RESUMO
Nucleophosmin 1 (NPM1) is commonly mutated in myelodysplastic syndrome (MDS) and acute myeloid leukemia. Concurrent inflammatory bowel diseases (IBD) and MDS are common, indicating a close relationship between IBD and MDS. Here we examined the function of NPM1 in IBD and colitis-associated colorectal cancer (CAC). NPM1 expression was reduced in patients with IBD. Npm1+/- mice were more susceptible to acute colitis and experimentally induced CAC than littermate controls. Npm1 deficiency impaired the function of interleukin-22 (IL-22)-producing group three innate lymphoid cells (ILC3s). Mice lacking Npm1 in ILC3s exhibited decreased IL-22 production and accelerated development of colitis. NPM1 was important for mitochondrial biogenesis and metabolism by oxidative phosphorylation in ILC3s. Further experiments revealed that NPM1 cooperates with p65 to promote mitochondrial transcription factor A (TFAM) transcription in ILC3s. Overexpression of Npm1 in mice enhanced ILC3 function and reduced the severity of dextran sulfate sodium-induced colitis. Thus, our findings indicate that NPM1 in ILC3s protects against IBD by regulating mitochondrial metabolism through a p65-TFAM axis.
Assuntos
Colite , Imunidade nas Mucosas , Camundongos Knockout , Mitocôndrias , Proteínas Nucleares , Nucleofosmina , Fosforilação Oxidativa , Animais , Mitocôndrias/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Humanos , Colite/imunologia , Colite/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Interleucina 22 , Imunidade Inata , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Sulfato de Dextrana , Masculino , Interleucinas/metabolismo , Interleucinas/genética , Interleucinas/imunologia , FemininoRESUMO
The nucleolus and other ribonucleoprotein (RNP) bodies are membrane-less organelles that appear to assemble through phase separation of their molecular components. However, many such RNP bodies contain internal subcompartments, and the mechanism of their formation remains unclear. Here, we combine in vivo and in vitro studies, together with computational modeling, to show that subcompartments within the nucleolus represent distinct, coexisting liquid phases. Consistent with their in vivo immiscibility, purified nucleolar proteins phase separate into droplets containing distinct non-coalescing phases that are remarkably similar to nucleoli in vivo. This layered droplet organization is caused by differences in the biophysical properties of the phases-particularly droplet surface tension-which arises from sequence-encoded features of their macromolecular components. These results suggest that phase separation can give rise to multilayered liquids that may facilitate sequential RNA processing reactions in a variety of RNP bodies. PAPERCLIP.
Assuntos
Nucléolo Celular/química , Animais , Caenorhabditis elegans , Células Cultivadas , Proteínas Cromossômicas não Histona/análise , Intestinos/química , Intestinos/citologia , Mamíferos , Proteínas Nucleares/análise , Nucleofosmina , Oócitos/química , Oócitos/citologia , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/metabolismo , Xenopus laevisRESUMO
Ribosome biogenesis takes place in the nucleolus, a nuclear membrane-less organelle. Although well studied, it remains unknown how nascent ribosomal subunits separate from the central chromatin compartment and move to the outer granular component, where maturation occurs. We find that the Schizosaccharomyces pombe nucleophosmin-like protein Fkbp39 localizes to rDNA sites encoding the 60S subunit rRNA, and this localization contributes to its specific association with nascent 60S subunits. Fkbp39 dissociates from chromatin to bind nascent 60S subunits, causing the latter to partition away from chromatin and from nascent 40S subunits through liquid-liquid phase separation. In vivo, Fkbp39 binding directs the translocation of nascent 60S subunits toward the nucleophosmin-rich granular component. This process increases the efficiency of 60S subunit assembly, facilitating the incorporation of 60S RNA domain III. Thus, chromatin localization determines the specificity of nucleophosmin in sorting nascent ribosomal subunits and coordinates their movement into specialized assembly compartments within the nucleolus.
Assuntos
Cromatina , Schizosaccharomyces , Cromatina/genética , Nucleofosmina , Nucléolo Celular/genética , Membrana Nuclear , Schizosaccharomyces/genética , Ribossomos/genéticaRESUMO
Targeting critical epigenetic regulators reverses aberrant transcription in cancer, thereby restoring normal tissue function1-3. The interaction of menin with lysine methyltransferase 2A (KMT2A), an epigenetic regulator, is a dependence in acute leukaemia caused by either rearrangement of KMT2A or mutation of the nucleophosmin 1 gene (NPM1)4-6. KMT2A rearrangements occur in up to 10% of acute leukaemias and have an adverse prognosis, whereas NPM1 mutations occur in up to 30%, forming the most common genetic alteration in acute myeloid leukaemia7,8. Here, we describe the results of the first-in-human phase 1 clinical trial investigating revumenib (SNDX-5613), a potent and selective oral inhibitor of the menin-KMT2A interaction, in patients with relapsed or refractory acute leukaemia (ClinicalTrials.gov, NCT04065399). We show that therapy with revumenib was associated with a low frequency of grade 3 or higher treatment-related adverse events and a 30% rate of complete remission or complete remission with partial haematologic recovery (CR/CRh) in the efficacy analysis population. Asymptomatic prolongation of the QT interval on electrocardiography was identified as the only dose-limiting toxicity. Remissions occurred in leukaemias refractory to multiple previous lines of therapy. We demonstrate clearance of residual disease using sensitive clinical assays and identify hallmarks of differentiation into normal haematopoietic cells, including differentiation syndrome. These data establish menin inhibition as a therapeutic strategy for susceptible acute leukaemia subtypes.
Assuntos
Antineoplásicos , Histona-Lisina N-Metiltransferase , Leucemia Mieloide Aguda , Nucleofosmina , Proteínas Proto-Oncogênicas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Neoplasia Residual/tratamento farmacológico , Nucleofosmina/genética , Prognóstico , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Indução de RemissãoRESUMO
Repeat expansion in the C9orf72 gene is the most common cause of the neurodegenerative disorder amyotrophic lateral sclerosis (C9-ALS) and is linked to the unconventional translation of five dipeptide-repeat polypeptides (DPRs). The two enriched in arginine, poly(GR) and poly(PR), infiltrate liquid-like nucleoli, co-localize with the nucleolar protein nucleophosmin (NPM1), and alter the phase separation behavior of NPM1 in vitro. Here, we show that poly(PR) DPRs bind tightly to a long acidic tract within the intrinsically disordered region of NPM1, altering its phase separation with nucleolar partners to the extreme of forming large, soluble complexes that cause droplet dissolution in vitro. In cells, poly(PR) DPRs disperse NPM1 from nucleoli and entrap rRNA in static condensates in a DPR-length-dependent manner. We propose that R-rich DPR toxicity involves disrupting the role of phase separation by NPM1 in organizing ribosomal proteins and RNAs within the nucleolus.
Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Proteínas Nucleares/genética , Sequências Repetitivas de Aminoácidos/genética , Esclerose Lateral Amiotrófica/patologia , Arginina/genética , Nucléolo Celular/química , Nucléolo Celular/genética , Dipeptídeos/genética , Humanos , Nucleofosmina , Peptídeos/genética , Poli A/genética , RNA Ribossômico/genéticaRESUMO
In eukaryotic cell nuclei, specific sets of proteins gather in nuclear bodies and facilitate distinct genomic processes. The nucleolus, a nuclear body, functions as a factory for ribosome biogenesis by accumulating constitutive proteins, such as RNA polymerase I and nucleophosmin 1 (NPM1). Although in vitro assays have suggested the importance of liquid-liquid phase separation (LLPS) of constitutive proteins in nucleolar formation, how the nucleolus is structurally maintained with the intranuclear architecture remains unknown. This study revealed that the nucleolus is encapsulated by a single-stranded (ss)DNA-based molecular complex inside the cell nucleus. Super-resolution lattice-structured illumination microscopy (lattice-SIM) showed that there was a high abundance of ssDNA beyond the 'outer shell' of the nucleolus. Nucleolar disruption and the release of NPM1 were caused by in situ digestion of ssDNA, suggesting that ssDNA has a structural role in nucleolar encapsulation. Furthermore, we identified that ssDNA forms a molecular complex with histone H1 for nucleolar encapsulation. Thus, this study illustrates how an ssDNA-based molecular complex upholds the structural integrity of nuclear bodies to coordinate genomic processes such as gene transcription and replication.
Assuntos
Nucléolo Celular , DNA de Cadeia Simples , Nucleofosmina , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Nucléolo Celular/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Histonas/metabolismo , Células HeLaRESUMO
The mechanism of genome DNA replication in circular single-stranded DNA viruses is currently a mystery, except for the fact that it undergoes rolling-circle replication. Herein, we identified SUMOylated porcine nucleophosmin-1 (pNPM1), which is previously reported to be an interacting protein of the viral capsid protein, as a key regulator that promotes the genome DNA replication of porcine single-stranded DNA circovirus. Upon porcine circovirus type 2 (PCV2) infection, SUMO2/3 were recruited and conjugated with the K263 site of pNPM1's C-terminal domain to SUMOylate pNPM1, subsequently, the SUMOylated pNPM1 were translocated in nucleoli to promote the replication of PCV2 genome DNA. The mutation of the K263 site reduced the SUMOylation levels of pNPM1 and the nucleolar localization of pNPM1, resulting in a decrease in the level of PCV2 DNA replication. Meanwhile, the mutation of the K263 site prevented the interaction of pNPM1 with PCV2 DNA, but not the interaction of pNPM1 with PCV2 Cap. Mechanistically, PCV2 infection increased the expression levels of Ubc9, the only E2 enzyme involved in SUMOylation, through the Cap-mediated activation of ERK signaling. The upregulation of Ubc9 promoted the interaction between pNPM1 and TRIM24, a potential E3 ligase for SUMOylation, thereby facilitating the SUMOylation of pNPM1. The inhibition of ERK activation could significantly reduce the SUMOylation levels and the nucleolar localization of pNPM1, as well as the PCV2 DNA replication levels. These results provide new insights into the mechanism of circular single-stranded DNA virus replication and highlight NPM1 as a potential target for inhibiting PCV2 replication.
Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Suínos , Animais , Circovirus/genética , Circovirus/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Nucleofosmina , Sumoilação , Infecções por Circoviridae/genética , Infecções por Circoviridae/metabolismo , Replicação Viral/fisiologia , DNA Viral/genética , DNA Viral/metabolismoRESUMO
ABSTRACT: Assessment of measurable residual disease (MRD) by quantitative reverse transcription polymerase chain reaction is strongly prognostic in patients with NPM1-mutated acute myeloid leukemia (AML) treated with intensive chemotherapy; however, there are no data regarding its utility in venetoclax-based nonintensive therapy, despite high efficacy in this genotype. We analyzed the prognostic impact of NPM1 MRD in an international real-world cohort of 76 previously untreated patients with NPM1-mutated AML who achieved complete remission (CR)/CR with incomplete hematological recovery following treatment with venetoclax and hypomethylating agents (HMAs) or low-dose cytarabine (LDAC). A total of 44 patients (58%) achieved bone marrow (BM) MRD negativity, and a further 14 (18%) achieved a reduction of ≥4 log10 from baseline as their best response, with no difference between HMAs and LDAC. The cumulative rates of BM MRD negativity by the end of cycles 2, 4, and 6 were 25%, 47%, and 50%, respectively. Patients achieving BM MRD negativity by the end of cycle 4 had 2-year overall of 84% compared with 46% if MRD was positive. On multivariable analyses, MRD negativity was the strongest prognostic factor. A total of 22 patients electively stopped therapy in BM MRD-negative remission after a median of 8 cycles, with 2-year treatment-free remission of 88%. In patients with NPM1-mutated AML attaining remission with venetoclax combination therapies, NPM1 MRD provides valuable prognostic information.
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Nucleofosmina , Sulfonamidas , Humanos , Prognóstico , Mutação , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Citarabina , Neoplasia Residual/genéticaRESUMO
ABSTRACT: Selection of patients with NPM1-mutated acute myeloid leukemia (AML) for allogeneic transplant in first complete remission (CR1-allo) remains controversial because of a lack of robust data. Consequently, some centers consider baseline FLT3-internal tandem duplication (ITD) an indication for transplant, and others rely on measurable residual disease (MRD) status. Using prospective data from the United Kingdom National Cancer Research Institute AML17 and AML19 studies, we examined the impact of CR1-allo according to peripheral blood NPM1 MRD status measured by quantitative reverse transcription polymerase chain reaction after 2 courses of induction chemotherapy. Of 737 patients achieving remission, MRD was positive in 19%. CR1-allo was performed in 46% of MRD+ and 17% of MRD- patients. We observed significant heterogeneity of overall survival (OS) benefit from CR1-allo according to MRD status, with substantial OS advantage for MRD+ patients (3-year OS with CR1-allo vs without: 61% vs 24%; hazard ratio [HR], 0.39; 95% confidence interval [CI], 0.24-0.64; P < .001) but no benefit for MRD- patients (3-year OS with CR1-allo vs without: 79% vs 82%; HR, 0.82; 95% CI, 0.50-1.33; P = .4). Restricting analysis to patients with coexisting FLT3-ITD, again CR1-allo only improved OS for MRD+ patients (3-year OS, 45% vs 18%; compared with 83% vs 76% if MRD-); no interaction with FLT3 allelic ratio was observed. Postinduction molecular MRD reliably identifies those patients who benefit from allogeneic transplant in first remission. The AML17 and AML19 trials were registered at www.isrctn.com as #ISRCTN55675535 and #ISRCTN78449203, respectively.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Neoplasia Residual , Nucleofosmina , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética , Quimioterapia de Indução , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutação , Estudos Prospectivos , Indução de Remissão , Transplante HomólogoRESUMO
ABSTRACT: Although NPM1-mutated acute myeloid leukemia (AML) carries a generally favorable prognosis, many patients still relapse and die. Previous studies identified several molecular and clinical features associated with poor outcomes; however, only FLT3-internal tandem duplication (ITD) mutation and adverse karyotype are currently used for risk stratification because of inconsistent results and uncertainty about how other factors should influence treatment, particularly given the strong prognostic effect of postinduction measurable residual disease (MRD). Here, we analyzed a large group of patients with NPM1 mutations (NPM1mut) AML enrolled in prospective trials (National Cancer Research Institute [NCRI] AML17 and AML19, n = 1357) to delineate the impact of baseline molecular and clinical features, postinduction MRD status, and treatment intensity on the outcome. FLT3-ITD (hazard ratio [HR], 1.28; 95% confidence interval [CI], 1.01-1.63), DNMT3A (HR, 1.65; 95% CI, 1.32-2.05), WT1 (HR, 1.74; 95% CI, 1.27-2.38), and non-ABD NPM1mut (HR, 1.64; 95% CI, 1.22-2.21) were independently associated with poorer overall survival (OS). These factors were also strongly associated with MRD positivity. For patients who achieved MRD negativity, these mutations (except FLT3-ITD) were associated with an increased cumulative incidence of relapse (CIR) and poorer OS. However, apart from the few patients with adverse cytogenetics, we could not identify any group of MRD-negative patients with a CIR >40% or with benefit from allograft in first remission. Intensified chemotherapy with the FLAG-Ida (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin) regimen was associated with improved outcomes in all subgroups, with greater benefits observed in the high-risk molecular subgroups.
Assuntos
Leucemia Mieloide Aguda , Mutação , Proteínas Nucleares , Nucleofosmina , Tirosina Quinase 3 Semelhante a fms , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Nucleares/genética , Pessoa de Meia-Idade , Feminino , Masculino , Adulto , Idoso , Tirosina Quinase 3 Semelhante a fms/genética , Prognóstico , Adulto Jovem , Neoplasia Residual/genética , DNA Metiltransferase 3A , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas WT1/genética , DNA (Citosina-5-)-Metiltransferases/genética , Adolescente , Resultado do Tratamento , Idoso de 80 Anos ou maisRESUMO
ABSTRACT: BRG1 (SMARCA4) and BRM (SMARCA2) are the mutually exclusive core ATPases of the chromatin remodeling BAF (BRG1/BRM-associated factor) complexes. They enable transcription factors/cofactors to access enhancers/promoter and modulate gene expressions responsible for cell growth and differentiation of acute myeloid leukemia (AML) stem/progenitor cells. In AML with MLL1 rearrangement (MLL1r) or mutant NPM1 (mtNPM1), although menin inhibitor (MI) treatment induces clinical remissions, most patients either fail to respond or relapse, some harboring menin mutations. FHD-286 is an orally bioavailable, selective inhibitor of BRG1/BRM under clinical development in AML. Present studies show that FHD-286 induces differentiation and lethality in AML cells with MLL1r or mtNPM1, concomitantly causing perturbed chromatin accessibility and repression of c-Myc, PU.1, and CDK4/6. Cotreatment with FHD-286 and decitabine, BET inhibitor (BETi) or MI, or venetoclax synergistically induced in vitro lethality in AML cells with MLL1r or mtNPM1. In models of xenografts derived from patients with AML with MLL1r or mtNPM1, FHD-286 treatment reduced AML burden, improved survival, and attenuated AML-initiating potential of stem-progenitor cells. Compared with each drug, cotreatment with FHD-286 and BETi, MI, decitabine, or venetoclax significantly reduced AML burden and improved survival, without inducing significant toxicity. These findings highlight the FHD-286-based combinations as a promising therapy for AML with MLL1r or mtNPM1.
Assuntos
DNA Helicases , Leucemia Mieloide Aguda , Proteínas Nucleares , Proteínas Proto-Oncogênicas , Fatores de Transcrição , Animais , Humanos , Camundongos , Proteínas que Contêm Bromodomínio , Linhagem Celular Tumoral , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
ABSTRACT: The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 (bleximenib) is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) acute myeloid leukemia (AML) cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent antiproliferative activity across several AML and acute lymphoblastic leukemia (ALL) cell lines and patient samples harboring KMT2A or NPM1 alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent antiproliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A cocrystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).
Assuntos
Histona-Lisina N-Metiltransferase , Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Proteínas Nucleares , Nucleofosmina , Humanos , Animais , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3-6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7-9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.
Assuntos
Espaço Intracelular/química , Espaço Intracelular/metabolismo , Organelas/química , Organelas/metabolismo , Termodinâmica , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Corpos Enovelados/química , Corpos Enovelados/metabolismo , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/deficiência , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Transição de Fase , Proteínas de Ligação a Poli-ADP-Ribose/deficiência , RNA Helicases/deficiência , Proteínas com Motivo de Reconhecimento de RNA/deficiência , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA , Ribossomos/química , Ribossomos/metabolismoRESUMO
Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.
Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Miogenina , RNA Mensageiro , Tanquirases , Tanquirases/metabolismo , Tanquirases/genética , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Desenvolvimento Muscular/genética , Animais , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Miogenina/genética , Miogenina/metabolismo , Nucleofosmina , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Estabilidade de RNA/genética , Poli ADP Ribosilação/genética , Linhagem Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Diferenciação Celular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células HEK293RESUMO
The nucleolus, a membrane-less organelle, is responsible for ribosomal RNA transcription, ribosomal RNA processing, and ribosome assembly. Nucleolar size and number are indicative of a cell's protein synthesis rate and proliferative capacity, and abnormalities in the nucleolus have been linked to neurodegenerative diseases and cancer. In this study, we demonstrated that the nucleolar protein ZNF692 directly interacts with nucleophosmin 1 (NPM1). Knocking down ZNF692 resulted in the nucleolar redistribution of NPM1 in ring-like structures and reduced protein synthesis. Purified NPM1 forms spherical condensates in vitro but mixing it with ZNF692 produces irregular condensates more closely resembling living cell nucleoli. Our findings indicate that ZNF692, by interacting with NPM1, plays a critical role in regulating nucleolar architecture and function in living cells.
Assuntos
Nucléolo Celular , Proteínas de Ligação a DNA , Nucleofosmina , Fatores de Transcrição , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Ribossômico/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismoRESUMO
BACKGROUND: Reparative macrophages play a crucial role in limiting excessive fibrosis and promoting cardiac repair after myocardial infarction (MI), highlighting the significance of enhancing their reparative phenotype for wound healing. Metabolic adaptation orchestrates the phenotypic transition of macrophages; however, the precise mechanisms governing metabolic reprogramming of cardiac reparative macrophages remain poorly understood. In this study, we investigated the role of NPM1 (nucleophosmin 1) in the metabolic and phenotypic shift of cardiac macrophages in the context of MI and explored the therapeutic effect of targeting NPM1 for ischemic tissue repair. METHODS: Peripheral blood mononuclear cells were obtained from healthy individuals and patients with MI to explore NPM1 expression and its correlation with prognostic indicators. Through RNA sequencing, metabolite profiling, histology, and phenotype analyses, we investigated the role of NPM1 in postinfarct cardiac repair using macrophage-specific NPM1 knockout mice. Epigenetic experiments were conducted to study the mechanisms underlying metabolic reprogramming and phenotype transition of NPM1-deficient cardiac macrophages. The therapeutic efficacy of antisense oligonucleotide and inhibitor targeting NPM1 was then assessed in wild-type mice with MI. RESULTS: NPM1 expression was upregulated in the peripheral blood mononuclear cells from patients with MI that closely correlated with adverse prognostic indicators of MI. Macrophage-specific NPM1 deletion reduced infarct size, promoted angiogenesis, and suppressed tissue fibrosis, in turn improving cardiac function and protecting against adverse cardiac remodeling after MI. Furthermore, NPM1 deficiency boosted the reparative function of cardiac macrophages by shifting macrophage metabolism from the inflammatory glycolytic system to oxygen-driven mitochondrial energy production. The oligomeric NPM1 recruited histone demethylase KDM5b to the promoter of Tsc1 (TSC complex subunit 1), the mTOR (mechanistic target of rapamycin kinase) complex inhibitor, reduced histone H3K4me3 modification, and inhibited TSC1 expression, which then facilitated mTOR-related inflammatory glycolysis and antagonized the reparative function of cardiac macrophages. The in vivo administration of antisense oligonucleotide targeting NPM1 or oligomerization inhibitor NSC348884 substantially ameliorated tissue injury and enhanced cardiac recovery in mice after MI. CONCLUSIONS: Our findings uncover the key role of epigenetic factor NPM1 in impeding postinfarction cardiac repair by remodeling metabolism pattern and impairing the reparative function of cardiac macrophages. NPM1 may serve as a promising prognostic biomarker and a valuable therapeutic target for heart failure after MI.
Assuntos
Epigênese Genética , Macrófagos , Infarto do Miocárdio , Proteínas Nucleares , Nucleofosmina , Animais , Macrófagos/metabolismo , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Camundongos Knockout , Masculino , Reprogramação Celular , Feminino , Glicólise , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
NPM 1-mutated acute myeloid leukemia (AML) shows unique features. However, the characteristics of "therapy-related" NPM1-mutated AML (t-NPM1 AML) are poorly understood. We compared the genetics, transcriptional profile, and clinical outcomes of t-NPM1 AML, de novo NPM1-mutated AML (dn-NPM1 AML), and therapy-related AML (t-AML) with wild-type NPM1 (t-AML). Normal karyotype was more frequent in t-NPM1 AML (n = 78/96, 88%) and dn-NPM1 (n = 1986/2394, 88%) than in t-AML (n = 103/390, 28%; P < .001). DNMT3A and TET2 were mutated in 43% and 40% of t-NPM1 AML (n = 107), similar to dn-NPM1 (n = 88, 48% and 30%; P > 0.1), but more frequently than t-AML (n = 162; 14% and 10%; P < 0.001). Often mutated in t-AML, TP53 and PPM1D were wild-type in 97% and 96% of t-NPM1 AML, respectively. t-NPM1 and dn-NPM1 AML were transcriptionally similar, (including HOX genes upregulation). At 62 months of median follow-up, the 3-year overall survival (OS) for t-NPM1 AML (n = 96), dn-NPM1 AML (n = 2394), and t-AML (n = 390) were 54%, 60%, and 31%, respectively. In multivariable analysis, OS was similar for the NPM1-mutated groups (hazard ratio [HR] 0.9; 95% confidence interval [CI], 0.65-1.25; P = .45), but better in t-NPM1 AML than in t-AML (HR, 1.86; 95% CI, 1.30-2.68; P < .001). Relapse-free survival was similar between t-NPM1 and dn-NPM1 AML (HR, 1.02; 95% CI, 0.72-1.467; P = .90), but significantly higher in t-NPM1 AML versus t-AML (HR, 1.77; 95% CI, 1.19-2.64; P = .0045). t-NPM1 and dn-NPM1 AML have overlapping features, suggesting that they should be classified as a single disease entity.
Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Nucleofosmina , Mutação , Prognóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapiaRESUMO
BACKGROUND INFORMATION: Coiled-coil domain-containing protein-124 (Ccdc124) is a conserved eukaryotic ribosome-associated RNA-binding protein which is involved in resuming ribosome activity after stress-related translational shutdown. Ccdc124 protein is also detected at cellular localizations devoid of ribosomes, such as the centrosome, or the cytokinetic midbody, but its translation-independent cellular function is currently unknown. RESULTS: By using an unbiased LC-MS/MS-based proteomics approach in human embryonic kidney (HEK293) cells, we identified novel Ccdc124 partners and mapped the cellular organization of interacting proteins, a subset of which are known to be involved in nucleoli biogenesis and function. We then identified a novel interaction between the cancer-associated multifunctional nucleolar marker nucleophosmin (Npm1) and Ccdc124, and we characterized this interaction both in HEK293 (human embryonic kidney) and U2OS (osteosarcoma) cells. As expected, in both types of cells, Npm1 and Ccdc124 proteins colocalized within the nucleolus when assayed by immunocytochemical methods, or by monitoring the localization of green fluorescent protein-tagged Ccdc124. CONCLUSIONS: The nucleolar localization of Ccdc124 was impaired when Npm1 translocates from the nucleolus to the nucleoplasm in response to treatment with the DNA-intercalator and Topo2 inhibitor chemotherapeutic drug doxorubicin. Npm1 is critically involved in maintaining genomic stability by mediating various DNA-repair pathways, and over-expression of Npm1 or specific NPM1 mutations have been previously associated with proliferative diseases, such as acute myelogenous leukemia, anaplastic large-cell lymphoma, and solid cancers originating from different tissues. SIGNIFICANCE: Identification of Ccdc124 as a novel interaction partner of Nmp1 within the frame of molecular mechanisms involving nucleolar stress-sensing and DNA-damage response is expected to provide novel insights into the biology of cancers associated with aberrations in NPM1.
Assuntos
Neoplasias , Nucleofosmina , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Cromatografia Líquida , Células HEK293 , Proteômica , Espectrometria de Massas em Tandem , Ribossomos/metabolismo , Neoplasias/metabolismo , DNA/metabolismoRESUMO
Transcription activation of latent human immunodeficiency virus-1 (HIV-1) occurs due to HIV-1 rebound, the interruption of combination antiretroviral therapy, or development of drug resistance. Thus, novel HIV-1 inhibitors, targeting HIV-1 transcription are needed. We previously developed an HIV-1 transcription inhibitor, 1E7-03, that binds to the noncatalytic RVxF-accommodating site of protein phosphatase 1 and inhibits HIV-1 replication in cultured cells and HIV-1-infected humanized mice by impeding protein phosphatase 1 interaction with HIV-1 Tat protein. However, host proteins and regulatory pathways targeted by 1E7-03 that contribute to its overall HIV-1 inhibitory activity remain to be identified. To address this issue, we performed label-free quantitative proteome and phosphoproteome analyses of noninfected and HIV-1-infected CEM T cells that were untreated or treated with 1E7-03. 1E7-03 significantly reprogramed the phosphorylation profile of proteins including PPARα/RXRα, TGF-ß, and PKR pathways. Phosphorylation of nucleophosmin (NPM1) at Ser-125 residue in PPARα/RXRα pathway was significantly reduced (>20-fold, p = 1.37 × 10-9), followed by the reduced phosphorylation of transforming growth factor-beta 2 at Ser-46 (TGF-ß2, >12-fold, p = 1.37 × 10-3). Downregulation of NPM1's Ser-125 phosphorylation was further confirmed using Western blot. Phosphorylation mimicking NPM1 S125D mutant activated Tat-induced HIV-1 transcription and exhibited enhanced NPM1-Tat interaction compared to NPM1 S125A mutant. Inhibition of Aurora A or Aurora B kinases that phosphorylate NPM1 on Ser-125 residue inhibited HIV-1, further supporting the role of NPM1 in HIV-1 infection. Taken together, 1E7-03 reprogrammed PPARα/RXRα and TGF-ß pathways that contribute to the inhibition of HIV-1 transcription. Our findings suggest that NPM1 phosphorylation is a plausible target for HIV-1 transcription inhibition.
Assuntos
HIV-1 , Nucleofosmina , Animais , Humanos , Camundongos , Fosforilação , Proteína Fosfatase 1/metabolismo , HIV-1/genética , PPAR alfa/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transcrição GênicaRESUMO
Nuclear-retained long non-coding RNAs (lncRNAs) including MALAT1 have emerged as critical regulators of many molecular processes including transcription, alternative splicing and chromatin organization. Here, we report the presence of three conserved and thermodynamically stable RNA G-quadruplexes (rG4s) located in the 3' region of MALAT1. Using rG4 domain-specific RNA pull-down followed by mass spectrometry and RNA immunoprecipitation, we demonstrated that the MALAT1 rG4 structures are specifically bound by two nucleolar proteins, Nucleolin (NCL) and Nucleophosmin (NPM). Using imaging, we found that the MALAT1 rG4s facilitate the localization of both NCL and NPM to nuclear speckles, and specific G-to-A mutations that disrupt the rG4 structures compromised the localization of both NCL and NPM in speckles. In vitro biophysical studies established that a truncated version of NCL (ΔNCL) binds tightly to all three rG4s. Overall, our study revealed new rG4s within MALAT1, established that they are specifically recognized by NCL and NPM, and showed that disrupting the rG4s abolished localization of these proteins to nuclear speckles.