Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.857
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 632(8023): 95-100, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38987602

RESUMO

Subtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing1,2. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM)3, previous work suggests minimal change in the depth of the glacial STG4. Here we show a sharp glacial water mass boundary between 33° N and 36° N extending down to between 2.0 and 2.5 km-approximately 1 km deeper than today. Our findings arise from benthic foraminiferal δ18O profiles from sediment cores in two depth transects at Cape Hatteras (36-39° N) and Blake Outer Ridge (29-34° N) in the Northwest Atlantic. This result suggests that the STG, including the Gulf Stream, was deeper and stronger during the LGM than at present, which we attribute to increased glacial wind stress curl, as supported by climate model simulations, as well as greater glacial production of denser subtropical mode waters (STMWs). Our data suggest (1) that subtropical waters probably contributed to the geochemical signature of what is conventionally identified as Glacial North Atlantic Intermediate Water (GNAIW)5-7 and (2) the STG helped sustain continued buoyancy loss, water mass conversion and northwards meridional heat transport (MHT) in the glacial North Atlantic.


Assuntos
Camada de Gelo , Água do Mar , Movimentos da Água , Oceano Atlântico , Modelos Climáticos , Foraminíferos/isolamento & purificação , Sedimentos Geológicos/parasitologia , Golfo do México , História Antiga , Temperatura Alta , Água do Mar/análise , Água do Mar/química , Vento
2.
Nature ; 629(8013): 886-892, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720071

RESUMO

Cobalamin (vitamin B12, herein referred to as B12) is an essential cofactor for most marine prokaryotes and eukaryotes1,2. Synthesized by a limited number of prokaryotes, its scarcity affects microbial interactions and community dynamics2-4. Here we show that two bacterial B12 auxotrophs can salvage different B12 building blocks and cooperate to synthesize B12. A Colwellia sp. synthesizes and releases the activated lower ligand α-ribazole, which is used by another B12 auxotroph, a Roseovarius sp., to produce the corrin ring and synthesize B12. Release of B12 by Roseovarius sp. happens only in co-culture with Colwellia sp. and only coincidently with the induction of a prophage encoded in Roseovarius sp. Subsequent growth of Colwellia sp. in these conditions may be due to the provision of B12 by lysed cells of Roseovarius sp. Further evidence is required to support a causative role for prophage induction in the release of B12. These complex microbial interactions of ligand cross-feeding and joint B12 biosynthesis seem to be widespread in marine pelagic ecosystems. In the western and northern tropical Atlantic Ocean, bacteria predicted to be capable of salvaging cobinamide and synthesizing only the activated lower ligand outnumber B12 producers. These findings add new players to our understanding of B12 supply to auxotrophic microorganisms in the ocean and possibly in other ecosystems.


Assuntos
Alteromonadaceae , Ligantes , Rhodobacteraceae , Vitamina B 12 , Oceano Atlântico , Técnicas de Cocultura , Interações Microbianas , Prófagos/genética , Prófagos/crescimento & desenvolvimento , Prófagos/metabolismo , Vitamina B 12/biossíntese , Vitamina B 12/química , Vitamina B 12/metabolismo , Alteromonadaceae/crescimento & desenvolvimento , Alteromonadaceae/metabolismo , Rhodobacteraceae/citologia , Rhodobacteraceae/metabolismo , Rhodobacteraceae/virologia , Ribonucleosídeos/metabolismo , Cobamidas/metabolismo , Ecossistema
3.
Nature ; 630(8018): 899-904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723661

RESUMO

Nitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3-5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking. Here we report the discovery of a non-cyanobacterial N2-fixing symbiont, 'Candidatus Tectiglobus diatomicola', which provides its diatom host with fixed nitrogen in return for photosynthetic carbon. The N2-fixing symbiont belongs to the order Rhizobiales and its association with a unicellular diatom expands the known hosts for this order beyond the well-known N2-fixing rhizobia-legume symbioses on land6. Our results show that the rhizobia-diatom symbioses can contribute as much fixed nitrogen as can cyanobacterial N2 fixers in the tropical North Atlantic, and that they might be responsible for N2 fixation in the vast regions of the ocean in which cyanobacteria are too rare to account for the measured rates.


Assuntos
Diatomáceas , Fixação de Nitrogênio , Nitrogênio , Oceanos e Mares , Rhizobium , Água do Mar , Simbiose , Carbono/metabolismo , Diatomáceas/metabolismo , Diatomáceas/fisiologia , Nitrogênio/metabolismo , Fotossíntese , Filogenia , Rhizobium/classificação , Rhizobium/metabolismo , Rhizobium/fisiologia , Água do Mar/microbiologia , Água do Mar/química , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Oceano Atlântico
4.
Nature ; 619(7969): 311-316, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438592

RESUMO

Coral reefs are losing the capacity to sustain their biological functions1. In addition to other well-known stressors, such as climatic change and overfishing1, plastic pollution is an emerging threat to coral reefs, spreading throughout reef food webs2, and increasing disease transmission and structural damage to reef organisms3. Although recognized as a global concern4, the distribution and quantity of plastics trapped in the world's coral reefs remains uncertain3. Here we survey 84 shallow and deep coral ecosystems at 25 locations across the Pacific, Atlantic and Indian ocean basins for anthropogenic macrodebris (pollution by human-generated objects larger than 5 centimetres, including plastics), performing 1,231 transects. Our results show anthropogenic debris in 77 out of the 84 reefs surveyed, including in some of Earth's most remote and near-pristine reefs, such as in uninhabited central Pacific atolls. Macroplastics represent 88% of the anthropogenic debris, and, like other debris types, peak in deeper reefs (mesophotic zones at 30-150 metres depth), with fishing activities as the main source of plastics in most areas. These findings contrast with the global pattern observed in other nearshore marine ecosystems, where macroplastic densities decrease with depth and are dominated by consumer items5. As the world moves towards a global treaty to tackle plastic pollution6, understanding its distribution and drivers provides key information to help to design the strategies needed to address this ubiquitous threat.


Assuntos
Recifes de Corais , Plásticos , Plásticos/efeitos adversos , Plásticos/análise , Cadeia Alimentar , Oceano Pacífico , Oceano Atlântico , Oceano Índico , Tamanho da Partícula , Atividades Humanas , Caça
5.
Nature ; 622(7983): 521-527, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704729

RESUMO

The tropical Atlantic climate is characterized by prominent and correlated multidecadal variability in Atlantic sea surface temperatures (SSTs), Sahel rainfall and hurricane activity1-4. Owing to uncertainties in both the models and the observations, the origin of the physical relationships among these systems has remained controversial3-7. Here we show that the cross-equatorial gradient in tropical Atlantic SSTs-largely driven by radiative perturbations associated with anthropogenic emissions and volcanic aerosols since 19503,7-is a key determinant of Atlantic hurricane formation and Sahel rainfall. The relationship is obscured in a large ensemble of CMIP6 Earth system models, because the models overestimate long-term trends for warming in the Northern Hemisphere relative to the Southern Hemisphere from around 1950 as well as associated changes in atmospheric circulation and rainfall. When the overestimated trends are removed, correlations between SSTs and Atlantic hurricane formation and Sahel rainfall emerge as a response to radiative forcing, especially since 1950 when anthropogenic aerosol forcing has been high. Our findings establish that the tropical Atlantic SST gradient is a stronger determinant of tropical impacts than SSTs across the entire North Atlantic, because the gradient is more physically connected to tropical impacts via local atmospheric circulations8. Our findings highlight that Atlantic hurricane activity and Sahel rainfall variations can be predicted from radiative forcing driven by anthropogenic emissions and volcanism, but firmer predictions are limited by the signal-to-noise paradox9-11 and uncertainty in future climate forcings.


Assuntos
Modelos Teóricos , Temperatura , Clima Tropical , Aerossóis , Movimentos do Ar , Oceano Atlântico , Tempestades Ciclônicas , História do Século XX , Atividades Humanas , Chuva , Incerteza , Erupções Vulcânicas
6.
Nature ; 615(7950): 87-93, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859582

RESUMO

Water resources sustainability in High Mountain Asia (HMA) surrounding the Tibetan Plateau (TP)-known as Asia's water tower-has triggered widespread concerns because HMA protects millions of people against water stress1,2. However, the mechanisms behind the heterogeneous trends observed in terrestrial water storage (TWS) over the TP remain poorly understood. Here we use a Lagrangian particle dispersion model and satellite observations to attribute about 1 Gt of monthly TWS decline in the southern TP during 2003-2016 to westerlies-carried deficit in precipitation minus evaporation (PME) from the southeast North Atlantic. We further show that HMA blocks the propagation of PME deficit into the central TP, causing a monthly TWS increase by about 0.5 Gt. Furthermore, warming-induced snow and glacial melt as well as drying-induced TWS depletion in HMA weaken the blocking of HMA's mountains, causing persistent northward expansion of the TP's TWS deficit since 2009. Future projections under two emissions scenarios verified by satellite observations during 2020-2021 indicate that, by the end of the twenty-first century, up to 84% (for scenario SSP245) and 97% (for scenario SSP585) of the TP could be afflicted by TWS deficits. Our findings indicate a trajectory towards unsustainable water systems in HMA that could exacerbate downstream water stress.


Assuntos
Altitude , Mudança Climática , Dessecação , Previsões , Abastecimento de Água , Humanos , Ásia , Mudança Climática/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Tibet , Congelamento , Neve , Imagens de Satélites , Chuva , Oceano Atlântico , Camada de Gelo , Conservação dos Recursos Hídricos
7.
Nature ; 620(7972): 104-109, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532817

RESUMO

Iron is important in regulating the ocean carbon cycle1. Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations2-6. However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets7-12. Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed13-15. Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.


Assuntos
Ferro , Minerais , Água do Mar , Ferro/análise , Ferro/química , Ferro/metabolismo , Ligantes , Minerais/análise , Minerais/química , Minerais/metabolismo , Ciclo do Carbono , Conjuntos de Dados como Assunto , Oceano Atlântico , Água do Mar/análise , Água do Mar/química , Bermudas , Fatores de Tempo , Estações do Ano , Soluções/química , Internacionalidade
8.
Nature ; 599(7883): 85-90, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732868

RESUMO

Baleen whales influence their ecosystems through immense prey consumption and nutrient recycling1-3. It is difficult to accurately gauge the magnitude of their current or historic ecosystem role without measuring feeding rates and prey consumed. To date, prey consumption of the largest species has been estimated using metabolic models3-9 based on extrapolations that lack empirical validation. Here, we used tags deployed on seven baleen whale (Mysticeti) species (n = 321 tag deployments) in conjunction with acoustic measurements of prey density to calculate prey consumption at daily to annual scales from the Atlantic, Pacific, and Southern Oceans. Our results suggest that previous studies3-9 have underestimated baleen whale prey consumption by threefold or more in some ecosystems. In the Southern Ocean alone, we calculate that pre-whaling populations of mysticetes annually consumed 430 million tonnes of Antarctic krill (Euphausia superba), twice the current estimated total biomass of E. superba10, and more than twice the global catch of marine fisheries today11. Larger whale populations may have supported higher productivity in large marine regions through enhanced nutrient recycling: our findings suggest mysticetes recycled 1.2 × 104 tonnes iron yr-1 in the Southern Ocean before whaling compared to 1.2 × 103 tonnes iron yr-1 recycled by whales today. The recovery of baleen whales and their nutrient recycling services2,3,7 could augment productivity and restore ecosystem function lost during 20th century whaling12,13.


Assuntos
Ingestão de Alimentos , Comportamento Predatório , Baleias/fisiologia , Animais , Regiões Antárticas , Oceano Atlântico , Biomassa , Euphausiacea , Cadeia Alimentar , Ferro/metabolismo , Oceano Pacífico , Baleias/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(21): e2315513121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739784

RESUMO

Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.


Assuntos
Plumas , Mercúrio , Animais , Mercúrio/análise , Oceano Atlântico , Plumas/química , Regiões Árticas , Groenlândia , Monitoramento Ambiental/métodos , Aves , Cadeia Alimentar , Poluentes Químicos da Água/análise , Ecossistema
10.
Proc Natl Acad Sci U S A ; 120(4): e2120869120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656855

RESUMO

Observed range shifts of numerous species support predictions of climate change models that species will shift their distribution northward into the Arctic and sub-Arctic seas due to ocean warming. However, how this is affecting overall species richness is unclear. Here we analyze 20,670 scientific research trawls from the North Sea to the Arctic Ocean collected from 1994 to 2020, including 193 fish species. We found that demersal fish species richness at the local scale has doubled in some Arctic regions, including the Barents Sea, and increased at a lower rate at adjacent regions in the last three decades, followed by an increase in species richness and turnover at a regional scale. These changes in biodiversity correlated with an increase in sea bottom temperature. Within the study area, Arctic species' probability of occurrence generally declined over time. However, the increase in species from southern latitudes, together with an increase in some Arctic species, ultimately led to an enrichment of the Arctic and sub-Arctic marine fauna due to increasing water temperature consistent with climate change.


Assuntos
Biodiversidade , Peixes , Animais , Regiões Árticas , Oceanos e Mares , Temperatura , Mudança Climática , Ecossistema , Oceano Atlântico
11.
Proc Natl Acad Sci U S A ; 120(47): e2306357120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38150462

RESUMO

Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.


Assuntos
Ecossistema , Cadeia Alimentar , Comportamento Predatório , Animais , Oceano Atlântico , Biomassa
12.
Nature ; 574(7778): 399-403, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31619794

RESUMO

Cloud condensation nuclei (CCN) can affect cloud properties and therefore Earth's radiative balance1-3. New particle formation (NPF) from condensable vapours in the free troposphere has been suggested to contribute to CCN, especially in remote, pristine atmospheric regions4, but direct evidence is sparse, and the magnitude of this contribution is uncertain5-7. Here we use in situ aircraft measurements of vertical profiles of aerosol size distributions to present a global-scale survey of NPF occurrence. We observe intense NPF at high altitudes in tropical convective regions over both Pacific and Atlantic oceans. Together with the results of chemical-transport models, our findings indicate that NPF persists at all longitudes as a global-scale band in the tropical upper troposphere, covering about 40 per cent of Earth's surface. Furthermore, we find that this NPF in the tropical upper troposphere is a globally important source of CCN in the lower troposphere, where CCN can affect cloud properties. Our findings suggest that the production of CCN as new particles descend towards the surface is not adequately captured in global models, which tend to underestimate both the magnitude of tropical upper tropospheric NPF and the subsequent growth of new particles to CCN sizes.


Assuntos
Atmosfera , Material Particulado , Aerossóis , Oceano Atlântico , Modelos Químicos , Oceano Pacífico , Clima Tropical
13.
Nature ; 571(7765): 393-397, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31316195

RESUMO

Existing estimates of sea surface temperatures (SSTs) indicate that, during the early twentieth century, the North Atlantic and northeast Pacific oceans warmed by twice the global average, whereas the northwest Pacific Ocean cooled by an amount equal to the global average1-4. Such a heterogeneous pattern suggests first-order contributions from regional variations in forcing or in ocean-atmosphere heat fluxes5,6. These older SST estimates are, however, derived from measurements of water temperatures in ship-board buckets, and must be corrected for substantial biases7-9. Here we show that correcting for offsets among groups of bucket measurements leads to SST variations that correlate better with nearby land temperatures and are more homogeneous in their pattern of warming. Offsets are identified by systematically comparing nearby SST observations among different groups10. Correcting for offsets in German measurements decreases warming rates in the North Atlantic, whereas correcting for Japanese measurement offsets leads to increased and more uniform warming in the North Pacific. Japanese measurement offsets in the 1930s primarily result from records having been truncated to whole degrees Celsius when the records were digitized in the 1960s. These findings underscore the fact that historical SST records reflect both physical and social dimensions in data collection, and suggest that further opportunities exist for improving the accuracy of historical SST records9,11.


Assuntos
Conjuntos de Dados como Assunto/normas , Aquecimento Global/estatística & dados numéricos , Água do Mar/análise , Temperatura , Ar/análise , Oceano Atlântico , Conjuntos de Dados como Assunto/história , Mapeamento Geográfico , Alemanha , Aquecimento Global/história , História do Século XX , Japão , Oceano Pacífico , Reprodutibilidade dos Testes
14.
Nature ; 569(7757): 551-555, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31061499

RESUMO

Marine phytoplankton have a crucial role in the modulation of marine-based food webs1, fishery yields2 and the global drawdown of atmospheric carbon dioxide3. However, owing to sparse measurements before satellite monitoring in the twenty-first century, the long-term response of planktonic stocks to climate forcing is unknown. Here, using a continuous, multi-century record of subarctic Atlantic marine productivity, we show that a marked 10 ± 7% decline in net primary productivity has occurred across this highly productive ocean basin over the past two centuries. We support this conclusion by the application of a marine-productivity proxy, established using the signal of the planktonic-derived aerosol methanesulfonic acid, which is commonly identified across an array of Greenlandic ice cores. Using contemporaneous satellite-era observations, we demonstrate the use of this signal as a robust and high-resolution proxy for past variations in spatially integrated marine productivity. We show that the initiation of declining subarctic Atlantic productivity broadly coincides with the onset of Arctic surface warming4, and that productivity strongly covaries with regional sea-surface temperatures and basin-wide gyre circulation strength over recent decades. Taken together, our results suggest that the decline in industrial-era productivity may be evidence of the predicted5 collapse of northern Atlantic planktonic stocks in response to a weakened Atlantic Meridional Overturning Circulation6-8. Continued weakening of this Atlantic Meridional Overturning Circulation, as projected for the twenty-first century9,10, may therefore result in further productivity declines across this globally relevant region.


Assuntos
Organismos Aquáticos/metabolismo , Cadeia Alimentar , Fitoplâncton/metabolismo , Movimentos da Água , Animais , Regiões Árticas , Oceano Atlântico , Atmosfera/química , Pesqueiros , Aquecimento Global , Groenlândia , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Água do Mar/análise
17.
Proc Natl Acad Sci U S A ; 119(35): e2116655119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994643

RESUMO

The Mediterranean region has been identified as a climate hot spot, with models projecting a robust warming and rainfall decline in response to increasing greenhouse gases. The projected rainfall decline would have impacts on agriculture and water resources. Can such changes be reversed with significant reductions in greenhouse gases? To explore this, we examine large ensembles of a high-resolution climate model with various future radiative forcing scenarios, including a scenario with substantial reductions in greenhouse gas concentrations beginning in the mid-21st century. In response to greenhouse gas reductions, the Mediterranean summer rainfall decline is reversed, but the winter rainfall decline continues. This continued winter rainfall decline results from a persistent atmospheric anticyclone over the western Mediterranean. Using additional numerical experiments, we show that the anticyclone and continued winter rainfall decline are attributable to greenhouse gas-induced weakening of the Atlantic Meridional Overturning Circulation (AMOC) that continues throughout the 21st century. The persistently weak AMOC, in concert with greenhouse gas reductions, leads to rapid cooling and sea ice growth in the subpolar North Atlantic. This cooling leads to a strong cyclonic atmospheric circulation anomaly over the North Atlantic subpolar gyre and, via atmospheric teleconnections, to the anticyclonic circulation anomaly over the Mediterranean. The failure to reverse the winter rainfall decline, despite substantial climate change mitigation, is an example of a "surprise" in the climate system. In this case, a persistent AMOC change unexpectedly impedes the reversibility of Mediterranean climate change. Such surprises could complicate pathways toward full climate recovery.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Gases de Efeito Estufa , Chuva , Movimentos da Água , Oceano Atlântico , Gases de Efeito Estufa/efeitos adversos , Gases de Efeito Estufa/análise , Camada de Gelo , Região do Mediterrâneo , Estações do Ano
18.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34949718

RESUMO

The stoichiometric coupling of carbon to limiting nutrients in marine phytoplankton regulates the magnitude of biological carbon sequestration in the ocean. While clear links between plankton C:N ratios and environmental drivers have been identified, the nature and direction of these links, as well as their underlying physiological and ecological controls, remain uncertain. We show, with a well-constrained mechanistic model of plankton ecophysiology, that while nitrogen availability and temperature emerge as the main drivers of phytoplankton C:N stoichiometry in the North Atlantic, the biological mechanisms involved vary depending on the spatiotemporal scale and region considered. We find that phytoplankton C:N stoichiometry is overall controlled by nitrogen availability below 40° N, predominantly driven by ecoevolutionary shifts in the functional composition of the phytoplankton communities, while phytoplankton stoichiometric plasticity in response to dropping temperatures and increased grazing pressure dominates at higher latitudes. Our findings highlight the potential of "organisms-to-ecosystems" modeling approaches based on mechanistic models of plankton biology accounting for physiology, ecology, and trait evolution to explore and explain complex observational data and ultimately improve the predictions of global ocean models.


Assuntos
Ecossistema , Fitoplâncton/crescimento & desenvolvimento , Água do Mar , Oceano Atlântico , Biomassa , Carbono/metabolismo , Clima , Ferro/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Fitoplâncton/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165196

RESUMO

Life on Earth has been characterized by recurring cycles of ecological stasis and disruption, relating biological eras to geological and climatic transitions through the history of our planet. Due to the increasing degree of ecological abruption caused by human influences many advocate that we now have entered the geological era of the Anthropocene, or "the age of man." Considering the ongoing mass extinction and ecosystem reshuffling observed worldwide, a better understanding of the drivers of ecological stasis will be a requisite for identifying routes of intervention and mitigation. Ecosystem stability may rely on one or a few keystone species, and the loss of such species could potentially have detrimental effects. The Atlantic cod (Gadus morhua) has historically been highly abundant and is considered a keystone species in ecosystems of the northern Atlantic Ocean. Collapses of cod stocks have been observed on both sides of the Atlantic and reported to have detrimental effects that include vast ecosystem reshuffling. By whole-genome resequencing we demonstrate that stabilizing selection maintains three extensive "supergenes" in Atlantic cod, linking these genes to species persistence and ecological stasis. Genomic inference of historic effective population sizes shows continued declines for cod in the North Sea-Skagerrak-Kattegat system through the past millennia, consistent with an early onset of the marine Anthropocene through industrialization and commercialization of fisheries throughout the medieval period.


Assuntos
Aquicultura/métodos , Conservação dos Recursos Naturais/métodos , Gadus morhua/genética , Animais , Oceano Atlântico , Ecossistema , Pesqueiros , Gadus morhua/crescimento & desenvolvimento , Genoma , Genômica , Humanos , Mar do Norte , Dinâmica Populacional
20.
BMC Genomics ; 25(1): 459, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730342

RESUMO

BACKGROUND: Genome-wide comparisons of populations are widely used to explore the patterns of nucleotide diversity and sequence divergence to provide knowledge on how natural selection and genetic drift affect the genome. In this study we have compared whole-genome sequencing data from Atlantic and Pacific herring, two sister species that diverged about 2 million years ago, to explore the pattern of genetic differentiation between the two species. RESULTS: The genome comparison of the two species revealed high genome-wide differentiation but with islands of remarkably low genetic differentiation, as measured by an FST analysis. However, the low FST observed in these islands is not caused by low interspecies sequence divergence (dxy) but rather by exceptionally high estimated intraspecies nucleotide diversity (π). These regions of low differentiation and elevated nucleotide diversity, termed high-diversity regions in this study, are not enriched for repeats but are highly enriched for immune-related genes. This enrichment includes genes from both the adaptive immune system, such as immunoglobulin, T-cell receptor and major histocompatibility complex genes, as well as a substantial number of genes with a role in the innate immune system, e.g. novel immune-type receptor, tripartite motif and tumor necrosis factor receptor genes. Analysis of long-read based assemblies from two Atlantic herring individuals revealed extensive copy number variation in these genomic regions, indicating that the elevated intraspecies nucleotide diversities were partially due to the cross-mapping of short reads. CONCLUSIONS: This study demonstrates that copy number variation is a characteristic feature of immune trait loci in herring. Another important implication is that these loci are blind spots in classical genome-wide screens for genetic differentiation using short-read data, not only in herring, likely also in other species harboring qualitatively similar variation at immune trait loci. These loci stood out in this study because of the relatively high genome-wide baseline for FST values between Atlantic and Pacific herring.


Assuntos
Variações do Número de Cópias de DNA , Peixes , Animais , Peixes/genética , Peixes/imunologia , Variação Genética , Oceano Atlântico , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA