they induce in vitro prohemolytic and procoagulant effects via oxidative stress and eryptosis. The clinical findings imply the hemolysis was provoked by the patient's regular use of cleansing products containing AgNps. Our finding might help to explain the etiology of hemolytical disorders that may remain obscure in many cases.


Assuntos
Anemia Hemolítica Autoimune , Nanopartículas Metálicas , Humanos , Pessoa de Meia-Idade , Anemia Hemolítica Autoimune/induzido quimicamente , Anemia Hemolítica Autoimune/diagnóstico , Teste de Coombs , Nanopartículas Metálicas/efeitos adversos , Prata/efeitos adversos
4.
Arch Toxicol ; 96(6): 1551-1571, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35296919

RESUMO

Nanotechnology is a promising technology of the twenty-first century, being a rapidly evolving field of research and industrial innovation widely applied in our everyday life. Silver nanoparticles (AgNP) are considered the most commercialized nanosystems worldwide, being applied in diverse sectors, from medicine to the food industry. Considering their unique physical, chemical and biological properties, AgNP have gained access into our daily life, with an exponential use in food industry, leading to an increased inevitable human oral exposure. With the growing use of AgNP, several concerns have been raised, in recent years, about their potential hazards to human health, more precisely their pro-inflammatory effects within the gastrointestinal system. Therefore a review of the literature has been undertaken to understand the pro-inflammatory potential of AgNP, after human oral exposure, in the intestine. Despite the paucity of information reported in the literature about this issue, existing studies indicate that AgNP exert a pro-inflammatory action, through generation of oxidative stress, accompanied by mitochondrial dysfunction, interference with transcription factors and production of cytokines. However, further studies are needed to elucidate the mechanistic pathways and molecular targets involved in the intestinal pro-inflammatory effects of AgNP.


Assuntos
Mucosa Intestinal , Nanopartículas Metálicas , Prata , Citocinas/metabolismo , Humanos , Inflamação , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Prata/efeitos adversos , Prata/química
5.
Arch Toxicol ; 96(1): 105-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34786588

RESUMO

The world is living a pandemic situation derived from the worldwide spreading of SARS-CoV-2 virus causing COVID-19. Facemasks have proven to be one of the most effective prophylactic measures to avoid the infection that has made that wearing of facemasks has become mandatory in most of the developed countries. Silver and graphene nanoparticles have proven to have antimicrobial properties and are used as coating of these facemasks to increase the effectivity of the textile fibres. In the case of silver nanoparticles, we have estimated that in a real scenario the systemic (internal) exposure derived from wearing these silver nanoparticle facemasks would be between 7.0 × 10-5 and 2.8 × 10-4 mg/kg bw/day. In addition, we estimated conservative systemic no effect levels between 0.075 and 0.01 mg/kg bw/day. Therefore, we estimate that the chronic exposure to silver nanoparticles derived form facemasks wearing is safe. In the case of graphene, we detected important gaps in the database, especially regarding toxicokinetics, which prevents the derivation of a systemic no effect level. Nevertheless, the qualitative approach suggests that the risk of dermal repeated exposure to graphene is very low, or even negligible. We estimated that for both nanomaterials, the risk of skin sensitisation and genotoxicity is also negligible.


Assuntos
Antivirais/efeitos adversos , COVID-19/prevenção & controle , Grafite/efeitos adversos , Máscaras/efeitos adversos , Nanopartículas Metálicas/efeitos adversos , Prata/efeitos adversos , Animais , COVID-19/virologia , Feminino , Humanos , Máscaras/virologia , Camundongos , Camundongos Endogâmicos BALB C , Medição de Risco , SARS-CoV-2
6.
Cell Biol Toxicol ; 37(2): 177-191, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32367270

RESUMO

Owing to the excellent antibacterial and antiviral activity, silver nanoparticles have a widespread use in the food and pharmaceutical industries. With the increase in the production and use of the related products, the potential hazard of silver nanoparticles has aroused public attention. The main purpose of this study is to explore the toxicity of silver nanoparticles and induction of lung inflammation in vitro and in vivo. Here, we validated that small amounts of silver ions dissolved from silver nanoparticles caused the depolarization of plasma membrane, resulting in an overload of intracellular sodium and calcium, and eventually led to the cell necrosis. The blockers of calcium or sodium channels inversed the toxicity of silver ions. Then, we instilled silver nanoparticles or silver nitrate (50 µg per mouse) into the lungs of mice, and this induced pulmonary injury and mitochondrial content release, led to the recruitment of neutrophils to the lung tissue via p38 MAPK pathway. Altogether, these data show that released silver ions from nanoparticles induced cell necrosis through Na+ and Ca2+ influx and triggered pulmonary inflammation through elevating mitochondrial-related contents released from these necrotic cells.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Mitocôndrias/metabolismo , Pneumonia/patologia , Prata/efeitos adversos , Células A549 , Animais , Cálcio/metabolismo , DNA Mitocondrial/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Íons , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Necroptose/efeitos dos fármacos , Necrose , Infiltração de Neutrófilos/efeitos dos fármacos , Proteínas Quinases/metabolismo , Sódio/metabolismo
7.
Arch Toxicol ; 95(1): 53-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001223

RESUMO

Inhalation of ZnO particles can cause inflammation of the airways and metal fume fever. It is unclear if different sizes of the particles alter these effects. However, various studies report higher biological activity of other nano-sized particles compared to microparticles. No effects at all were observed after inhalation of micro- and nano-sized zinc oxide (ZnO) particle concentrations of 0.5 mg/m3. Studies with different particle sizes of ZnO at higher exposures are not available. Accordingly, we hypothesized that inhalation of nano-sized ZnO particles induces stronger health effects than the inhalation of the same airborne mass concentration of micro-sized ZnO particles. 16 healthy volunteers (eight men, eight women) were exposed to filtered air and ZnO particles (2.0 mg/m3) for 2 h (one session with nano- and one with micro-sized ZnO) including 1 h of cycling at moderate workload. Effect parameters were symptoms, body temperature, inflammatory markers in blood and in induced sputum. Induced sputum was obtained at baseline examination, 22 h after exposure and at the end of the final test. The effects were assessed before, immediately after, about 22 h after, as well as two and three days after each exposure. Neutrophils, monocytes and acute-phase proteins in blood increased 22 h after micro- and nano-sized ZnO exposure. Effects were generally stronger with micro-sized ZnO particles. Parameters in induced sputum showed partial increases on the next day, but the effect strengths were not clearly attributable to particle sizes. The hypothesis that nano-sized ZnO particles induce stronger health effects than micro-sized ZnO particles was not supported by our data. The stronger systemic inflammatory responses after inhalation of micro-sized ZnO particles can be explained by the higher deposition efficiency of micro-sized ZnO particles in the respiratory tract and a substance-specific mode of action, most likely caused by the formation of zinc ions.


Assuntos
Mediadores da Inflamação/sangue , Nanopartículas Metálicas/administração & dosagem , Sistema Respiratório/efeitos dos fármacos , Óxido de Zinco/administração & dosagem , Proteínas de Fase Aguda/metabolismo , Administração por Inalação , Adulto , Ciclismo , Biomarcadores/sangue , Regulação da Temperatura Corporal/efeitos dos fármacos , Método Duplo-Cego , Feminino , Humanos , Masculino , Nanopartículas Metálicas/efeitos adversos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Nebulizadores e Vaporizadores , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Tamanho da Partícula , Distribuição Aleatória , Sistema Respiratório/metabolismo , Escarro/metabolismo , Fatores de Tempo , Adulto Jovem , Óxido de Zinco/efeitos adversos , Óxido de Zinco/metabolismo
8.
Toxicol Ind Health ; 37(4): 198-209, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33625315

RESUMO

The widespread use of silver nanoparticles (AgNPs), their many sources for human exposure, and the ability of AgNPs to enter organisms and induce general toxicological responses have raised concerns regarding their public health and environmental safety. To elucidate the differential toxic effects of polyvinylpyrrolidone-capped AgNPs with different primary particle sizes (i.e. 5, 50, and 75 nm), we performed a battery of cytotoxicity and genotoxicity assays and examined the inflammatory responses in two human cell lines (i.e. HepG2 and A549). Concentration-dependent decreases in cell proliferation and mitochondrial membrane potential and increases in cytokine (i.e. interleukin-6 and interleukin-8) excretion indicated disruption of mitochondrial function and inflammation as the main mediating factors of AgNPs-induced cytotoxicity. An incremental increase in genotoxicity with decreasing AgNPs diameter was noted in HepG2 cells, which was associated with S and G2/M accumulation and transcriptional activation of the GADD45α promoter as reflected by luciferase activity. Dose-related genetic damage, as indicated by Olive tail moment and micronucleus formation, was also observed in A549 cells, but these effects as well as the AgNPs-induced cytotoxicity were more associated with ionic Ag release from nanoparticles (NPs). In summary, the present study addressed different toxicity mechanisms of AgNPs, depending on the cell model, toxicological endpoint, particle size, and degree of Ag+ release from NPs. The results suggest that the GADD45α promoter-driven luciferase reporter cell system provided a rapid screening tool for the identification of genotoxic properties of NPs across a range of different sizes and concentrations.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Mutagênicos/análise , Povidona/efeitos adversos , Prata/efeitos adversos , Células A549 , Linhagem Celular , Ensaio Cometa , Citotoxinas/análise , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular/análise , Luciferases/análise , Tamanho da Partícula , Proteínas GADD45
9.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360825

RESUMO

Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood-testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells' toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.


Assuntos
Genitália Masculina/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Óxidos/efeitos adversos , Espermatogênese/efeitos dos fármacos , Animais , Humanos , Masculino , Compostos Orgânicos/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467032

RESUMO

Silver and its nanoparticles (AgNPs) have different faces, providing different applications. In recent years, the number of positive nanosilver applications has increased substantially. It has been proven that AgNPs inhibit the growth and survival of bacteria, including human and animal pathogens, as well as fungi, protozoa and arthropods. Silver nanoparticles are known from their antiviral and anti-cancer properties; however, they are also very popular in medical and pharmaceutical nanoengineering as carriers for precise delivery of therapeutic compounds, in the diagnostics of different diseases and in optics and chemistry, where they act as sensors, conductors and substrates for various syntheses. The activity of AgNPs has not been fully discovered; therefore, we need interdisciplinary research to fulfil this knowledge. New forms of products with silver will certainly find application in the future treatment of many complicated and difficult to treat diseases. There is still a lack of appropriate and precise legal condition regarding the circulation of nanomaterials and the rules governing their safety use. The relatively low toxicity, relative biocompatibility and selectivity of nanoparticle interaction combined with the unusual biological properties allow their use in animal production as well as in bioengineering and medicine. Despite a quite big knowledge on this topic, there is still a need to organize the data on AgNPs in relation to specific microorganisms such as bacteria, viruses or fungi. We decided to put this knowledge together and try to show positive and negative effects on prokaryotic and eukaryotic cells.


Assuntos
Anti-Infecciosos/química , Doenças Transmissíveis/tratamento farmacológico , Nanopartículas Metálicas/química , Prata/farmacologia , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Biofilmes/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/uso terapêutico , Prata/química
11.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638952

RESUMO

The growing application of materials containing TiO2 particles has led to an increased risk of human exposure, while a gap in knowledge about the possible adverse effects of TiO2 still exists. In this work, TiO2 particles of rutile, anatase, and their commercial mixture were exposed to various environments, including simulated gastric fluids and human blood plasma (both representing in vivo conditions), and media used in in vitro experiments. Simulated body fluids of different compositions, ionic strengths, and pH were used, and the impact of the absence or presence of chosen enzymes was investigated. The physicochemical properties and agglomeration of TiO2 in these media were determined. The time dependent agglomeration of TiO2 related to the type of TiO2, and mainly to the type and composition of the environment that was observed. The presence of enzymes either prevented or promoted TiO2 agglomeration. TiO2 was also observed to exhibit concentration-dependent cytotoxicity. This knowledge about TiO2 behavior in all the abovementioned environments is critical when TiO2 safety is considered, especially with respect to the significant impact of the presence of proteins and size-related cytotoxicity.


Assuntos
Nanopartículas Metálicas/química , Plasma/metabolismo , Titânio/química , Titânio/metabolismo , Animais , Doadores de Sangue , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Meios de Cultura/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/efeitos adversos , Camundongos , Concentração Osmolar , Tamanho da Partícula , Saliva/metabolismo , Propriedades de Superfície , Titânio/efeitos adversos , Água/metabolismo
12.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502389

RESUMO

Metal-oxide nanoparticles (MO-NPs), such as the highly bioreactive copper-based nanoparticles (CuO-NPs), are widely used in manufacturing of hundreds of commercial products. Epidemiological studies correlated levels of nanoparticles in ambient air with a significant increase in lung disease. CuO-NPs, specifically, were among the most potent in a set of metal-oxides and carbons studied in parallel regarding DNA damage and cytotoxicity. Despite advances in nanotoxicology research and the characterization of their toxicity, the exact mechanism(s) of toxicity are yet to be defined. We identified chlorination toxicity as a damaging consequence of inflammation and myeloperoxidase (MPO) activation, resulting in macromolecular damage and cell damage/death. We hypothesized that the inhalation of CuO-NPs elicits an inflammatory response resulting in chlorination damage in cells and lung tissues. We further tested the protective action of LGM2605, a synthetic small molecule with known scavenging properties for reactive oxygen species (ROS), but most importantly, for active chlorine species (ACS) and an inhibitor of MPO. CuO-NPs (15 µg/bolus) were instilled intranasally in mice and the kinetics of the inflammatory response in lungs was evaluated 1, 3, and 7 days later. Evaluation of the protective action of LGM2605 was performed at 24 h post-challenge, which was selected as the peak acute inflammatory response to CuO-NP. LGM2605 was given daily via gavage to mice starting 2 days prior to the time of the insult (100 mg/kg). CuO-NPs induced a significant inflammatory influx, inflammasome-relevant cytokine release, and chlorination damage in mouse lungs, which was mitigated by the action of LGM2605. Preventive action of LGM2605 ameliorated the adverse effects of CuO-NP in lung.


Assuntos
Butileno Glicóis/farmacologia , Glucosídeos/farmacologia , Inflamação/tratamento farmacológico , Animais , Líquido da Lavagem Broncoalveolar/citologia , Butileno Glicóis/metabolismo , Cloro/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Dano ao DNA/efeitos dos fármacos , Feminino , Glucosídeos/metabolismo , Inflamassomos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Óxidos/farmacologia , Peroxidase/farmacologia , Espécies Reativas de Oxigênio/farmacologia
13.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669290

RESUMO

The use of inorganic nanoparticles (NPs) has expanded into various industries including food manufacturing, agriculture, cosmetics, and construction. This has allowed NPs access to the human gastrointestinal tract, yet little is known about how they may impact human health. As the gut microbiome continues to be increasingly implicated in various diseases of unknown etiology, researchers have begun studying the potentially toxic effects of these NPs on the gut microbiome. Unfortunately, conflicting results have limited researcher's ability to evaluate the true impact of NPs on the gut microbiome in relation to health. This review focuses on the impact of five inorganic NPs (silver, iron oxide, zinc oxide, titanium dioxide, and silicon dioxide) on the gut microbiome and gastrointestinal tract with consideration for various methodological differences within the literature. This is important as NP-induced changes to the gut could lead to various gut-related diseases. These include irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), celiac disease, and colorectal cancer. Research in this area is necessary as the use of NPs in various industries continues to grow along with the number of people suffering from chronic gastrointestinal diseases.


Assuntos
Compostos Férricos/efeitos adversos , Indústria Alimentícia , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Dióxido de Silício/efeitos adversos , Prata/efeitos adversos , Titânio/efeitos adversos , Óxido de Zinco/efeitos adversos , Doença Celíaca/induzido quimicamente , Doença Celíaca/microbiologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/microbiologia , Disbiose/induzido quimicamente , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/microbiologia , Síndrome do Intestino Irritável/induzido quimicamente , Síndrome do Intestino Irritável/microbiologia
14.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069552

RESUMO

There is little in vitro data available on long-term effects of TiO2 exposure. Such data are important for improving the understanding of underlying mechanisms of adverse health effects of TiO2. Here, we exposed pulmonary epithelial cells to two doses (0.96 and 1.92 µg/cm2) of TiO2 for 13 weeks and effects on cell cycle and cell death mechanisms, i.e., apoptosis and autophagy were determined after 4, 8 and 13 weeks of exposure. Changes in telomere length, cellular protein levels and lipid classes were also analyzed at 13 weeks of exposure. We observed that the TiO2 exposure increased the fraction of cells in G1-phase and reduced the fraction of cells in G2-phase, which was accompanied by an increase in the fraction of late apoptotic/necrotic cells. This corresponded with an induced expression of key apoptotic proteins i.e., BAD and BAX, and an accumulation of several lipid classes involved in cellular stress and apoptosis. These findings were further supported by quantitative proteome profiling data showing an increase in proteins involved in cell stress and genomic maintenance pathways following TiO2 exposure. Altogether, we suggest that cell stress response and cell death pathways may be important molecular events in long-term health effects of TiO2.


Assuntos
Células Epiteliais Alveolares/metabolismo , Titânio/efeitos adversos , Células Epiteliais Alveolares/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular , Linhagem Celular , Células Epiteliais/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Pulmão/metabolismo , Nanopartículas Metálicas/efeitos adversos , Nanopartículas/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Proteômica/métodos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Titânio/metabolismo , Transcriptoma/genética
15.
Molecules ; 26(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771058

RESUMO

An increasing number of pathologies correlates with both toxic and essential metal ions dyshomeostasis. Next to known genetic disorders (e.g., Wilson's Disease and ß-Thalassemia) other pathological states such as neurodegeneration and diabetes are characterized by an imbalance of essential metal ions. Metal ions can enter the human body from the surrounding environment in the form of free metal ions or metal-nanoparticles, and successively translocate to different tissues, where they are accumulated and develop distinct pathologies. There are no characteristic symptoms of metal intoxication, and the exact diagnosis is still difficult. In this review, we present metal-related pathologies with the most common onsets, biomarkers of metal intoxication, and proper techniques of metal qualitative and quantitative analysis. We discuss the possible role of drugs with metal-chelating ability in metal dyshomeostasis, and present recent advances in therapies of metal-related diseases.


Assuntos
Suscetibilidade a Doenças , Avaliação do Impacto na Saúde , Nanopartículas Metálicas/efeitos adversos , Metais/efeitos adversos , Terapia Combinada , Testes Diagnósticos de Rotina , Gerenciamento Clínico , Exposição Ambiental/efeitos adversos , Predisposição Genética para Doença , Humanos , Íons , Especificidade de Órgãos , Fenótipo , Resultado do Tratamento
16.
Molecules ; 26(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923373

RESUMO

Silver nanoparticles (AgNPs) are favoured antibacterial agents in nano-enabled products and can be released into water resources where they potentially elicit adverse effects. Herein, interactions of 10 and 40 nm AgNPs (10-AgNPs and 40-AgNPs) with aquatic higher plant Salvinia minima at 600 µg/L in moderately hard water (MHW), MHW of raised calcium (Ca2+), and MHW containing natural organic matter (NOM) were examined. The exposure media variants altered the AgNPs' surface properties, causing size-dependent agglomeration. The bio-accessibility in the ascending order was: NOM < MHW < Ca2+, was higher in plants exposed to 10-AgNPs, and across all exposures, accumulation was higher in roots compared to fronds. The AgNPs reduced plant growth and the production of chlorophyll pigments a and b; the toxic effects were influenced by exposure media chemistry, and the smaller 10-AgNPs were commonly the most toxic relative to 40-AgNPs. The toxicity pattern was linked to the averagely higher dissolution of 10-AgNPs compared to the larger counterparts. The scanning electron microscopy and X-ray fluorescence analytical techniques were found limited in examining the interaction of the plants with AgNPs at the low exposure concentration used in this study, thus challenging their applicability considering the even lower predicted environmental concentrations AgNPs.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Prata/efeitos adversos , Traqueófitas/metabolismo , Poluentes Químicos da Água/metabolismo , Bioacumulação , Traqueófitas/efeitos dos fármacos
17.
Molecules ; 26(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920258

RESUMO

Nowadays, the impact of engineered nanoparticles (NPs) on human health and environment has aroused widespread attention. It is essential to assess and predict the biological activity, toxicity, and physicochemical properties of NPs. Computation-based methods have been developed to be efficient alternatives for understanding the negative effects of nanoparticles on the environment and human health. Here, a classification-based structure-activity relationship model for nanoparticles (nano-SAR) was developed to predict the cellular uptake of 109 functionalized magneto-fluorescent nanoparticles to pancreatic cancer cells (PaCa2). The norm index descriptors were employed for describing the structure characteristics of the involved nanoparticles. The Random forest algorithm (RF), combining with the Recursive Feature Elimination (RFE) was employed to develop the nano-SAR model. The resulted model showed satisfactory statistical performance, with the accuracy (ACC) of the test set and the training set of 0.950 and 0.966, respectively, demonstrating that the model had satisfactory classification effect. The model was rigorously verified and further extensively compared with models in the literature. The proposed model could be reasonably expected to predict the cellular uptakes of nanoparticles and provide some guidance for the design and manufacture of safer nanomaterials.


Assuntos
Nanopartículas Metálicas/química , Nanoestruturas/química , Óxidos/química , Relação Quantitativa Estrutura-Atividade , Algoritmos , Simulação por Computador , Humanos , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/classificação , Nanoestruturas/efeitos adversos , Nanoestruturas/classificação , Óxidos/classificação
18.
Pak J Pharm Sci ; 34(1(Supplementary)): 337-343, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34275859

RESUMO

Most clinical investigations about the impact of nanoparticles on cells and tissues show that nanoparticles may enter the human body by means of respiratory tracts. Humans, animals, plants and environments are continually presented to a wide scope of business items containing silver nanoparticles (Ag NPs) in their piece. Ag NPs, utilized in various consumer products as room showers, surface cleaners, wound dressings, food storage containers and many textiles. The current examination planned to explore the defensive role of Avenanthramide-C (Avns) contrary to the lung toxicity initiated by Ag NPs injection in rats. 40 male Wistar rats were separated into 4 groups (Gp1, control; Gp2, Avns; Gp3, Ag NPs; Gp4, Ag NPs+Avns). Current results revealed that; Ag NPs induced a significant depletion in RBCs count, hemoglobin, platelets counts and a significant increase in total WBCs, lung injury, cyclooxygenase-2 (COX2) and TNFα expressions as compared to control. Treatments of Ag NPs with Avenanthramide-C extract (Ag NPs+Avns) improved the lung structure and blood complete pictures as compared to Ag NPs group.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Lesão Pulmonar/patologia , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Prata/efeitos adversos , ortoaminobenzoatos/farmacologia , Animais , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Contagem de Eritrócitos , Hematócrito , Hemoglobinas/efeitos dos fármacos , Hemoglobinas/metabolismo , Contagem de Leucócitos , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Contagem de Plaquetas , Ratos , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
J Cell Physiol ; 235(3): 2599-2608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31498438

RESUMO

Excessive osteoclast recruitment and activation is the chief cause of periprosthetic osteolysis and subsequent aseptic loosening, so blocking osteolysis may be useful for protecting against osteoclastic bone resorption. We studied the effect of aspirin on titanium (Ti)-particle-induced osteolysis in vivo and in vitro using male C57BL/6J mice randomized to sham (sham surgery), Ti (Ti particles), low-dose aspirin (Ti/5 mg·kg-1 ·d-1 aspirin), and high-dose aspirin (Ti/30 mg·kg-1 ·d-1 aspirin). After 2 weeks, a three-dimensional reconstruction evaluation using micro-computed tomography and histomorphology assessment were performed on murine calvariae. Murine hematopoietic macrophages and RAW264.7 lineage cells were studied to investigate osteoclast formation and function. Aspirin attenuated Ti-particle-induced bone erosion and reduced osteoclasts. In vitro, aspirin suppressed osteoclast formation, osteoclastic-related gene expression, and osteoclastic bone erosion in a dose-dependent manner. Mechanically, aspirin reduced osteoclast formation by suppressing receptor activator of nuclear factor kappa-B ligand-induced activation of extracellular signal-related kinase, p-38 mitogen-activated protein kinase, and c-Jun N-terminal kinase. Thus, aspirin may be a promising option for preventing and curing osteoclastic bone destruction, including peri-implant osteolysis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Osteólise/prevenção & controle , Animais , Artroplastia de Substituição/efeitos adversos , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Macrófagos/metabolismo , Masculino , Nanopartículas Metálicas/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , Próteses e Implantes/efeitos adversos , Células RAW 264.7 , Crânio/efeitos dos fármacos , Crânio/patologia , Titânio/efeitos adversos , Tomografia Computadorizada por Raios X , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
20.
Chem Res Toxicol ; 33(10): 2503-2514, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32909744

RESUMO

The rapidly emerging field of nanotechnology has offered innovative discoveries. Due to a wide variety of nanotechnology applications in the industrial, medical, and consumptive products, the application of nanotechnology has received considerable attention in the past decades. Metal-based nanoparticles including metal and metal oxide nanoparticles are now widely utilized in different areas of nanotechnology, leading to an increase in human exposure to nonmaterial. Since the kidney is one of the major organs to remove a variety of potentially harmful substances, including nanoparticles (NPs), from living organisms and a large proportion of cardiac output reaches the kidney, this organ is susceptible to the toxin-induced renal injury. However, despite the extensive use of NPs, there is still a limited understanding of NP-mediated toxicity. The unique physicochemical properties of metal-based NPs not only make them highly desirable in a variety of applications but also enable them to induce changes at biological levels of cellular activities, including reactive oxygen species (ROS) generation. Since oxidative stress is a key factor of NP-induced injury, it is urgent to characterize the ROS response resulting from metal-based NPs. This review summarizes an assessment of the signaling pathways that are involved in the metal-based NP-induced nephrotoxicity, with a particular focus on ROS production along with the potential oxidative stress-dependent mechanism. However, available data show that metal-based NPs may have a severe impact on the renal system, but the exact molecular mechanism of nephrotoxicity is not fully understood. A highly effective strategy for a better understanding of the mechanism would be to collect an increasing volume of information about the exposure time, physicochemical characteristics of the engineered NPs, and the cellular effects. In order to achieve a thorough knowledge of ROS-dependent renal toxicity, both in vitro and in vivo studies should be considered.


Assuntos
Rim/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Metais Pesados/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Rim/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA