RESUMO
Tick-borne pathogen emergence is dependent on the abundance and distribution of competent hosts in the environment. Ixodes scapularis ticks are generalist feeders, and their pathogen infection prevalence depends on their relative feeding on local competent and non-competent hosts. The ability to determine what host a larval life stage tick fed on can help predict infection prevalence, emergence, and spread of certain tick-borne pathogens and the risks posed to public health. Here, we use a newly developed genomic target-based technique to detect the source of larval bloodmeals by sampling questing nymphs from Block Island, RI, a small island with a depauperate mammalian community. We used previously designed specific assays to target all known hosts on this island and analyzed ticks for four human pathogenic tick-borne pathogens. We determined the highest proportion of larvae fed on avian species (42.34%), white-footed mice (36.94%), and white-tailed deer (20.72%) and occasionally fed on feral cats, rats, and voles, which are in low abundance on Block Island. Additionally, larvae that had fed on white-footed mice were significantly more likely to be infected with Borrelia burgdorferi and Babesia microti, while larvae that had fed on white-footed mice or white-tailed deer were significantly more likely to be infected with, respectively, mouse- and deer-associated genotypes of Anaplasma phagocytophilum. The ability to detect a nymph's larval host allows for a better understanding of tick feeding behavior, host distribution, pathogen prevalence, and zoonotic risks to humans, which can contribute to better tick management strategies. IMPORTANCE: Tick-borne diseases, such as Lyme disease, babesiosis, and anaplasmosis, pose significant public health burdens. Tick bloodmeal analysis provides a noninvasive sampling method to evaluate tick-host associations and combined with a zoonotic pathogen assay, can generate crucial insights into the epidemiology and transmission of tick-borne diseases by identifying potential key maintenance hosts. We investigated the bloodmeals of questing Ixodes scapularis nymphs. We found that avian hosts, white-footed mice, and white-tailed deer fed the majority of larval ticks and differentially contributed to the prevalence of multiple tick-borne pathogens and pathogen genotypes in a low biodiversity island setting. Unraveling the intricate network of host-vector-pathogen interactions will contribute to improving wildlife management and conservation efforts, to developing targeted surveillance, and vector and host control efforts, ultimately reducing the incidence of tick-borne diseases and improving public health.
Assuntos
Ixodes , Larva , Animais , Ixodes/microbiologia , Ixodes/fisiologia , Larva/microbiologia , Biodiversidade , Borrelia burgdorferi/genética , Borrelia burgdorferi/isolamento & purificação , Borrelia burgdorferi/fisiologia , Interações Hospedeiro-Patógeno , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Humanos , Camundongos , Babesia microti/isolamento & purificação , Babesia microti/genética , Babesia microti/fisiologia , Cervos/parasitologia , Anaplasma phagocytophilum/isolamento & purificação , Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/fisiologia , Doença de Lyme/transmissão , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia , Peromyscus/parasitologia , Aves/parasitologiaRESUMO
CONTEXT: Pathogens can manipulate microbial interactions to ensure survival, potentially altering the functional patterns and microbiome assembly. The present study investigates how Anaplasma phagocytophilum infection affects the functional diversity, composition, and assembly of the Ixodes scapularis microbiome, with a focus on high central pathways-those characterized by elevated values in centrality metrics such as eigenvector, betweenness, and degree measures, in the microbial community. METHODS: Using previously published data from nymphs' gut V4 region's amplicons of bacterial 16S rRNA, we predicted the functional diversity and composition in control and A. phagocytophilum-infected ticks and inferred co-occurrence networks of taxa and ubiquitous pathways in each condition to associate the high central pathways to the microbial community assembly. RESULTS: Although no differences were observed concerning pathways richness and diversity, there was a significant impact on taxa and functional assembly when ubiquitous pathways in each condition were filtered. Moreover, a notable shift was observed in the microbiome's high central functions. Specifically, pathways related to the degradation of nucleosides and nucleotides emerged as the most central functions in response to A. phagocytophilum infection. This finding suggests a reconfiguration of functional relationships within the microbial community, potentially influenced by the pathogen's limited metabolic capacity. This limitation implies that the tick microbiome may provide additional metabolic resources to support the pathogen's functional needs. CONCLUSIONS: Understanding the metabolic interactions within the tick microbiome can enhance our knowledge of pathogen colonization mechanisms and uncover new disease control and prevention strategies. For example, certain pathways that were more abundant or highly central during infection may represent potential targets for microbiota-based vaccines.
Assuntos
Anaplasma phagocytophilum , Ixodes , Microbiota , RNA Ribossômico 16S , Anaplasma phagocytophilum/fisiologia , Anaplasma phagocytophilum/genética , Animais , Ixodes/microbiologia , RNA Ribossômico 16S/genética , Ehrlichiose/microbiologia , Ninfa/microbiologia , Microbioma Gastrointestinal/fisiologiaRESUMO
A number of insects are associated with gut symbiotic microorganisms, wherein symbiotic partners play pivotal metabolic roles for each other such as nutrient supplementation, diet degradation, and pesticide detoxification. Despite the ecological and evolutionary importance of gut microbial communities in insects, their diversity and dynamics remain unclear in many species. The green plant bug Apolygus spinolae, a notorious grapevine pest in Japan, damages grape shoots and severely reduces grape berry yield and quality. The plant bug possesses a simple tubular gut housing ~ 104 bacteria. Here, we investigated geographic, seasonal, and growth-related dynamics of gut microbiota by high-throughput sequencing in 82 individuals (11 nymphs and 71 adults) from five locations in Hokkaido, Japan. In plant bugs, gut microbiota changed dynamically depending on region, season, and developmental stage. Among the gut bacteria, Serratia was consistently and abundantly detected and was significantly affected by seasonal changes. In addition, Caballeronia, known as a specific symbiont in some stinkbug species, was abundantly detected, especially in insects collected in late summer despite A. spinolae complete lack of midgut crypts known as symbiotic organ harboring Caballeronia in other stinkbug species. Considering their prevalence among host bug populations, it is possible these gut microorganisms play a pivotal role in the adaptation of the green plant bug to grapevine fields, although further confirmation through rearing experiments is needed.
Assuntos
Bactérias , Microbioma Gastrointestinal , Heterópteros , Estações do Ano , Simbiose , Vitis , Animais , Vitis/microbiologia , Heterópteros/microbiologia , Heterópteros/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Japão , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimentoRESUMO
Beauveria bassiana (Bal.-Criv.) is an important entomopathogenic fungus being used for the management of various agricultural pests worldwide. However, all strains of B. bassiana may not be effective against whitefly, Bemisia tabaci, or other pests, and strains show diversity in their growth, sporulation, virulence features, and overall bioefficacy. Thus, to select the most effective strain, a comprehensive way needs to be devised. We studied the diversity among the 102 strains of B. bassiana isolated from 19 insect species based on their physiological features, virulence, and molecular phylogeny, to identify promising ones for the management of B. tabaci. Strains showed diversity in mycelial growth, conidial production, and their virulence against B. tabaci nymphs. The highest nymphal mortality (2nd and 3rd instar) was recorded with MTCC-4511 (95.1%), MTCC-6289 (93.8%), and MTCC-4565 (89.9%) at a concentration of 1 × 106 conidia ml-1 under polyhouse conditions. The highest bioefficacy index (BI) was in MTCC-4511 (78.3%), MTCC-4565 (68.2%), and MTCC-4543 (62.1%). MTCC-4511, MTCC-4565, and MTCC-4543 clustered with positive loading of eigenvalues for the first two principal components and the cluster analysis also corresponded well with PCA (principal component analysis) (nymphal mortality and BI). The molecular phylogeny could not draw any distinct relationship between physiological features, the virulence of B. bassiana strains with the host and location. The BI, PCA, and square Euclidean distance cluster were found the most useful tools for selecting potential entomopathogenic strains. The selected strains could be utilized for the management of the B. tabaci nymphal population in the field through the development of effective formulations. KEY POINTS: ⢠102 B. bassiana strains showed diversity in growth and virulence against B. tabaci. ⢠Bioefficacy index, PCA, and SED group are efficient tools for selecting potential strains. ⢠MTCC-4511, 4565, and 4543 chosen as the most virulent strains to kill whitefly nymphs.
Assuntos
Beauveria , Gossypium , Hemípteros , Controle Biológico de Vetores , Filogenia , Beauveria/genética , Beauveria/patogenicidade , Beauveria/classificação , Beauveria/isolamento & purificação , Animais , Hemípteros/microbiologia , Virulência , Gossypium/microbiologia , Ninfa/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Variação GenéticaRESUMO
'Candidatus Liberibacter asiaticus', the putative causal agent of citrus greening disease, is transmitted by the Asian citrus psyllid, Diaphorina citri, in a propagative, circulative, and persistent manner. Unfortunately, 'Ca. L. asiaticus' is not yet available in pure culture to carry out Koch's postulates and to confirm its etiology. When a pure culture is available, an assay to test its infectivity in both the insect vector and the plant host will be crucial. Herein, we described a transmission assay based on the use of phloem sap extracted from infected citrus plants and topical feeding to D. citri nymphs. Phloem sap was collected by centrifugation, diluted with 0.1 M phosphate buffer pH 7.4 containing 20% (wt/vol) sucrose and 0.1% ascorbic acid (wt/vol) as an antioxidant, and delivered to third through fifth instar nymphs by placing droplets on the mouthparts. Nymphs unfolded the stylets and acquired the phloem sap containing the bacterial pathogen. Nymphs were then placed onto Citrus macrophylla seedlings (10 nymphs per seedling) for an inoculation period of 2 weeks. A transmission rate of up to 80% was recorded at 6 months postinoculation. The method could be a powerful tool to test the transmissibility of the bacterial pathogen after various treatments to reduce the viability of the bacteria or to block its transmission. In addition, it might be a potent assay to achieve Koch's postulates if a pure culture of 'Ca. L. asiaticus' becomes available.
Assuntos
Citrus , Hemípteros , Insetos Vetores , Ninfa , Floema , Doenças das Plantas , Rhizobiaceae , Animais , Citrus/microbiologia , Insetos Vetores/microbiologia , Hemípteros/microbiologia , Floema/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Ninfa/microbiologia , Liberibacter/fisiologiaRESUMO
In this study, a tick intracellular symbiont, Candidatus Midichloria mitochondrii, was detected in Hyalomma anatolicum from Xinjiang, China. Morphological identification and cytochrome oxidase subunit I sequence alignment were used for molecular identification of the tick species. PCR detection further revealed the presence of endosymbiont C. M. mitochondrii in the tick. Specific primers were designed for Groel and 16S rRNA genes of C. M. mitochondrii for PCR amplification and phylogenetic analysis. To further investigate the vertical transmission characteristics of C. M. mitochondrii, specific primers were designed based on the Fabâ gene fragment to detect C. M. mitochondrii in different developmental stages and organs of the tick using qPCR. Of the 336 tick specimens collected from the field, 266 samples were identified as H. anatolicum on the basis of morphological characteristics. The gene fragment alignment results of COI confirmed that these ticks were H. anatolicum. The phylogenetic analysis showed that Groel gene of C. M. mitochondrii clustered with Midichloria strains detected in Ixodes ricinus ticks from Italy and Ixodes holocyclus ticks from Australia, with 100% sequence similarity. Furthermore, the 16S rRNA gene of C. M. mitochondrii clusters with the strains isolated from Hyalomma rufipes ticks in Italy, exhibiting the highest degree of homology. qPCR results showed that C. M. mitochondrii was present at all developmental stages of H. anatolicum, with the highest relative abundance in eggs, and lower relative abundance in nymphs and unfed males. With female tick blood feeding, the relative abundance of C. M. mitochondrii increased, and a particularly high relative abundance was detected in the ovaries of engorged female ticks. This study provides information for studying the survival adaptability of H. anatolicum, and provides data for further investigation of the mechanisms regulating tick endosymbionts in ticks, enriching the reference materials for comprehensive prevention and control of tick-borne diseases.
Assuntos
Ixodidae , Filogenia , RNA Ribossômico 16S , Simbiose , Animais , Ixodidae/microbiologia , Ixodidae/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Feminino , Masculino , China , Chaperonina 60/genética , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Alinhamento de Sequência , Complexo IV da Cadeia de Transporte de Elétrons/genética , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária , Reação em Cadeia da Polimerase , DNA Bacteriano , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The spittlebug Philaenus spumarius (Hemiptera: Aphrophoridae) is the predominant vector of Xylella fastidiosa (Xanthomonadales: Xanthomonadaceae) in Apulia, Italy and the rest of Europe. Current control strategies of the insect vector rely on mechanical management of nymphal stages and insecticide application against adult populations. Entomopathogenic fungi (EPF) are biological control agents naturally attacking spittlebugs and may effectively reduce population levels of host species. Different experimental trials in controlled conditions have been performed to i) identify naturally occurring EPF on P, spumarius in Northwestern Italy, and ii) evaluate the potential for biocontrol of the isolated strains on both nymphal and adult stages of the spittlebug. Four EPF species were isolated from dead P. spumarius collected in semi-field conditions: Beauveria bassiana, Conidiobolus coronatus, Fusarium equiseti and Lecanicillium aphanocladii. All the fungal isolates showed entomopathogenic potential against nymphal stages of P. spumarius (≈ 45 % mortality), except for F. equiseti, in preliminary trials. No induced mortality was observed on adult stage. Lecanicillium aphanocladii was the most promising fungus and its pathogenicity against spittlebug nymphs was further tested in different formulations (conidia vs blastospores) and with natural adjuvants. Blastospore formulation was the most effective in killing nymphal instars and reducing the emergence rate of P, spumarius adults, reaching mortality levels (90%) similar to those of the commercial product Naturalis®, while no or adverse effect of natural adjuvants was recorded. The encouraging results of this study pave way for testing EPF isolates against P, spumarius in field conditions and find new environmentally friendly control strategies against insect vectors of X. fastidiosa.
Assuntos
Hemípteros , Ninfa , Controle Biológico de Vetores , Animais , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Hemípteros/microbiologia , Beauveria/patogenicidade , Beauveria/fisiologia , Insetos Vetores/microbiologia , Fusarium , Itália , Xylella/fisiologia , Hypocreales/fisiologia , Hypocreales/patogenicidadeRESUMO
Pentastiridius leporinus (Hemiptera: Cixiidae) is the main vector of an emerging and fast spreading sugar beet disease, the syndrome 'basses richesses' (SBR), in different European countries. The disease is caused by the γ-3-proteobacterium 'Candidatus Arsenophonus phytopathogenicus' and the phytoplasma 'Candidatus Phytoplasma solani' which are exclusively transmitted by planthoppers and can lead to a significant loss of sugar content and yield. Monitoring of this insect vector is important for disease management. However, the morphological identification is time consuming and challenging as two additional cixiid species Reptalus quinquecostatus and Hyalesthes obsoletus with a very close morphology have been reported in sugar beet fields. Further, identification of females and nymphs of P. leporinus at species level based on taxonomic key is not possible. In this study, an isothermal nucleic acid amplification based on recombinase polymerase amplification (RPA) was developed to specifically detect P. leporinus. In addition, real-time RPA was developed to detect both adults (male and female) and nymph stages using pure or crude nucleic acid extracts. The sensitivity of the real-time RPA for detection of P. leporinus was comparable to real-time PCR, but a shorter time (< 7 min) was required. This is a first report for real-time RPA application for P. leporinus detection using crude nucleic acid templates which can be applied for fast and specific detection of this vector in the field.
Assuntos
Hemípteros , Técnicas de Amplificação de Ácido Nucleico , Animais , Hemípteros/genética , Hemípteros/microbiologia , Feminino , Técnicas de Amplificação de Ácido Nucleico/métodos , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ninfa/genética , Doenças das Plantas/microbiologia , Insetos Vetores/microbiologia , Insetos Vetores/genética , Beta vulgaris/microbiologia , Recombinases/metabolismo , Phytoplasma/genética , Phytoplasma/isolamento & purificação , Sensibilidade e EspecificidadeRESUMO
This study aimed to investigate the effects of symbiosis on the life history of host insects and address their implications at the host population level. We evaluated the effects of symbiotic bacteria Caballeronia insecticola on its host Riptortus pedestris (Fabricus) (Hemiptera: Alydidae) from cohorts for nymphal development, adult survivorship, and female reproduction. Then, life table parameters were compared between symbiotic and apo-symbiotic groups, and the effects of symbiosis on the abundance of R. pedestris were simulated for varying proportions of symbiotic individuals in host populations. We found that symbiosis significantly accelerated the nymphal development and reproductive maturation of females. However, symbiosis incurred survival cost on adult females, reducing their longevity by 28.6%. Nonetheless, symbiotic females laid significantly greater numbers of eggs than the apo-symbiotic during early adult ages. This early reproductive investment negated the adverse effect of their reduced longevity, resulting in the mean lifetime fecundity to not significantly differ between the 2 groups. Indeed, total cohort fecundity of the symbiotic group was 1.3-fold greater than that of the apo-symbiotic group. Life table analysis demonstrated shorter generation time and greater population growth rate in the symbiotic population. Finally, the simulation model results indicate that an increase in the proportion of symbiotic R. pedestris favored the population growth, increasing the population size by 1.9 times for every 25% increase in the proportion of symbiotic individuals. Our study demonstrates that symbiont-mediated changes in the life history parameters of host individuals favor the host population growth, despite substantial reduction in the female longevity.
Assuntos
Ninfa , Simbiose , Animais , Feminino , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Ninfa/microbiologia , Características de História de Vida , Crescimento Demográfico , Longevidade , Hemípteros/crescimento & desenvolvimento , Hemípteros/microbiologia , Hemípteros/fisiologia , Heterópteros/crescimento & desenvolvimento , Heterópteros/fisiologia , Heterópteros/microbiologia , Reprodução , Masculino , FertilidadeRESUMO
Ticks serve as vectors and reservoirs of various Borrelia species, potentially causing diseases in humans and animals. Mazandaran, a fertile green land in northern Iran, provides ample grazing grounds for livestock and harbors at least 26 hard tick species. This study investigated Borrelia infection in hard ticks from forest areas in this region and compared their genetic identity with the species data in the GenBank database. A total of 2,049 ticks were collected manually from mammalian hosts or using dragging and flagging methods. These ticks were then grouped into 190 pools and 41 individuals based on host, species, developmental stage, and gender. A real-time PCR (qPCR) detected Borrelia DNA in 26 pools from female, male, and nymph of Rhipicephalus annulatus (n = 17) and Ixodes ricinus (n = 9) ticks and one individual female Haemaphysalis punctata tick. The generated partial flaB and glpQ sequences from qPCR-positive Rh. annulatus ticks exhibited the highest identities of 98.1-100% and 98.2% with Borrelia theileri and closely related undefined isolates. Additionally, in phylogenetic analysis, these sequences clustered within well-supported clades with B. theileri and the closely related undefined isolates from various geographic regions, confirming the presence of B. theileri in the north of Iran. Divergence in B. theileri flaB and glpQ sequences across various geographical areas suggests potential subspeciation driven by adaptations to different tick species. This divergence in our flaB sequences implies the possible introduction of B. theileri-infected ticks from different geographical origins into Iran.
Assuntos
Borrelia , Rhipicephalus , Animais , Irã (Geográfico) , Feminino , Borrelia/isolamento & purificação , Borrelia/genética , Masculino , Rhipicephalus/microbiologia , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , BovinosRESUMO
The Sierra Nevada de Santa Marta (SNSM), located in northern Colombia, is considered a geographical island with high levels of biodiversity and endemism. However, little is known about tick species and their associated microorganisms at the SNSM. In this study we sampled host-seeking ticks in areas of the town of Minca within the SNSM. We collected 47 ticks identified as Amblyomma pacae, Amblyomma longirostre, Amblyomma ovale, Amblyomma mixtum, Haemaphysalis juxtakochi, Ixodes sp. cf. Ixodes affinis and Ixodes sp. Of these ticks, we tested for Rickettsia spp. by amplifying the gltA, SCA1, and 16S rRNA genes via PCR. Rickettsia amblyommatis was detected in one pool of 3 larvae and in a female of A. pacae. Additonally, we isolated Rickettsia sp. belonging to the group of spotted fevers in larvae of A. longirostre. This study reports new findings of six species of ticks and two species of Rickettsia within the SNSM.
Assuntos
Ixodidae , Larva , Rickettsia , Animais , Rickettsia/isolamento & purificação , Colômbia , Feminino , Larva/microbiologia , Larva/crescimento & desenvolvimento , Ixodidae/microbiologia , Masculino , RNA Ribossômico 16S/análise , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Amblyomma/microbiologia , Amblyomma/crescimento & desenvolvimento , Amblyomma/fisiologiaRESUMO
Due to the extensive use of green urban areas as recreation places, city residents are exposed to tick-borne pathogens. The objectives of our study were (i) to determine the occurrence of ticks in urban green areas, focussing on areas used by humans such as parks, schools and kindergartens, and urban forests, and (ii) to assess the prevalence of Borrelia infections in ticks in Zielona Góra, a medium-sized city in western Poland. A total of 161 ticks representing the two species Ixodes ricinus (34 males, 51 females, 30 nymphs) and Dermacentor reticulatus (20 males, 26 females) were collected from 29 of 72 (40.3%) study sites. In total, 26.1% of the ticks (85.7% of I. ricinus and 14.3% of D. reticulatus) yielded DNA of Borrelia. The difference in the infection rate between I. ricinus and D. reticulatus was significant. Among infected ticks, the most frequent spirochete species were B. lusitaniae (50.0%) and B. afzelii (26.2%), followed by B. spielmanii (9.5%), B. valaisiana (7.1%), B. burgdorferi sensu stricto, (4.8%) and B. miyamotoi (2.4%). No co-infections were found. We did not observe a correlation in the occurrence of Borrelia spirochetes in ticks found in individual study sites that differed in terms of habitat type and height of vegetation. Our findings demonstrate that the Borrelia transmission cycles are active within urban habitats, pointing the need for monitoring of tick-borne pathogens in public green areas. They could serve as guidelines for authorities for the proper management of urban green spaces in a way that may limit tick populations and the potential health risks posed by tick-borne pathogens.
Assuntos
Borrelia , Cidades , Dermacentor , Ixodes , Ninfa , Animais , Polônia , Borrelia/isolamento & purificação , Feminino , Masculino , Ixodes/microbiologia , Ixodes/crescimento & desenvolvimento , Dermacentor/microbiologia , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Parques RecreativosRESUMO
Ixodes ricinus is a vector of several pathogens of public health interest. While forests are the primary habitat for I. ricinus, its abundance and infection prevalence are expected to vary within forest stands. This study assesses the spatio-temporal variations in tick abundance and infection prevalence with three pathogens in and around a peri-urban forest where human exposure is high. Ticks were sampled multiple times in 2016 and 2018 in multiple locations with a diversity of undergrowth, using the consecutive drags method. Three zoonotic pathogens were screened for, Borrelia burgdorferi s.l., Coxiella burnetii, and Francisella tularensis. The influence of season, type of site and micro-environmental factors on tick abundance were assessed with negative binomial generalized linear mixed-effects models. We collected 1642 nymphs and 181 adult ticks. Ticks were most abundant in the spring, in warmer temperatures, and where undergrowth was higher. Sites with vegetation unaffected by human presence had higher abundance of ticks. Forest undergrowth type and height were significant predictors of the level of tick abundance in a forest. The consecutive drags method is expected to provide more precise estimates of tick abundance, presumably through more varied contacts with foliage. Borrelia burgdorferi s.l. prevalence was estimated from pooled ticks at 5.33%, C. burnetii was detected in six pools and F. tularensis was not detected. Borrelia afzelii was the dominant B. burgdorferi genospecies. Tick abundance and B. burgdorferi s.l. infection prevalence were lower than other estimates in Belgian forests.
Assuntos
Coxiella burnetii , Florestas , Francisella tularensis , Ixodes , Animais , Bélgica/epidemiologia , Ixodes/microbiologia , Ixodes/crescimento & desenvolvimento , Francisella tularensis/isolamento & purificação , Coxiella burnetii/isolamento & purificação , Coxiella burnetii/fisiologia , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Borrelia burgdorferi/isolamento & purificação , Borrelia burgdorferi/fisiologia , Estações do Ano , Densidade Demográfica , FemininoRESUMO
The aim of this study was to determine the level of infection of Ixodes ricinus ticks with pathogens (Borrelia spp., Rickettsia spp., and Anaplasma spp.) collected from Lacerta agilis and Zootoca vivipara lizards in the urban areas of Wroclaw (SW Poland). The study was carried out in July-August 2020. Lizards were caught by a noose attached to a pole or by bare hands, identified by species, and examined for the presence of ticks. Each lizard was then released at the site of capture. Ticks were removed with tweezers, identified by species using keys, and molecular tests were performed for the presence of pathogens. From 28 lizards (17 specimens of Z. vivipara and 11 specimens of L. agilis) a total of 445 ticks, including 321 larvae and 124 nymphs, identified as I. ricinus were collected. A larger number of ticks were obtained from L. agilis compared to Z. vivipara. Molecular tests for the presence of pathogens were performed on 445 specimens of I. ricinus. The nested PCR method for the fla gene allowed the detection of Borrelia spp. in 9.4% of ticks, and it was higher in ticks from L. agilis (12.0%) than from Z. vivipara (1.0%). The RFLP method showed the presence of three species, including two belonging to the B. burgdorferi s.l. complex (B. lusitaniae and B. afzelii), and B. miyamotoi. The overall level of infection of Rickettsia spp. was 19.3%, including 27.2% in ticks collected from Z. vivipara and 17.0% from L. agilis. Sequencing of randomly selected samples confirmed the presence of R. helvetica. DNA of Anaplasma spp. was detected only in one pool of larvae collected from L. agilis, and sample sequencing confirmed the presence of (A) phagocytophilum. The research results indicate the important role of lizards as hosts of ticks and their role in maintaining pathogens in the environment including urban agglomeration as evidenced by the first recorded presence of (B) miyamotoi and (A) phagocytophilum in I. ricinus ticks collected from L. agilis. However, confirmation of the role of sand lizards in maintaining (B) miyamotoi and A. phagocytophilum requires more studies and sampling of lizard tissue.
Assuntos
Anaplasma , Borrelia , Ixodes , Lagartos , Rickettsia , Animais , Feminino , Masculino , Anaplasma/isolamento & purificação , Anaplasma/genética , Borrelia/isolamento & purificação , Borrelia/genética , Cidades , Ixodes/microbiologia , Ixodes/fisiologia , Larva/microbiologia , Larva/fisiologia , Lagartos/parasitologia , Lagartos/microbiologia , Ninfa/microbiologia , Ninfa/fisiologia , Polônia , Rickettsia/genética , Rickettsia/isolamento & purificaçãoRESUMO
Ticks are hematophagous arthropods and, during feeding, may transmit pathogens to vertebrate hosts, including humans. This study aimed to investigate the presence of Rickettsia spp. in ticks collected between 2010 and 2013 from free-ranging capybaras (Hydrochoerus hydrochaeris) and opossums (Didelphis albiventris) that inhabit Sabiá Park in Uberlândia, Brazil. Overall, 1,860 ticks were collected: 1,272 (68.4%) from capybaras (487 of the species Amblyomma sculptum, 475 adults and 12 nymphs; 778 Amblyomma dubitatum, 727 adults and 51 nymphs; and seven larva clusters of the genus Amblyomma); and 588 (31.6%) from opossums (21 A. sculptum, one adult and 20 nymphs; 79 A. dubitatum, all nymphs; 15 Ixodes loricatus, 12 adults and three nymphs; 457 Amblyomma sp. larva clusters; 15 Ixodes sp. larva clusters; and one Argasidae larva cluster). Out of 201 DNA samples tested for the presence of Rickettsia spp. DNA using polymerase chain reaction (PCR) 12 showed amplification of a gtlA gene segment that was specific to Rickettsia bellii, a bacterium non-pathogenic to humans. As there has been a report showing serological evidence of infections caused by Rickettsia species of the spotted fever group (SFG) in capybaras and opossums in the park, including Rickettsia rickettsii, the etiological agent of Brazilian spotted fever, and considering the presence of A. sculptum ticks, which are aggressive to humans, as well as these vertebrate hosts, which are amplifiers of R. rickettsii, it is important to monitor the presence of SFG rickettsiae in the Sabiá Park, which is visited daily by thousands of people.
Assuntos
Didelphis , Ixodidae , Larva , Ninfa , Rickettsia , Animais , Brasil , Rickettsia/isolamento & purificação , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ninfa/fisiologia , Larva/microbiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Ixodidae/microbiologia , Ixodidae/crescimento & desenvolvimento , Ixodidae/fisiologia , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Infestações por Carrapato/epidemiologia , Feminino , Parques Recreativos , Amblyomma/microbiologia , Amblyomma/crescimento & desenvolvimento , Masculino , Roedores/parasitologia , Gambás/parasitologiaRESUMO
Understanding the composition of microorganismal communities hosted by insect pests is an important prerequisite for revealing their functions and developing new pest control strategies. Although studies of the structure of the microbiome of Nilaparvata lugens have been published, little is known about the dynamic changes in this microbiome across different developmental stages, and an understanding of the core microbiota is still lacking. In this study, we investigated the dynamic changes in bacteria and fungi in different developmental stages of N. lugens using high-throughput sequencing technology. We observed that the microbial diversity in eggs and mated adults was higher than that in nymphs and unmated adults. We also observed a notable strong correlation between fungal and bacterial α-diversity, which suggests that fungi and bacteria are closely linked and may perform functions collaboratively during the whole developmental period. Arsenophonus and Hirsutella were the predominant bacterial and fungal taxa, respectively. Bacteria were more conserved than fungi during the transmission of the microbiota between developmental stages. Compared with that in the nymph and unmated adult stages of N. lugens, the correlation between bacterial and fungal communities in the mated adult and egg stages was stronger. Moreover, the core microbiota across all developmental stages in N. lugens was identified, and there were more bacterial genera than fungal genera; notably, the core microbiota of eggs, nymphs, and mated and unmated adults showed distinctive functional enrichment. These findings highlight the potential value of further exploring microbial functions during different developmental stages and developing new pest management strategies.
Assuntos
Hemípteros , Microbiota , Animais , Bactérias/genética , Hemípteros/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Ninfa/microbiologiaRESUMO
While pesticidal proteins from Bacillus thuringiensis have provided for effective management of several insect pests of agricultural importance, few with toxicity to hemipteran species have been identified. The Asian citrus psyllid, Diaphorina citri transmits Candidatus Liberibacter asiaticus (CLas), the presumed bacterial causative agent of the devastating disease citrus greening. Despite the critical role of D. citri nymphs in the acquisition and inoculation of CLas, the lack of a long-term feeding method impedes the screening of Bt proteins for toxicity against nymphs, which play a key role in CLas transmission. Here, we developed a long-term nymph bioassay and determined the toxicity of the Bt pesticidal protein Mpp51Aa1. The new bioassay method allows nymphs to survive for up to six days when maintained on treated folded wipes. The standard hemipteran membrane feeding assay was used to assess Mpp51Aa1 toxicity against D. citri adults. Mpp51Aa1 was toxic to D. citri nymphs with a median lethal concentration (LC50) of 56.5 µg/ml in wipe feeding assays, and to D. citri adults with an LC50 of 110.4 µg/ml in membrane feeding assays. These results demonstrate the utility of this long-term nymph bioassay method and suggest that Mpp51Aa1 has potential for sustainable use in D. citri management toward mitigation of citrus greening disease.
Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Hemípteros/microbiologia , Ninfa/microbiologia , Doenças das Plantas/microbiologia , Citrus/microbiologia , BioensaioRESUMO
Lyme Disease - Epidemiology and Pathophysiology Abstract. Lyme disease is a zoonosis caused by the spirochete Borrelia burgdorferi and its genospecies. Its distribution includes Europe and some parts of North America. The dominant vector in Europe is the tick Ixodes ricinus. Its three developmental stages (larvae, nymph, adult) take blood meals from small rodents, birds, and deer, some of which may also host B. burgdorferi. This is how the majority of the ticks become infected. Transmission of the pathogen to a new host occurs via tick saliva at the next blood meal, which induces phenotypical modifications of the spirochete that facilitate migration from the tick intestine to the salivary gland and survival in the vertebrate host. Both, tick saliva and the remodeled surface proteins of the bacteria, provide protection from the host's immune system. Dissemination occurs predominantly via the hematogenous route, but motility of the spirochete facilitates tissue migration. The species-dependent tropism for skin, joints and neuronal structures appears to be mediated by specific interactions between host and pathogen proteins. While extrapolated total cases of Lyme disease in Switzerland have remained stable over the past years, areas where infected ticks can be found have expanded. Milder winters and higher temperatures may explain this observation. In addition to measures helping to avoid tick bites, vaccines may contribute to protect against Lyme disease in the future. A promising, multivalent, protein-based vaccine appears to provide protection from several subspecies of B. burgdorferi.
Assuntos
Borrelia burgdorferi , Cervos , Ixodes , Doença de Lyme , Animais , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia , Ixodes/metabolismo , Ixodes/microbiologia , Ninfa/microbiologiaRESUMO
The microbiome of blood-sucking arthropods can shape their competence to acquire and maintain infections with vector-borne pathogens. We used a controlled study to investigate the interactions between Borrelia afzelii, which causes Lyme borreliosis in Europe, and the bacterial microbiome of Ixodes ricinus, its primary tick vector. We applied a surface sterilization treatment to I. ricinus eggs to produce dysbiosed tick larvae that had a low bacterial abundance and a changed bacterial microbiome compared to those of the control larvae. Dysbiosed and control larvae fed on B. afzelii-infected mice and uninfected control mice, and the engorged larvae were left to molt into nymphs. The nymphs were tested for B. afzelii infection, and their bacterial microbiome underwent 16S rRNA amplicon sequencing. Surprisingly, larval dysbiosis had no effect on the vector competence of I. ricinus for B. afzelii, as the nymphal infection prevalence and the nymphal spirochete load were the same between the dysbiosed group and the control group. The strong effect of egg surface sterilization on the tick bacterial microbiome largely disappeared once the larvae molted into nymphs. The most important determinant of the bacterial microbiome of I. ricinus nymphs was the B. afzelii infection status of the mouse on which the nymphs had fed as larvae. Nymphs that had taken their larval blood meal from an infected mouse had a less abundant but more diverse bacterial microbiome than the control nymphs. Our study demonstrates that vector-borne infections in the vertebrate host shape the microbiome of the arthropod vector. IMPORTANCE Many blood-sucking arthropods transmit pathogens that cause infectious disease. For example, Ixodes ricinus ticks transmit the bacterium Borrelia afzelii, which causes Lyme disease in humans. Ticks also have a microbiome, which can influence their ability to acquire and transmit tick-borne pathogens such as B. afzelii. We sterilized I. ricinus eggs with bleach, and the tick larvae that hatched from these eggs had a dramatically reduced and changed bacterial microbiome compared to that of control larvae. These larvae fed on B. afzelii-infected mice, and the resultant nymphs were tested for B. afzelii and for their bacterial microbiome. We found that our manipulation of the bacterial microbiome had no effect on the ability of the tick larvae to acquire and maintain populations of B. afzelii. In contrast, we found that B. afzelii infection had dramatic effects on the bacterial microbiome of I. ricinus nymphs. Our study demonstrates that infections in the vertebrate host can shape the tick microbiome.
Assuntos
Grupo Borrelia Burgdorferi , Ixodes/microbiologia , Doença de Lyme/transmissão , Animais , Etanol , Feminino , Larva/microbiologia , Camundongos Endogâmicos BALB C , Microbiota , Ninfa/microbiologia , Óvulo , Hipoclorito de Sódio , EsterilizaçãoRESUMO
Tick-borne diseases in California include Lyme disease (caused by Borrelia burgdorferi), infections with Borrelia miyamotoi, and human granulocytic anaplasmosis (caused by Anaplasma phagocytophilum). We surveyed multiple sites and habitats (woodland, grassland, and coastal chaparral) in California to describe spatial patterns of tick-borne pathogen prevalence in western black-legged ticks (Ixodes pacificus). We found that several species of Borrelia-B. burgdorferi, Borrelia americana, and Borrelia bissettiae-were observed in habitats, such as coastal chaparral, that do not harbor obvious reservoir host candidates. Describing tick-borne pathogen prevalence is strongly influenced by the scale of surveillance: aggregating data from individual sites to match jurisdictional boundaries (e.g., county or state) can lower the reported infection prevalence. Considering multiple pathogen species in the same habitat allows a more cohesive interpretation of local pathogen occurrence. IMPORTANCE Understanding the local host ecology and prevalence of zoonotic diseases is vital for public health. Using tick-borne diseases in California, we show that there is often a bias to our understanding and that studies tend to focus on particular habitats, e.g., Lyme disease in oak woodlands. Other habitats may harbor a surprising diversity of tick-borne pathogens but have been neglected, e.g., coastal chaparral. Explaining pathogen prevalence requires descriptions of data on a local scale; otherwise, aggregating the data can misrepresent the local dynamics of tick-borne diseases.