Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7981): 195-201, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730991

RESUMO

Type A γ-aminobutyric acid receptors (GABAARs) are the principal inhibitory receptors in the brain and the target of a wide range of clinical agents, including anaesthetics, sedatives, hypnotics and antidepressants1-3. However, our understanding of GABAAR pharmacology has been hindered by the vast number of pentameric assemblies that can be derived from 19 different subunits4 and the lack of structural knowledge of clinically relevant receptors. Here, we isolate native murine GABAAR assemblies containing the widely expressed α1 subunit and elucidate their structures in complex with drugs used to treat insomnia (zolpidem (ZOL) and flurazepam) and postpartum depression (the neurosteroid allopregnanolone (APG)). Using cryo-electron microscopy (cryo-EM) analysis and single-molecule photobleaching experiments, we uncover three major structural populations in the brain: the canonical α1ß2γ2 receptor containing two α1 subunits, and two assemblies containing one α1 and either an α2 or α3 subunit, in which the single α1-containing receptors feature a more compact arrangement between the transmembrane and extracellular domains. Interestingly, APG is bound at the transmembrane α/ß subunit interface, even when not added to the sample, revealing an important role for endogenous neurosteroids in modulating native GABAARs. Together with structurally engaged lipids, neurosteroids produce global conformational changes throughout the receptor that modify the ion channel pore and the binding sites for GABA and insomnia medications. Our data reveal the major α1-containing GABAAR assemblies, bound with endogenous neurosteroid, thus defining a structural landscape from which subtype-specific drugs can be developed.


Assuntos
Microscopia Crioeletrônica , Neuroesteroides , Receptores de GABA-A , Ácido gama-Aminobutírico , Animais , Camundongos , Sítios de Ligação/efeitos dos fármacos , Depressão Pós-Parto/tratamento farmacológico , Flurazepam/farmacologia , Ácido gama-Aminobutírico/metabolismo , Hipnóticos e Sedativos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Fotodegradação , Pregnanolona/farmacologia , Conformação Proteica/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestrutura , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Zolpidem/farmacologia
2.
Front Neuroendocrinol ; 72: 101113, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993022

RESUMO

Advances in neuroendocrinology have led to major discoveries since the 19th century, identifying adaptive loops for maintaining homeostasis. One of the most remarkable discoveries was the concept of neurosteroids, according to which the brain is not only a target but also a source of steroid production. The identification of new membrane steroid targets now underpins the neuromodulatory effects of neurosteroids such as pregnenolone, which is involved in functions mediated by the GPCR CB1 receptor. Structural analysis of steroids is a key feature of their interactions with the phospholipid membrane, receptors and resulting activity. Therefore, mass spectrometry-based methods have been developed to elucidate the metabolic pathways of steroids, the ultimate approach being metabolomics, which allows the identification of a large number of metabolites in a single sample. This approach should enable us to make progress in understanding the role of neurosteroids in the functioning of physiological and pathological processes.


Assuntos
Neuroesteroides , Neuroesteroides/metabolismo , Pregnenolona/metabolismo , Esteroides , Encéfalo/metabolismo
3.
Front Neuroendocrinol ; 73: 101119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184208

RESUMO

Rates of alcohol use disorder (AUD) are increasing in men and women and there are high rates of concurrent posttraumatic stress disorder (PTSD) and AUD. AUD and PTSD synergistically increase symptomatology and negatively affect treatment outcomes; however, there are very limited pharmacological treatments for PTSD/AUD. Neurosteroids have been implicated in the underlying neurobiological mechanisms of both PTSD and AUD and may be a target for treatment development. This review details the past ten years of research on pregnenolone, progesterone, allopregnanolone, pregnanolone, estradiol, testosterone and dehydroepiandrosterone/dehydroepiandrosterone-sulfate (DHEA/DHEA-S) in the context of PTSD and AUD, including examination of trauma/alcohol-related variables, such as stress-reactivity. Emerging evidence that exogenous pregnenolone, progesterone, and allopregnanolone may be promising, novel interventions is also discussed. Specific emphasis is placed on examining the application of sex as a biological variable in this body of literature, given that women are more susceptible to both PTSD diagnoses and stress-related alcohol consumption.


Assuntos
Alcoolismo , Neuroesteroides , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Neuroesteroides/metabolismo , Alcoolismo/metabolismo , Alcoolismo/tratamento farmacológico , Animais , Feminino , Masculino
4.
Front Neuroendocrinol ; 72: 101116, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38182090

RESUMO

The brain and spinal cord (SC) are both targeted by various hormones, including steroid hormones. However, investigations of the modulatory role of hormones on neurobiological functions usually focus only on the brain. The SC received little attention although this structure pivotally controls motor and sensory functions. Here, we critically reviewed key data showing that the process of neurosteroid biosynthesis or neurosteroidogenesis occurring in the SC plays a pivotal role in the modulation of peripheral nerve injury-induced chronic pain (PNICP) or neuropathic pain. Indeed, several active steroidogenic enzymes expressed in the SC produce endogenous neurosteroids that interact with receptors of neurotransmitters controlling pain. The spinal neurosteroidogenesis is differentially regulated during PNICP condition and its blockade modifies painful sensations. The paper suggests that future investigations aiming to develop effective strategies against PNICP or neuropathic pain must integrate in a gender or sex dependent manner the regulatory effects exerted by spinal neurosteroidogenesis.


Assuntos
Dor Crônica , Neuralgia , Neuroesteroides , Traumatismos dos Nervos Periféricos , Humanos , Dor Crônica/etiologia , Traumatismos dos Nervos Periféricos/complicações , Medula Espinal , Neuralgia/etiologia , Hormônios
5.
Cell Mol Life Sci ; 81(1): 36, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214768

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening. We also show that naturally occurring and synthetic steroids pregnenolone sulfate and epipregnanolone butanoic acid, respectively, enhance NMDAR function in a way that is dependent on the length of the truncated CTD and, further, is steroid-specific, GluN2A/B subunit-specific, and GluN1 splice variant-specific. Adding to the previously described effects of disease-associated NMDAR variants on the receptor biogenesis and function, our results improve the understanding of the molecular consequences of NMDAR CTD truncations and provide an opportunity for the development of new therapeutic neurosteroid-based ligands.


Assuntos
Neuroesteroides , Receptores de N-Metil-D-Aspartato , Humanos , Fenômenos Eletrofisiológicos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Front Neuroendocrinol ; 71: 101102, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689249

RESUMO

The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.


Assuntos
Epigênese Genética , Neuroesteroides , Feminino , Masculino , Humanos , Neurônios/metabolismo , Neuroesteroides/metabolismo , Testosterona/metabolismo
7.
J Pharmacol Exp Ther ; 388(2): 451-468, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37863488

RESUMO

Children are much more susceptible to the neurotoxic effects of organophosphate (OP) pesticides and nerve agents than adults. OP poisoning in children leads to acute seizures and neuropsychiatric sequela, including the development of long-term disabilities and cognitive impairments. Despite these risks, there are few chronic rodent models that use pediatric OP exposure for studying neurodevelopmental consequences and interventions. Here, we investigated the protective effect of the neurosteroid ganaxolone (GX) on the long-term developmental impact of neonatal exposure to the OP compound, diisopropyl-fluorophosphate (DFP). Pediatric postnatal day-28 rats were acutely exposed to DFP, and at 3 and 10 months after exposure, they were evaluated using a series of cognitive and behavioral tests with or without the postexposure treatment of GX. Analysis of the neuropathology was performed after 10 months. DFP-exposed animals displayed significant long-term deficits in mood, anxiety, depression, and aggressive traits. In spatial and nonspatial cognitive tests, they displayed striking impairments in learning and memory. Analysis of brain sections showed significant loss of neuronal nuclei antigen(+) principal neurons, parvalbumin(+) inhibitory interneurons, and neurogenesis, along with increased astrogliosis, microglial neuroinflammation, and mossy fiber sprouting. These detrimental neuropathological changes are consistent with behavioral dysfunctions. In the neurosteroid GX-treated cohort, behavioral and cognitive deficits were significantly reduced and were associated with strong protection against long-term neuroinflammation and neurodegeneration. In conclusion, this pediatric model replicates the salient features of children exposed to OPs, and the protective outcomes from neurosteroid intervention support the viability of developing this strategy for mitigating the long-term effects of acute OP exposure in children. SIGNIFICANCE STATEMENT: An estimated 3 million organophosphate exposures occur annually worldwide, with children comprising over 30% of all victims. Our understanding of the neurodevelopmental consequences in children exposed to organophosphates is limited. Here, we investigated the long-term impact of neonatal exposure to diisopropyl-fluorophosphate in pediatric rats. Neurosteroid treatment protected against major deficits in behavior and memory and was well correlated with neuropathological changes. Overall, this pediatric model is helpful to screen novel therapies to mitigate long-term developmental deficits of organophosphate exposure.


Assuntos
Fluoretos , Neuroesteroides , Organofosfatos , Fosfatos , Humanos , Criança , Ratos , Animais , Organofosfatos/farmacologia , Doenças Neuroinflamatórias , Compostos Organofosforados/farmacologia , Encéfalo , Isoflurofato/toxicidade
8.
J Pharmacol Exp Ther ; 388(2): 273-300, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977814

RESUMO

This article describes recent advances in the use of neurosteroids as novel anticonvulsants for refractory status epilepticus (RSE) and as medical countermeasures (MCs) for organophosphates and chemical nerve agents (OPNAs). We highlight a comprehensive 15-year journey to bring the synthetic neurosteroid ganaxolone (GX) from bench to clinic. RSE, including when caused by nerve agents, is associated with devastating morbidity and permanent long-term neurologic dysfunction. Although recent approval of benzodiazepines such as intranasal midazolam and intranasal midazolam offers improved control of acute seizures, novel anticonvulsants are needed to suppress RSE and improve neurologic function outcomes. Currently, few anticonvulsant MCs exist for victims of OPNA exposure and RSE. Standard-of-care MCs for postexposure treatment include benzodiazepines, which do not effectively prevent or mitigate seizures resulting from nerve agent intoxication, leaving an urgent unmet medical need for new anticonvulsants for RSE. Recently, we pioneered neurosteroids as next-generation anticonvulsants that are superior to benzodiazepines for treatment of OPNA intoxication and RSE. Because GX and related neurosteroids that activate extrasynaptic GABA-A receptors rapidly control seizures and offer robust neuroprotection by reducing neuronal damage and neuroinflammation, they effectively improve neurologic outcomes after acute OPNA exposure and RSE. GX has been selected for advanced, Biomedical Advanced Research and Development Authority-supported phase 3 trials of RSE and nerve agent seizures. In addition, in mechanistic studies of neurosteroids at extrasynaptic receptors, we identified novel synthetic analogs with features that are superior to GX for current medical needs. Development of new MCs for RSE is complex, tedious, and uncertain due to scientific and regulatory challenges. Thus, further research will be critical to fill key gaps in evaluating RSE and anticonvulsants in vulnerable (pediatric and geriatric) populations and military persons. SIGNIFICANCE STATEMENT: Following organophosphate and nerve agent intoxication, refractory status epilepticus (RSE) occurs despite benzodiazepine treatment. RSE occurs in 40% of status epilepticus patients, with a 35% mortality rate and significant neurological morbidity in survivors. To treat RSE, neurosteroids are better anticonvulsants than benzodiazepines. Our pioneering use of neurosteroids for RSE and nerve agents led us to develop ganaxolone as a novel anticonvulsant and neuroprotectant with significantly improved neurological outcomes. This article describes the bench-to-bedside journey of bringing neurosteroid therapy to patients, with ganaxolone leading the way.


Assuntos
Contramedidas Médicas , Agentes Neurotóxicos , Neuroesteroides , Pregnanolona/análogos & derivados , Estado Epiléptico , Humanos , Criança , Idoso , Anticonvulsivantes/uso terapêutico , Neuroesteroides/uso terapêutico , Midazolam , Estado Epiléptico/tratamento farmacológico , Convulsões/tratamento farmacológico , Benzodiazepinas , Organofosfatos
9.
J Pharmacol Exp Ther ; 388(2): 376-385, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37770198

RESUMO

Status epilepticus (SE) is a life-threatening development of self-sustaining seizures that becomes resistant to benzodiazepines when treatment is delayed. Benzodiazepine pharmacoresistance is thought in part to result from internalization of synaptic GABAA receptors, which are the main target of the drug. The naturally occurring neurosteroid allopregnanolone is a therapy of interest against SE for its ability to modulate all isoforms of GABAA receptors. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been partially effective in combination with benzodiazepines in mitigating SE-associated neurotoxicity. In this study, allopregnanolone as an adjunct to midazolam or midazolam-ketamine combination therapy was evaluated for efficacy against cholinergic-induced SE. Adult male rats implanted with electroencephalographic (EEG) telemetry devices were exposed to the organophosphorus chemical (OP) soman (GD) and treated with an admix of atropine sulfate and HI-6 at 1 minute after exposure followed by midazolam, midazolam-allopregnanolone, or midazolam-ketamine-allopregnanolone 40 minutes after seizure onset. Neurodegeneration, neuronal loss, and neuroinflammation were assessed 2 weeks after GD exposure. Seizure activity, EEG power integral, and epileptogenesis were also compared among groups. Overall, midazolam-ketamine-allopregnanolone combination therapy was effective in reducing cholinergic-induced toxic signs and neuropathology, particularly in the thalamus and hippocampus. Higher dosage of allopregnanolone administered in combination with midazolam and ketamine was also effective in reducing EEG power integral and epileptogenesis. The current study reports that there is a promising potential of neurosteroids in combination with benzodiazepine and ketamine treatments in a GD model of SE. SIGNIFICANCE STATEMENT: Allopregnanolone, a naturally occurring neurosteroid, reduced pathologies associated with soman (GD) exposure such as epileptogenesis, neurodegeneration, and neuroinflammation, and suppressed GD-induced toxic signs when used as an adjunct to midazolam and ketamine in a delayed treatment model of soman-induced status epilepticus (SE) in rats. However, protection was incomplete, suggesting that further studies are needed to identify optimal combinations of antiseizure medications and routes of administration for maximal efficacy against cholinergic-induced SE.


Assuntos
Ketamina , Neuroesteroides , Soman , Estado Epiléptico , Ratos , Masculino , Animais , Midazolam/farmacologia , Midazolam/uso terapêutico , Ketamina/farmacologia , Ketamina/uso terapêutico , Pregnanolona/efeitos adversos , Soman/toxicidade , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Doenças Neuroinflamatórias , Neuroesteroides/uso terapêutico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Convulsões/tratamento farmacológico , Benzodiazepinas , Colinérgicos/efeitos adversos , Receptores de GABA-A , Ácido gama-Aminobutírico
10.
J Pharmacol Exp Ther ; 388(2): 399-415, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38071567

RESUMO

Organophosphates (OPs) and nerve agents are potent neurotoxic compounds that cause seizures, status epilepticus (SE), brain injury, or death. There are persistent long-term neurologic and neurodegenerative effects that manifest months to years after the initial exposure. Current antidotes are ineffective in preventing these long-term neurobehavioral and neuropathological changes. Additionally, there are few effective neuroprotectants for mitigating the long-term effects of acute OP intoxication. We have pioneered neurosteroids as novel anticonvulsants and neuroprotectants for OP intoxication and seizures. In this study, we evaluated the efficacy of two novel synthetic, water-soluble neurosteroids, valaxanolone (VX) and lysaxanolone (LX), in combating the long-term behavioral and neuropathological impairments caused by acute OP intoxication and SE. Animals were exposed to the OP nerve agent surrogate diisopropylfluorophosphate (DFP) and were treated with VX or LX in addition to midazolam at 40 minutes postexposure. The extent of neurodegeneration, along with various behavioral and memory deficits, were assessed at 3 months postexposure. VX significantly reduced deficits of aggressive behavior, anxiety, memory, and depressive-like traits in control (DFP-exposed, midazolam-treated) animals; VX also significantly prevented the DFP-induced chronic loss of NeuN(+) principal neurons and PV(+) inhibitory neurons in the hippocampus and other regions. Additionally, VX-treated animals exhibited a reduced inflammatory response with decreased GFAP(+) astrogliosis and IBA1(+) microgliosis in the hippocampus, amygdala, and other regions. Similarly, LX showed significant improvement in behavioral and memory deficits, and reduced neurodegeneration and cellular neuroinflammation. Together, these results demonstrate the neuroprotectant effects of the novel synthetic neurosteroids in mitigating the long-term neurologic dysfunction and neurodegeneration associated with OP exposure. SIGNIFICANCE STATEMENT: Survivors of nerve agents and organophosphate (OP) exposures suffer from long-term neurological deficits. Currently, there is no specific drug therapy for mitigating the impact of OP exposure. However, novel synthetic neurosteroids that activate tonic inhibition provide a viable option for treating OP intoxication. The data from this study indicates the neuroprotective effects of synthetic, water-soluble neurosteroids for attenuation of long-term neurological deficits after OP intoxication. These findings establish valaxanolone and lysaxanolone as potent and efficacious neuroprotectants suitable for injectable dosing.


Assuntos
Agentes Neurotóxicos , Fármacos Neuroprotetores , Neuroesteroides , Intoxicação por Organofosfatos , Compostos Organotiofosforados , Estado Epiléptico , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neuroesteroides/uso terapêutico , Isoflurofato/farmacologia , Midazolam/farmacologia , Doenças Neuroinflamatórias , Encéfalo , Agentes Neurotóxicos/farmacologia , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Convulsões/tratamento farmacológico , Intoxicação por Organofosfatos/tratamento farmacológico , Organofosfatos/farmacologia , Transtornos da Memória/patologia
11.
J Pharmacol Exp Ther ; 388(2): 386-398, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050069

RESUMO

Nerve agents and organophosphates (OP) are neurotoxic chemicals that induce acute seizures, status epilepticus (SE), and mortality. Long-term neurologic and neurodegenerative effects manifest months to years after OP exposure. Current benzodiazepine anticonvulsants are ineffective in preventing such long-term neurobehavioral and neuropathological changes. New and effective anticonvulsants are needed for OP intoxication, especially for mitigating the long-term sequelae after acute exposure. We developed neurosteroids as novel anticonvulsants and neuroprotectants in OP exposure models. In this study, we evaluated the long-term efficacy of novel synthetic neurosteroids in preventing the development of chronic epilepsy and hyperexcitable ictal events in a rat OP model of SE. Rats were exposed to the OP nerve agent surrogate diisopropylfluorophosphate (DFP), and the experimental groups were treated with the synthetic neurosteroid valaxanolone (VX) or lysaxanolone (LX) 40 minutes post-exposure in conjunction with midazolam. Video-electroencephalography was monitored for two months to assess spontaneous recurrent seizures (SRS), epileptiform discharges, interictal spikes, and high-frequency oscillations (HFOs). Within 60 days of DFP exposure, rats developed chronic epilepsy characterized by frequent SRS, epileptiform discharges, and HFOs. LX treatment was associated with a dose-dependent reduction of epilepsy occurrence and overall seizure burden with a significant decrease in SRS and epileptiform discharges. It also significantly reduced the occurrence of epileptic biomarkers of HFOs and interictal spikes, indicating potential disease-modifying activity. Similarly, the neurosteroid analog VX also significantly attenuated SRS, discharges, HFOs, and ictal events. These results demonstrate the long-term protective effects of synthetic neurosteroids in the OP-exposed post-SE model, indicating their disease-modifying potential to prevent epilepsy and ictal abnormalities. SIGNIFICANCE STATEMENT: The effects of nerve agents and organophosphate (OP) exposure are persistent, and survivors suffer from a number of devastating, chronic neurological dysfunctions. Currently, there is no specific therapy for preventing this disastrous impact of OP exposure. We propose synthetic neurosteroids that activate tonic inhibition provide viable options for preventing the long-term neurological effects of OP intoxication. The results from this study reveal the disease-modifying potential of two novel synthetic neurosteroids in preventing epileptogenesis and chronic epileptic seizures after OP-induced SE.


Assuntos
Epilepsia , Agentes Neurotóxicos , Neuroesteroides , Intoxicação por Organofosfatos , Compostos Organotiofosforados , Estado Epiléptico , Ratos , Animais , Neuroesteroides/uso terapêutico , Anticonvulsivantes/efeitos adversos , Organofosfatos/efeitos adversos , Agentes Neurotóxicos/efeitos adversos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Epilepsia/tratamento farmacológico , Eletroencefalografia , Biomarcadores
12.
Stress ; 27(1): 2317856, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38563163

RESUMO

In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.


Assuntos
Neuroesteroides , Humanos , Estresse Psicológico/metabolismo , Esteroides/fisiologia , Hormônios Esteroides Gonadais , Encéfalo/fisiologia
13.
Epilepsia ; 65(3): e41-e46, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243753

RESUMO

Trilostane is a 3ß-hydroxysteroid dehydrogenase/Δ5-4 isomerase inhibitor able to produce a manyfold increase in brain levels of various neurosteroids, including allopregnanolone. We previously found that treatment with trilostane can slow down epileptogenesis in the kainic acid (KA) model of temporal lobe epilepsy. It is unknown whether trilostane may have a similar effect on the progression of epilepsy severity, as observed in KA-treated rats. Consequently, we investigated the effects of trilostane (50 mg/kg/day, 1 week) in epileptic rats, given 64 days after KA administration. Seizures were monitored by video-electrocorticographic recordings before and during the treatment with trilostane or vehicle (sesame oil), and neurosteroid levels were measured in serum and cerebral tissue using liquid chromatography-electrospray tandem mass spectrometry after treatment. Pregnenolone sulfate, pregnenolone, progesterone, 5α-dihydroprogesterone, and allopregnanolone peripheral levels were massively increased by trilostane. With the only exception of hippocampal pregnenolone sulfate, the other neurosteroids augmented in both the neocortex and hippocampus. Only pregnanolone levels were not upregulated by trilostane. As expected, a significant increase in the seizure occurrence was observed in rats receiving the vehicle, but not in the trilostane group. This suggests that the increased availability of neurosteroids produced a disease-modifying effect in the brain of epileptic rats.


Assuntos
Epilepsia , Neuroesteroides , Ratos , Animais , Neuroesteroides/farmacologia , Pregnanolona/farmacologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Encéfalo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
14.
Cell Mol Life Sci ; 80(2): 42, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645496

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play vital roles in normal brain functions (i.e., learning, memory, and neuronal development) and various neuropathological conditions, such as epilepsy, autism, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. Endogenous neuroactive steroids such as 24(S)-hydroxycholesterol (24(S)-HC) have been shown to influence NMDAR activity, and positive allosteric modulators (PAMs) derived from 24(S)-hydroxycholesterol scaffold can also enhance NMDAR function. This study describes the structural determinants and mechanism of action for 24(S)-hydroxycholesterol and two novel synthetic analogs (SGE-550 and SGE-301) on NMDAR function. We also show that these agents can mitigate the altered function caused by a set of loss-of-function missense variants in NMDAR GluN subunit-encoding GRIN genes associated with neurological and neuropsychiatric disorders. We anticipate that the evaluation of novel neuroactive steroid NMDAR PAMs may catalyze the development of new treatment strategies for GRIN-related neuropsychiatric conditions.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso , Neuroesteroides , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Neuroesteroides/farmacologia , Neuroesteroides/uso terapêutico , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Doença de Alzheimer/tratamento farmacológico , Esteroides/farmacologia , Regulação Alostérica/fisiologia
15.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000217

RESUMO

Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.


Assuntos
Doença de Alzheimer , Neuroesteroides , PPAR alfa , Animais , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Colesterol/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Neuroesteroides/metabolismo , PPAR alfa/metabolismo
16.
J Anesth ; 38(2): 261-274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252143

RESUMO

Neurosteroids (NS) are a class of steroids that are synthesized within the central nervous system (CNS). Various NS can either enhance or inhibit CNS excitability and they play important biological roles in brain development, brain function and as mediators of mood. One class of NS, 3α-hydroxy-pregnane steroids such as allopregnanolone (AlloP) or pregnanolone (Preg), inhibits neuronal excitability; these endogenous NS and their analogues have been therapeutically applied as anti-depressants, anti-epileptics and general anesthetics. While NS have many favorable properties as anesthetics (e.g. rapid onset, rapid recovery, minimal cardiorespiratory depression, neuroprotection), they are not currently in clinical use, largely due to problems with formulation. Recent advances in understanding NS mechanisms of action and improved formulations have rekindled interest in development of NS as sedatives and anesthetics. In this review, the synthesis of NS, and their mechanism of action will be reviewed with specific emphasis on their binding sites and actions on γ-aminobutyric acid type A (GABAA) receptors. The potential advantages of NS analogues as sedative and anesthetic agents will be discussed.


Assuntos
Anestésicos Gerais , Anestésicos , Neuroesteroides , Anestésicos Gerais/efeitos adversos , Anestésicos/efeitos adversos , Pregnanolona/farmacologia , Ácido gama-Aminobutírico , Receptores de GABA-A
17.
Med Princ Pract ; 33(3): 198-214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38350432

RESUMO

Myelin plays a pivotal role in the efficient transmission of nerve impulses. Disruptions in myelin integrity are associated with numerous neurological disorders, including multiple sclerosis. In the central nervous system (CNS), myelin is formed by oligodendrocytes. Remyelination refers to the re-formation of the damaged myelin sheath by newly formed oligodendrocytes. Steroids have gained attention for their potential modulatory effects on myelin in both health and disease. Steroids are traditionally associated with endocrine functions, but their local synthesis within the nervous system has generated significant interest. The term "neuroactive steroids" refers to steroids that can act on cells of the nervous system. In the healthy state, neuroactive steroids promote myelin formation, maintenance, and repair by enhancing oligodendrocyte differentiation and maturation. In pathological conditions, such as demyelination injury, multiple neuroactive steroids have shown promise in promoting remyelination. Understanding the effects of neuroactive steroids on myelin could lead to novel therapeutic approaches for demyelinating diseases and neurodegenerative disorders. This review highlights the potential therapeutic significance of neuroactive steroids in myelin-related health and diseases. We review the synthesis of steroids by neurons and glial cells and discuss the roles of neuroactive steroids on myelin structure and function in health and disease. We emphasize the potential promyelinating effects of the varying levels of neuroactive steroids during different female physiological states such as the menstrual cycle, pregnancy, lactation, and postmenopause.


Assuntos
Bainha de Mielina , Humanos , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Doenças Desmielinizantes/tratamento farmacológico , Neuroesteroides , Esclerose Múltipla/tratamento farmacológico , Feminino , Gravidez , Animais
18.
Biophys J ; 122(5): 849-867, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36721367

RESUMO

In mammalian cells, all-trans farnesol, a 15-carbon isoprenol, is a product of the mevalonate pathway. It is the natural substrate of alcohol dehydrogenase and a substrate for CYP2E1, two enzymes implicated in ethanol metabolism. Studies have shown that farnesol is present in the human brain and inhibits voltage-gated Ca2+ channels at much lower concentrations than ethanol. Here we show that farnesol modulates the activity of γ-aminobutyric acid type A receptors (GABAARs), some of which also mediate the sedative activity of ethanol. Electrophysiology experiments performed in HEK cells expressing human α1ß3γ2 or α6ß3γ2 GABAARs revealed that farnesol increased chloride currents through positive allosteric modulation of these receptors and showed dependence on both the alcoholic functional group of farnesol and the length of the alkyl chain for activity. In silico studies using long-timescale unbiased all-atom molecular dynamics (MD) simulations of the human α1ß3γ2 GABAA receptors revealed that farnesol modulates the channel by directly binding to the transmembrane neurosteroid-binding site, after partitioning into the surrounding membrane and reaching the receptor by lateral diffusion. Channel activation by farnesol was further characterized by several structural and dynamic variables, such as global twisting of the receptor's extracellular domain, tilting of the transmembrane M2 helices, radius, cross-sectional area, hydration status, and electrostatic potential of the channel pore. Our results expand the pharmacological activities of farnesol to yet another class of ion channels implicated in neurotransmission, thus providing a novel path for understanding and treatment of diseases involving GABAA receptor dysfunction.


Assuntos
Neuroesteroides , Receptores de GABA-A , Humanos , Sítios de Ligação , Farneseno Álcool/farmacologia , Ácido gama-Aminobutírico/farmacologia , Domínios Proteicos , Receptores de GABA-A/metabolismo
19.
Mol Pharmacol ; 104(3): 115-131, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37316350

RESUMO

Acrylamide-derived compounds have been previously shown to act as modulators of members of the Cys-loop transmitter-gated ion channel family, including the mammalian GABAA receptor. Here we have synthesized and functionally characterized the GABAergic effects of a series of novel compounds (termed "DM compounds") derived from the previously characterized GABAA and the nicotinic α7 receptor modulator (E)-3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2). Fluorescence imaging studies indicated that the DM compounds increase apparent affinity to the transmitter by up to 80-fold in the ternary αßγ GABAA receptor. Using electrophysiology, we show that the DM compounds, and the structurally related (E)-3-furan-2-yl-N-phenylacrylamide (PAM-4), have concurrent potentiating and inhibitory effects that can be isolated and observed under appropriate recording conditions. The potentiating efficacies of the DM compounds are similar to those of neurosteroids and benzodiazepines (ΔG ∼ -1.5 kcal/mol). Molecular docking, functionally confirmed by site-directed mutagenesis experiments, indicate that receptor potentiation is mediated by interactions with the classic anesthetic binding sites located in the transmembrane domain of the intersubunit interfaces. Inhibition by the DM compounds and PAM-4 was abolished in the receptor containing the α1(V256S) mutation, suggestive of similarities in the mechanism of action with that of inhibitory neurosteroids. Functional competition and mutagenesis experiments, however, indicate that the sites mediating inhibition by the DM compounds and PAM-4 differ from those mediating the action of the inhibitory steroid pregnenolone sulfate. SIGNIFICANCE STATEMENT: We have synthesized and characterized the actions of novel acrylamide-derived compounds on the mammalian GABAA receptor. We show that the compounds have concurrent potentiating effects mediated by the classic anesthetic binding sites, and inhibitory actions that bear mechanistic resemblance to but do not share binding sites with, the inhibitory steroid pregnenolone sulfate.


Assuntos
Anestésicos , Neuroesteroides , Animais , Receptores de GABA-A/metabolismo , Acrilamida/farmacologia , Simulação de Acoplamento Molecular , Sítios de Ligação , Esteroides , Furanos/farmacologia , Mamíferos/metabolismo
20.
J Biol Chem ; 298(7): 102110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688208

RESUMO

Neurosteroids, modulators of neuronal and glial cell functions, are synthesized in the nervous system from cholesterol. In peripheral steroidogenic tissues, cholesterol is converted to the major steroid precursor pregnenolone by the CYP11A1 enzyme. Although pregnenolone is one of the most abundant neurosteroids in the brain, expression of CYP11A1 is difficult to detect. We found that human glial cells produced pregnenolone, detectable by mass spectrometry and ELISA, despite the absence of observable immunoreactive CYP11A1 protein. Unlike testicular and adrenal cortical cells, pregnenolone production in glial cells was not inhibited by CYP11A1 inhibitors DL-aminoglutethimide and ketoconazole. Furthermore, addition of hydroxycholesterols increased pregnenolone synthesis, suggesting desmolase activity that was not blocked by DL-aminoglutethimide or ketoconazole. We explored three different possibilities for an alternative pathway for glial cell pregnenolone synthesis: (1) regulation by reactive oxygen species, (2) metabolism via a different CYP11A1 isoform, and (3) metabolism via another CYP450 enzyme. First, we found oxidants and antioxidants had no significant effects on pregnenolone synthesis, suggesting it is not regulated by reactive oxygen species. Second, overexpression of CYP11A1 isoform b did not alter synthesis, indicating use of another CYP11A1 isoform is unlikely. Finally, we show nitric oxide and iron chelators deferoxamine and deferiprone significantly inhibited pregnenolone production, indicating involvement of another CYP450 enzyme. Ultimately, knockdown of endoplasmic reticulum cofactor NADPH-cytochrome P450 reductase had no effect, while knockdown of mitochondrial CYP450 cofactor ferredoxin reductase inhibited pregnenolone production. These data suggest that pregnenolone is synthesized by a mitochondrial cytochrome P450 enzyme other than CYP11A1 in human glial cells.


Assuntos
Neuroglia/metabolismo , Neuroesteroides , Pregnenolona/metabolismo , Aminoglutetimida , Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Humanos , Cetoconazol/farmacologia , Pregnenolona/biossíntese , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA