Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 79: 78-85, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451533

RESUMO

Valerolactam (VL) is an important precursor chemical for nylon-5 and nylon 6,5. It has been produced by petroleum-based route involving harsh reaction conditions and generating toxic wastes. Here, we report the complete biosynthesis of VL by metabolically engineered Corynebacterium glutamicum overproducing L-lysine. The pathway comprising L-lysine monooxygenase (davB) and 5-aminovaleramide amidohydrolase (davA) from Pseudomonas putida, and ß-alanine CoA transferase (act) from Clostridium propionicum was introduced into the C. glutamicum GA16 strain. To increase the VL flux, competitive pathways predicted from sRNA knockdown target screening were deleted. This engineered C. glutamicum strain produced VL as a major product, but still secreted significant amount of its precursor, 5-aminovaleric acid (5AVA). To circumvent this problem, putative 5AVA transporter genes were screened and engineered in the genome, thereby reuptaking 5AVA excreted. Also, multiple copies of the act gene were integrated into the genome to strengthen the conversion of 5AVA to VL. The final VL10 (pVL1) strain was constructed by enhancing glucose uptake system, which produced 9.68 g/L of VL in flask culture. Fed-batch fermentation of the VL10 (pVL1) strain produced 76.1 g/L of VL from glucose with the yield and productivity of 0.28 g/g and 0.99 g/L/h, respectively, showcasing a high potential for bio-based production of VL from renewable resources.


Assuntos
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Nylons/metabolismo , Engenharia Metabólica , Lactamas/metabolismo , Fermentação
2.
J Neuroinflammation ; 19(1): 238, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183126

RESUMO

BACKGROUND: Pathophysiological consequences of traumatic brain injury (TBI) mediated secondary injury remain incompletely understood. In particular, the impact of TBI on the differentiation and maintenance of dendritic cells (DCs), which are regarded as the most professional antigen presenting cells of the immune system, remains completely unknown. Here, we report that DC-differentiation, maintenance and functions are altered on day 3 and day 7 after TBI. METHODS: Long bones, spleen, peripheral lymph nodes (pLNs), mesenteric lymph nodes (mLNs), liver, lungs, skin and blood were collected from mice with either moderate-level cortical impact (CCI) or sham on day 1, day 3 or day 7 after TBI. Bone marrow cells were isolated from the tibias and femurs of hind limb through flushing. Tissues were digested with Collagenase-D and DNase I. Skin biopsies were digested in the presence of liberase + DNase I. Single cell suspensions were made, red blood cells were lysed with Ammonium chloride (Stem Cell Technology) and subsequently filtered using a 70 µM nylon mesh. DC subsets of the tissues and DC progenitors of the BM were identified through 10-color flow cytometry-based immunophenotyping studies. Intracellular reactive oxygen species (ROS) were identified through H2DCFDA staining. RESULTS: Our studies identify that; (1) frequencies and absolute numbers of DCs in the spleen and BM are altered on day 3 and day 7 after TBI; (2) surface expression of key molecules involved in antigen presentation of DCs were affected on day 3 and day 7 after TBI; (3) distribution and functions of tissue-specific DC subsets of both circulatory and lymphatic systems were imbalanced following TBI; (4) early differentiation program of DCs, especially the commitment of hematopoietic stem cells to common DC progenitors (CDPs), were deregulated after TBI; and (5) intracellular ROS levels were reduced in DC progenitors and differentiated DCs on day 3 and day 7 after TBI. CONCLUSIONS: Our data demonstrate, for the first time, that TBI affects the distribution pattern of DCs and induces an imbalance among DC subsets in both lymphoid and non-lymphoid organs. In addition, the current study demonstrates that TBI results in reduced levels of ROS in DCs on day 3 and day 7 after TBI, which may explain altered DC differentiation paradigm following TBI. A deeper understanding on the molecular mechanisms that contribute to DC defects following TBI would be essential and beneficial in treating infections in patients with acute central nervous system (CNS) injuries, such as TBI, stroke and spinal cord injury.


Assuntos
Lesões Encefálicas Traumáticas , Células Dendríticas , Cloreto de Amônio/metabolismo , Animais , Lesões Encefálicas Traumáticas/metabolismo , Diferenciação Celular , Desoxirribonuclease I/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Nylons/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Arch Microbiol ; 204(10): 626, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36114887

RESUMO

Microplastic is a minute particle of chemical pollutant in marine environment and classified as less than 5 mm size. The microplastics could not degrade for long years and they are ingested, incorporated, and accumulated in tissues of living organisms, particularly can cause various ecotoxicological effects for their behavioural change, cytotoxicity, neuro-toxicity effects, liver stress, etc. This preliminary study was investigated the abundance and accumulation of microplastic in marine fish of Indian mackerel (Rastrelliger kanagurta) gut region. Further, we identified the microplastic through stereomicroscope in Indian mackerel fish size up to 0.02 mm. In FT-IR analysis were identified the chemical group which were represents as nylon. In GC-MS analysis were identified that hexa decanoic acid and methyl ester plastic compounds as well as identify and screened the microplastic degrading bacteria from fish gut through partial 16S rRNA gene sequencing analysis it was shows that the isolate reveals a Pseudomonas sp. As a result, it is possible that gut bacteria have a probiotic role in fish gut to may degrade microplastics.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Bactérias , Monitoramento Ambiental , Ésteres/metabolismo , Peixes/metabolismo , Microplásticos , Nylons/metabolismo , Plásticos , Pseudomonas/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
4.
Bioorg Chem ; 106: 104355, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223200

RESUMO

In this study, we prepared a novel amino cellulose derivative (benzyl cellulose-g-poly [2-(N,N-Dimethylamino)ethyl methacrylate]) via a homogeneous ATRP method. The successful synthesis of the novel amino cellulose was confirmed by FT-IR and 1H NMR. This study addressed the different characteristics of the prepared polymer including the thermal stability, solubility, and X-ray diffraction pattern. The antibacterial activity of the synthesized cellulose derivative was investigated using the diffusion disk method against both gram-negative (Escherichia coli, Salmonella enterica) and gram-positive (Staphylococcus aureus, Bacillus subtilis) bacteria. Based on the inhibition zone, it was confirmed that the prepared benzyl cellulose-g-PDMAEMA possesses acceptable antibacterial activity against Escherichia coli, Salmonella enterica, and Staphylococcus aureus while Bacillus subtilis is resistant to the prepared polymer. Also according to the inhibition zone, it was shown that benzyl cellulose-g-PDMAEMA has more impact on E. coli and Salmonella enterica than Staphylococcus aureus. Molecular dynamics simulation was also used to study the interaction of the synthesized cellulose derivative with a model membrane which presented atomistic details of the polymer-lipid interactions. According to the results obtained from the molecular dynamics simulation, the polymer was able to destabilize the structure of the membrane and clearly express its signs of degradation.


Assuntos
Antibacterianos/farmacologia , Celulose/análogos & derivados , Celulose/farmacologia , Metacrilatos/farmacologia , Nylons/farmacologia , Antibacterianos/síntese química , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Celulose/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Metacrilatos/síntese química , Metacrilatos/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Nylons/síntese química , Nylons/metabolismo , Solubilidade
5.
Nucleic Acids Res ; 47(8): 3828-3835, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30838415

RESUMO

The crucial role of androgen receptor (AR) in prostate cancer development is well documented, and its inhibition is a mainstay of prostate cancer treatment. Here, we analyze the perturbations to the AR cistrome caused by a minor groove binding molecule that is designed to target a sequence found in a subset of androgen response elements (ARE). We find treatment with this pyrrole-imidazole (Py-Im) polyamide exhibits sequence selectivity in its repression of AR binding in vivo. Differentially changed loci are enriched for sequences resembling ARE half-sites that match the Py-Im polyamide binding preferences determined in vitro. Comparatively, permutations of the ARE half-site bearing single or double mismatches to the Py-Im polyamide binding sequence are not enriched. This study confirms that the in vivo perturbation pattern caused by a sequence specific polyamide correlates with its in vitro binding preference genome-wide in an unbiased manner.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Imidazóis/farmacologia , Nylons/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Pirróis/farmacologia , Receptores Androgênicos/genética , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Di-Hidrotestosterona/farmacologia , Expressão Gênica , Humanos , Imidazóis/química , Imidazóis/metabolismo , Masculino , Camundongos , Camundongos SCID , Nylons/química , Nylons/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Pirróis/química , Pirróis/metabolismo , Receptores Androgênicos/metabolismo , Elementos de Resposta , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Angew Chem Int Ed Engl ; 60(7): 3481-3486, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33140477

RESUMO

We report a highly atom-efficient integrated cofactor/co-product recycling cascade employing cycloalkylamines as multifaceted starting materials for the synthesis of nylon building blocks. Reactions using E. coli whole cells as well as purified enzymes produced excellent conversions ranging from >80 and 95 % into desired ω-amino acids, respectively with varying substrate concentrations. The applicability of this tandem biocatalytic cascade was demonstrated to produce the corresponding lactams by employing engineered biocatalysts. For instance, ϵ-caprolactam, a valuable polymer building block was synthesized with 75 % conversion from 10 mM cyclohexylamine by employing whole-cell biocatalysts. This cascade could be an alternative for bio-based production of ω-amino acids and corresponding lactam compounds.


Assuntos
Aminas/metabolismo , Nylons/metabolismo , Aminas/química , Engenharia Metabólica , Nylons/química
7.
Nucleic Acids Res ; 46(1): 42-53, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29194552

RESUMO

This manuscript reports the molecular basis for double-stranded DNA (dsDNA) binding of hairpin polyamides incorporating a 5-alkyl thiazole (Nt) unit. Hairpin polyamides containing an N-terminal Nt unit induce higher melting stabilisation of target dsDNA sequences relative to an archetypical hairpin polyamide incorporating an N-terminal imidazole (Im) unit. However, modification of the N-terminus from Im to Nt-building blocks results in an increase in dsDNA binding affinity but lower G-selectivity. A general G-selectivity trend is observed for Nt-containing polyamide analogues. G-selectivity increases as the steric bulk in the Nt 5-position increases. Solution-based NMR structural studies reveal differences in the modulation of the target DNA duplex of Nt-containing hairpin polyamides relative to the Im-containing archetype. A structural hallmark of an Nt polyamide•dsDNA complex is a more significant degree of major groove compression of the target dsDNA sequence relative to the Im-containing hairpin polyamide.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Nylons/química , Tiazóis/química , Sequência de Bases , Ligação Competitiva , DNA/genética , DNA/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Estrutura Molecular , Desnaturação de Ácido Nucleico , Nylons/metabolismo , Tiazóis/metabolismo
8.
J Am Chem Soc ; 141(24): 9555-9563, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31117639

RESUMO

The structural basis of minor groove recognition of a DNA duplex containing synthetic genetic information by hairpin pyrrole-imidazole polyamides is described. Hairpin polyamides induce a higher melting stabilization of a DNA duplex containing the unnatural P·Z base-pair when an imidazole unit is aligned with a P nucleotide. An NMR structural study showed that the incorporation of two isolated P·Z pairs enlarges the minor groove and slightly narrows the major groove at the site of this synthetic genetic information, relative to a DNA duplex consisting entirely of Watson-Crick base-pairs. Pyrrole-imidazole polyamides bind to a P·Z-containing DNA duplex to form a stable complex, effectively mimicking a G·C pair. A structural hallmark of minor groove recognition of a P·Z pair by a polyamide is the reduced level of allosteric distortion induced by binding of a polyamide to a DNA duplex. Understanding the molecular determinants that influence minor groove recognition of DNA containing synthetic genetic components provides the basis to further develop unnatural base-pairs for synthetic biology applications.


Assuntos
DNA/metabolismo , Imidazóis/metabolismo , Nylons/metabolismo , Pirróis/metabolismo , Pareamento de Bases , Sítios de Ligação , DNA/química , DNA/genética , Ligação de Hidrogênio , Imidazóis/química , Ressonância Magnética Nuclear Biomolecular , Nylons/química , Pirróis/química
9.
Eur J Nucl Med Mol Imaging ; 46(9): 1940-1951, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161257

RESUMO

INTRODUCTION: We have recently shown that intracerebral delivery of an anti-VEGF monoclonal antibody bevacizumab using an intra-arterial (IA) infusion is more effective than intravenous administration. While antibodies are quickly emerging as therapeutics, their disadvantages such as large size, production logistics and immunogenicity motivate search for alternatives. Thus we have studied brain uptake of nanobodies and polyamidoamine (PAMAM) dendrimers. METHODS: Nanobodies were conjugated with deferoxamine (DFO) to generate NB(DFO)2. Generation-4 PAMAM dendrimers were conjugated with DFO, and subsequently primary amines were capped with butane-1,2-diol functionalities to generate G4(DFO)3(Bdiol)110. Resulting conjugates were radiolabeled with zirconium-89. Brain uptake of 89ZrNB(DFO)2 and 89ZrG4(DFO)3(Bdiol)110 upon carotid artery vs tail vein infusions with intact BBB or osmotic blood-brain barrier opening (OBBBO) with mannitol in mice was monitored by dynamic positron emission tomography (PET) over 30 min to assess brain uptake and clearance, followed by whole-body PET-CT (computed tomography) imaging at 1 h and 24 h post-infusion (pi). Imaging results were subsequently validated by ex-vivo biodistribution. RESULTS: Intravenous administration of 89ZrNB(DFO)2 and 89ZrG4(DFO)3(Bdiol)110 resulted in their negligible brain accumulation regardless of BBB status and timing of OBBBO. Intra-arterial (IA) administration of 89ZrNB(DFO)2 dramatically increased its brain uptake, which was further potentiated with prior OBBBO. Half of the initial brain uptake was retained after 24 h. In contrast, IA infusion of 89ZrG4(DFO)3(Bdiol)110 resulted in poor initial accumulation in the brain, with complete clearance within 1 h of administration. Ex-vivo biodistribution results reflected those on PET-CT. CONCLUSIONS: IA delivery of nanobodies might be an attractive therapeutic platform for CNS disorders where prolonged intracranial retention is necessary.


Assuntos
Artérias , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dendrímeros/metabolismo , Nylons/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Anticorpos de Domínio Único/metabolismo , Animais , Dendrímeros/química , Processamento de Imagem Assistida por Computador , Camundongos , Nylons/química , Transporte Proteico , Radioisótopos , Distribuição Tecidual , Zircônio
10.
Langmuir ; 35(9): 3479-3489, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30742441

RESUMO

Catalysis by enzymes on surfaces has many applications. However, strategies for efficient enzyme immobilization with preserved activity are still in need of further development. In this work, we investigate polyelectrolyte brushes prepared by both grafting-to and grafting-from with the aim to achieve high catalytic activity. For comparison, self-assembled monolayers that bind enzymes with the same chemical interactions are included. We use the model enzyme glucose oxidase and two kinds of polymers: anionic poly(acrylic acid) and cationic poly(diethylamino)methyl methacrylate. Surface plasmon resonance and spectroscopic ellipsometry are used for accurate quantification of surface coverage. Besides binding more enzymes, the "3D-like" brush environment enhances the specific activity compared to immobilization on self-assembled monolayers. For grafting-from brushes, multilayers of enzymes were spontaneously and irreversibly immobilized without conjugation chemistry. When the pH was between the pI of the enzyme and the p Ka of the polymer, binding was considerable (thousands of ng/cm2 or up to 50% of the polymer mass), even at physiological ionic strength. However, binding was observed also when the brushes were neutrally charged. For acidic brushes (both grafting-to and grafting-from), the activity was higher for covalent immobilization compared to noncovalent. For grafting-from brushes, a fully preserved specific activity compared to enzymes in the liquid bulk was achieved, both with covalent (acidic brush) and noncovalent (basic brush) immobilization. Catalytic activity of hundreds of pmol cm-2 s-1 was easily obtained for polybasic brushes only tens of nanometers in dry thickness. This study provides new insights for designing functional interfaces based on enzymatic catalysis.


Assuntos
Enzimas Imobilizadas/metabolismo , Glucose Oxidase/metabolismo , Polieletrólitos/metabolismo , Resinas Acrílicas/química , Resinas Acrílicas/metabolismo , Adsorção , Enzimas Imobilizadas/química , Glucose Oxidase/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Metacrilatos/metabolismo , Nylons/química , Nylons/metabolismo , Polieletrólitos/química , Ligação Proteica , Ressonância de Plasmônio de Superfície
11.
Bioorg Med Chem ; 27(11): 2167-2171, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31000407

RESUMO

Hairpin pyrrole-imidazole (Py-Im) polyamides are promising medium-sized molecules that bind sequence-specifically to the minor groove of B-form DNA. Here, we synthesized a series of hairpin Py-Im polyamides and explored their binding affinities and orientation preferences to methylated DNA with the mCGG target sequence. Thermal denaturation assays revealed that the five hairpin Py-Im polyamides, which were anticipated to recognize mCGG in a forward orientation, bind to nontarget DNA, GGmC, in a reverse orientation. Therefore, we designed five Py-Im polyamides that could recognize mCGG in a reverse orientation. We found that the two Py-Im polyamides containing Im/ß pairs preferentially bound to mCGG in a reverse orientation. The reverse binding Py-Im polyamide successfully inhibited TET1 binding on the methylated DNA. Taken together, this study illustrated the importance of designing reverse binding Py-Im polyamides for the target sequence, mCGG, which paved the way for Py-Im polyamides that can be used with otherwise difficult to access DNA with CG sequences.


Assuntos
DNA de Forma B/metabolismo , Imidazóis/metabolismo , Nylons/metabolismo , Pirróis/metabolismo , Metilação de DNA , DNA de Forma B/química , Imidazóis/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Nylons/química , Transição de Fase , Pirróis/química , Ressonância de Plasmônio de Superfície , Temperatura de Transição
12.
Proc Natl Acad Sci U S A ; 113(47): E7418-E7427, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27830652

RESUMO

Targeting the genome with sequence-specific DNA-binding molecules is a major goal at the interface of chemistry, biology, and precision medicine. Polyamides, composed of N-methylpyrrole and N-methylimidazole monomers, are a class of synthetic molecules that can be rationally designed to "read" specific DNA sequences. However, the impact of different chromatin states on polyamide binding in live cells remains an unresolved question that impedes their deployment in vivo. Here, we use cross-linking of small molecules to isolate chromatin coupled to sequencing to map the binding of two bioactive and structurally distinct polyamides to genomes directly within live H1 human embryonic stem cells. This genome-wide view from live cells reveals that polyamide-based synthetic genome readers bind cognate sites that span a range of binding affinities. Polyamides can access cognate sites within repressive heterochromatin. The occupancy patterns suggest that polyamides could be harnessed to target loci within regions of the genome that are inaccessible to other DNA-targeting molecules.


Assuntos
Cromatina/genética , DNA/química , Nylons/metabolismo , Análise de Sequência de DNA/métodos , Sítios de Ligação , Linhagem Celular , Cromatina/química , Reagentes de Ligações Cruzadas , DNA/metabolismo , Genoma Humano , Células-Tronco Embrionárias Humanas/citologia , Humanos , Bibliotecas de Moléculas Pequenas/química
13.
Proc Natl Acad Sci U S A ; 113(44): 12426-12431, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791148

RESUMO

RNA polymerase II (pol II) encounters numerous barriers during transcription elongation, including DNA strand breaks, DNA lesions, and nucleosomes. Pyrrole-imidazole (Py-Im) polyamides bind to the minor groove of DNA with programmable sequence specificity and high affinity. Previous studies suggest that Py-Im polyamides can prevent transcription factor binding, as well as interfere with pol II transcription elongation. However, the mechanism of pol II inhibition by Py-Im polyamides is unclear. Here we investigate the mechanism of how these minor-groove binders affect pol II transcription elongation. In the presence of site-specifically bound Py-Im polyamides, we find that the pol II elongation complex becomes arrested immediately upstream of the targeted DNA sequence, and is not rescued by transcription factor IIS, which is in contrast to pol II blockage by a nucleosome barrier. Further analysis reveals that two conserved pol II residues in the Switch 1 region contribute to pol II stalling. Our study suggests this motif in pol II can sense the structural changes of the DNA minor groove and can be considered a "minor groove sensor." Prolonged interference of transcription elongation by sequence-specific minor groove binders may present opportunities to target transcription addiction for cancer therapy.


Assuntos
DNA/metabolismo , Nylons/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , DNA/química , DNA/genética , Imidazóis/química , Imidazóis/metabolismo , Imidazóis/farmacologia , Modelos Moleculares , Conformação de Ácido Nucleico , Nylons/química , Nylons/farmacologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Pirróis/química , Pirróis/metabolismo , Pirróis/farmacologia , RNA Polimerase II/química , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Transcrição Gênica/efeitos dos fármacos
14.
Chembiochem ; 19(18): 1979-1987, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-29974647

RESUMO

DNA minor groove binding polyamides have been extensively developed to control abnormal gene expression. The establishment of novel, inherently fluorescent 2-(p-anisyl)benzimidazole (Hx) amides has provided an alternative path for studying DNA binding in cells by direct observation of cell localization. Because of the 2:1 antiparallel stacking homodimer binding mode of these molecules to DNA, modification of Hx amides to 2-(p-anisyl)-4-azabenzimidazole (AzaHx) amides has successfully extended the DNA-recognition repertoire from central CG [recognized by Hx-I (I=N-methylimidazole)] to central GC [recognized by AzaHx-P (P=N-methylpyrrole)] recognition. For potential targeting of two consecutive GG bases, modification of the AzaHx moiety to 2- and 3-pyridyl-aza-benzimidazole (Pyr-AzaHx) moieties was explored. The newly designed molecules are also small-sized, fluorescent amides with the Pyr-AzaHx moiety connected to two conventional five-membered heterocycles. Complementary biophysical methods were performed to investigate the DNA-binding properties of these molecules. The results showed that neither 3-Pyr-AzaHx nor 2-Pyr-AzaHx was able to mimic I-I=N-methylimidazole-N-methylimidazole to target GG dinucleotides specifically. Rather, 3-Pyr-AzaHx was found to function like AzaHx, f-I (f=formamide), or P-I as an antiparallel stacked dimer. 3-Pyr-AzaHx-PI (2) binds 5'-ACGCGT'-3' with improved binding affinity and high sequence specificity in comparison to its parent molecule AzaHx-PI (1). However, 2-Pyr-AzaHx is detrimental to DNA binding because of an unfavorable steric clash upon stacking in the minor groove.


Assuntos
Benzimidazóis/química , DNA/química , Corantes Fluorescentes/química , Nylons/química , Pirróis/química , Sequência de Bases , Benzimidazóis/metabolismo , Sítios de Ligação , Dicroísmo Circular , DNA/metabolismo , Corantes Fluorescentes/metabolismo , Conformação de Ácido Nucleico , Nylons/metabolismo , Pirróis/metabolismo , Ressonância de Plasmônio de Superfície
15.
Bioorg Med Chem ; 26(9): 2337-2344, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29622411

RESUMO

To examine the hydrophobic structure of PI polyamides on tumor accumulation in vivo, PI polyamide-fluorescein conjugates 1-5 with the distinct number of N-methylimidazole (Im) units were synthesized. There existed an inverse relationship between the Im unit number of the compounds and their hydrophobicity. Compound 1 with one Im unit and 3 with three Im units accumulated and retained preferentially in tumor tissues compared to 5 with five Im units. These results suggest the importance of a PI polyamide's primary structure, which partly contributes to its hydrophobic property, on its accumulation and/or retention in tumor tissues in vivo.


Assuntos
Imidazóis/metabolismo , Neoplasias/metabolismo , Nylons/metabolismo , Pirróis/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Fluoresceínas/síntese química , Fluoresceínas/química , Fluoresceínas/metabolismo , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/síntese química , Imidazóis/química , Camundongos Endogâmicos BALB C , Estrutura Molecular , Nylons/síntese química , Nylons/química , Pirróis/síntese química , Pirróis/química , Distribuição Tecidual
16.
Appl Microbiol Biotechnol ; 102(2): 631-639, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29150705

RESUMO

Biomass plastics are expected to contribute to the establishment of a carbon-neutral society by replacing conventional plastics derived from petroleum. The biomass-derived aromatic amine 4-aminocinnamic acid (4ACA) produced by recombinant bacteria is applied to the synthesis of high-performance biopolymers such as polyamides and polyimides. Here, we developed a microbial catalyst that hydrogenates the α,ß-unsaturated carboxylic acid of 4ACA to generate 4-aminohydrocinnamic acid (4AHCA). The ability of 10 microbial genes for enoate and xenobiotic reductases expressed in Escherichia coli to convert 4ACA to 4AHCA was assessed. A strain producing 2-enoate reductase from Clostridium acetobutylicum (ca2ENR) reduced 4ACA to 4AHCA with a yield of > 95% mol mol-1 and reaction rates of 3.4 ± 0.4 and 4.4 ± 0.6 mM h-1 OD600-1 at the optimum pH of 7.0 under aerobic and anaerobic conditions, respectively. This recombinant strain reduced caffeic, cinnamic, coumaric, and 4-nitrocinnamic acids to their corresponding propanoic acid derivatives. We polycondensed 4AHCA generated from biomass-derived 4ACA by dehydration under a catalyst to form high-molecular-weight poly(4AHCA) with a molecular weight of M n = 1.94 MDa. This polyamide had high thermal properties as indicated by a 10% reduction in weight at a temperature of T d10 = 394 °C and a glass transition temperature of T g = 240 °C. Poly(4AHCA) derived from biomass is stable at high temperatures and could be applicable to the production of high-performance engineering plastics.


Assuntos
Plásticos Biodegradáveis , Biomassa , Biopolímeros/biossíntese , Biocatálise , Ácidos Carboxílicos/metabolismo , Cinamatos/metabolismo , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrogênio , Hidrogenação , Nylons/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Temperatura
17.
Appl Microbiol Biotechnol ; 102(2): 801-814, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29188330

RESUMO

Arthrobacter sp. strain KI72 grows on a 6-aminohexanoate oligomer, which is a by-product of nylon-6 manufacturing, as a sole source of carbon and nitrogen. We cloned the two genes, nylD 1 and nylE 1 , responsible for 6-aminohexanoate metabolism on the basis of the draft genomic DNA sequence of strain KI72. We amplified the DNA fragments that encode these genes by polymerase chain reaction using a synthetic primer DNA homologous to the 4-aminobutyrate metabolic enzymes. We inserted the amplified DNA fragments into the expression vector pColdI in Escherichia coli, purified the His-tagged enzymes to homogeneity, and performed biochemical studies. We confirmed that 6-aminohexanoate aminotransferase (NylD1) catalyzes the reaction of 6-aminohexanoate to adipate semialdehyde using α-ketoglutarate, pyruvate, and glyoxylate as amino acceptors, generating glutamate, alanine, and glycine, respectively. The reaction requires pyridoxal phosphate (PLP) as a cofactor. For further metabolism, adipate semialdehyde dehydrogenase (NylE1) catalyzes the oxidative reaction of adipate semialdehyde to adipate using NADP+ as a cofactor. Phylogenic analysis revealed that NylD1 should be placed in a branch of the PLP-dependent aminotransferase sub III, while NylE1 should be in a branch of the aldehyde dehydrogenase superfamily. In addition, we established a NylD1/NylE1 coupled system to quantify the aminotransferase activity and to enable the conversion of 6-aminohexaoate to adipate via adipate semialdehyde with a yield of > 90%. In the present study, we demonstrate that 6-aminohexanoate produced from polymeric nylon-6 and nylon oligomers (i.e., a mixture of 6-aminohexaoate oligomers) by nylon hydrolase (NylC) and 6-aminohexanoate dimer hydrolase (NylB) reactions are sequentially converted to adipate by metabolic engineering technology.


Assuntos
Adipatos/metabolismo , Ácido Aminocaproico/metabolismo , Arthrobacter/enzimologia , Redes e Vias Metabólicas , Nylons/metabolismo , Alanina/metabolismo , Arthrobacter/genética , Proteínas de Bactérias/metabolismo , Escherichia coli , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Hidrolases/metabolismo , Engenharia Metabólica , Fosfato de Piridoxal/metabolismo , Especificidade por Substrato , Transaminases/metabolismo
18.
Biotechnol Bioeng ; 114(8): 1670-1678, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28409822

RESUMO

This paper describes the development of a biocatalytic process on the multi-dozen gram scale for the synthesis of a precursor to Nylon-9, a specialty polyamide. Such materials are growing in demand, but their corresponding monomers are often difficult to synthesize, giving rise to biocatalytic approaches. Here, we implemented cyclopentadecanone monooxygenase as an Escherichia coli whole-cell biocatalyst in a defined medium, together with a substrate feeding-product removal concept, and an optimized downstream processing (DSP). A previously described hazardous peracid-mediated oxidation was thus replaced with a safe and scalable protocol, using aerial oxygen as oxidant, and water as reaction solvent. The engineered process converted 42 g (0.28 mol) starting material ketone to the corresponding lactone with an isolated yield of 70% (33 g), after highly efficient DSP with 95% recovery of the converted material, translating to a volumetric yield of 8 g pure product per liter. Biotechnol. Bioeng. 2017;114: 1670-1678. © 2017 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos/microbiologia , Meios de Cultura/metabolismo , Escherichia coli/fisiologia , Melhoramento Genético/métodos , Oxigenases de Função Mista/metabolismo , Nylons/metabolismo , Catálise , Meios de Cultura/química , Oxigenases de Função Mista/genética , Nylons/isolamento & purificação , Oxirredução , Projetos Piloto , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Chembiochem ; 17(20): 1905-1910, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27477066

RESUMO

One of the major goals in DNA-based personalized medicine is the development of sequence-specific small molecules to target the genome. SAHA-PIPs belong to such class of small molecule. In the context of the complex eukaryotic genome, the differential biological effects of SAHA-PIPs are unclear. This question can be addressed by identifying the binding regions across the genome; however, it is a challenge to enrich small-molecule-bound DNA without chemical crosslinking. Here, we developed a method that employs high-throughput sequencing to map the binding area of small molecules throughout the chromatinized human genome. Analysis of the sequenced data confirmed the presence of specific binding sites for SAHA-PIPs from the enriched sequence reads. Mapping the binding sites and enriched regions on the human genome clarifies the reason for the distinct biological effects of SAHA-PIP. This approach will be useful for identifying the function of other small molecules on a large scale.


Assuntos
DNA/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Ácidos Hidroxâmicos/farmacologia , Imidazóis/farmacologia , Nylons/farmacologia , Pirróis/farmacologia , Sítios de Ligação/efeitos dos fármacos , DNA/química , DNA/genética , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Estrutura Molecular , Nylons/química , Nylons/metabolismo , Pirróis/química , Pirróis/metabolismo , Vorinostat
20.
Metab Eng ; 36: 1-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26969251

RESUMO

The expansion of microbial substrate and product scopes will be an important brick promoting future bioeconomy. In this study, an orthogonal pathway running in parallel to native metabolism and converting renewable dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to 12-aminododecanoic acid methyl ester (ADAME), a building block for the high-performance polymer Nylon 12, was engineered in Escherichia coli and optimized regarding substrate uptake, substrate requirements, host strain choice, flux, and product yield. Efficient DAME uptake was achieved by means of the hydrophobic outer membrane porin AlkL increasing maximum oxygenation and transamination activities 8.3 and 7.6-fold, respectively. An optimized coupling to the pyruvate node via a heterologous alanine dehydrogenase enabled efficient intracellular L-alanine supply, a prerequisite for self-sufficient whole-cell transaminase catalysis. Finally, the introduction of a respiratory chain-linked alcohol dehydrogenase enabled an increase in pathway flux, the minimization of undesired overoxidation to the respective carboxylic acid, and thus the efficient formation of ADAME as main product. The completely synthetic orthogonal pathway presented in this study sets the stage for Nylon 12 production from renewables. Its effective operation achieved via fine tuning the connectivity to native cell functionalities emphasizes the potential of this concept to expand microbial substrate and product scopes.


Assuntos
Conservação dos Recursos Naturais/métodos , Escherichia coli/fisiologia , Melhoramento Genético/métodos , Ácidos Láuricos/metabolismo , Engenharia Metabólica/métodos , Nylons/metabolismo , Alanina/genética , Alanina/metabolismo , Vias Biossintéticas/fisiologia , Redes e Vias Metabólicas/fisiologia , Nylons/isolamento & purificação , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA