Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.487
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(16): 4176-4192.e17, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38959890

RESUMO

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.


Assuntos
Depressão Pós-Parto , Neurônios , Obesidade , Canais de Cátion TRPC , Animais , Feminino , Camundongos , Obesidade/metabolismo , Obesidade/genética , Masculino , Humanos , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Depressão Pós-Parto/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Camundongos Endogâmicos C57BL , Ocitocina/metabolismo , Comportamento Materno
2.
Physiol Rev ; 104(3): 1121-1145, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329421

RESUMO

Parturition is a complex physiological process that must occur in a reliable manner and at an appropriate gestation stage to ensure a healthy newborn and mother. To this end, hormones that affect the function of the gravid uterus, especially progesterone (P4), 17ß-estradiol (E2), oxytocin (OT), and prostaglandins (PGs), play pivotal roles. P4 via the nuclear P4 receptor (PR) promotes uterine quiescence and for most of pregnancy exerts a dominant block to labor. Loss of the P4 block to parturition in association with a gain in prolabor actions of E2 are key transitions in the hormonal cascade leading to parturition. P4 withdrawal can occur through various mechanisms depending on species and physiological context. Parturition in most species involves inflammation within the uterine tissues and especially at the maternal-fetal interface. Local PGs and other inflammatory mediators may initiate parturition by inducing P4 withdrawal. Withdrawal of the P4 block is coordinated with increased E2 actions to enhance uterotonic signals mediated by OT and PGs to promote uterine contractions, cervix softening, and membrane rupture, i.e., labor. This review examines recent advances in research to understand the hormonal control of parturition, with focus on the roles of P4, E2, PGs, OT, inflammatory cytokines, and placental peptide hormones together with evolutionary biology of and implications for clinical management of human parturition.


Assuntos
Parto , Parto/fisiologia , Humanos , Feminino , Gravidez , Animais , Progesterona/metabolismo , Progesterona/fisiologia , Ocitocina/metabolismo , Ocitocina/fisiologia , Útero/metabolismo , Útero/fisiologia , Prostaglandinas/metabolismo , Estradiol/metabolismo
3.
Cell ; 165(7): 1762-1775, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315483

RESUMO

Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT.


Assuntos
Transtorno do Espectro Autista/microbiologia , Dieta Hiperlipídica , Microbioma Gastrointestinal , Obesidade/complicações , Comportamento Social , Animais , Disbiose/fisiopatologia , Feminino , Vida Livre de Germes , Abrigo para Animais , Limosilactobacillus reuteri , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/análise , Ocitocina/metabolismo , Gravidez , Área Tegmentar Ventral
4.
Cell ; 167(1): 60-72.e11, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641503

RESUMO

The frequency of human social and emotional disorders varies significantly between males and females. We have recently reported that oxytocin receptor interneurons (OxtrINs) modulate female sociosexual behavior. Here, we show that, in male mice, OxtrINs regulate anxiety-related behaviors. We demonstrate that corticotropin-releasing-hormone-binding protein (CRHBP), an antagonist of the stress hormone CRH, is specifically expressed in OxtrINs. Production of CRHBP blocks the CRH-induced potentiation of postsynaptic layer 2/3 pyramidal cell activity of male, but not female, mice, thus producing an anxiolytic effect. Our data identify OxtrINs as critical for modulation of social and emotional behaviors in both females and males and reveal a molecular mechanism that acts on local medial prefrontal cortex (mPFC) circuits to coordinate responses to OXT and CRH. They suggest that additional studies of the impact of the OXT/OXTR and CRHBP/CRH pathways in males and females will be important in development of gender-specific therapies.


Assuntos
Ansiedade/psicologia , Proteínas de Transporte/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Interneurônios/metabolismo , Ocitocina/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Ocitocina/metabolismo , Caracteres Sexuais , Animais , Ansiedade/metabolismo , Comportamento Animal , Feminino , Potenciação de Longa Duração , Masculino , Redes e Vias Metabólicas , Camundongos , Fatores Sexuais
5.
Nature ; 625(7993): 175-180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093006

RESUMO

Oxytocin (OXT), a nine-amino-acid peptide produced in the hypothalamus and released by the posterior pituitary, has well-known actions in parturition, lactation and social behaviour1, and has become an intriguing therapeutic target for conditions such as autism and schizophrenia2. Exogenous OXT has also been shown to have effects on body weight, lipid levels and glucose homeostasis1,3, suggesting that it may also have therapeutic potential for metabolic disease1,4. It is unclear, however, whether endogenous OXT participates in metabolic homeostasis. Here we show that OXT is a critical regulator of adipose tissue lipolysis in both mice and humans. In addition, OXT serves to facilitate the ability of ß-adrenergic agonists to fully promote lipolysis. Most surprisingly, the relevant source of OXT in these metabolic actions is a previously unidentified subpopulation of tyrosine hydroxylase-positive sympathetic neurons. Our data reveal that OXT from the peripheral nervous system is an endogenous regulator of adipose and systemic metabolism.


Assuntos
Tecido Adiposo , Lipólise , Neurônios , Ocitocina , Animais , Humanos , Camundongos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Lipólise/efeitos dos fármacos , Neurônios/metabolismo , Ocitocina/metabolismo , Ocitocina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Nature ; 626(7998): 347-356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267576

RESUMO

To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.


Assuntos
Agressão , Aprendizagem da Esquiva , Hipotálamo , Vias Neurais , Neurônios , Ocitocina , Aprendizado Social , Animais , Camundongos , Agressão/fisiologia , Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Comportamento Social , Aprendizado Social/fisiologia , Núcleo Supraóptico/citologia , Núcleo Supraóptico/metabolismo , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Plasticidade Neuronal
7.
Genes Dev ; 36(21-24): 1100-1118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36617877

RESUMO

Neural circuit plasticity and sensory response dynamics depend on forming new synaptic connections. Despite recent advances toward understanding the consequences of circuit plasticity, the mechanisms driving circuit plasticity are unknown. Adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and circuit integration. We and others have shown that efficient adult-born neuron circuit integration hinges on presynaptic activity in the form of diverse signaling peptides. Here, we demonstrate a novel oxytocin-dependent mechanism of adult-born neuron synaptic maturation and circuit integration. We reveal spatial and temporal enrichment of oxytocin receptor expression within adult-born neurons in the murine olfactory bulb, with oxytocin receptor expression peaking during activity-dependent integration. Using viral labeling, confocal microscopy, and cell type-specific RNA-seq, we demonstrate that oxytocin receptor signaling promotes synaptic maturation of newly integrating adult-born neurons by regulating their morphological development and expression of mature synaptic AMPARs and other structural proteins.


Assuntos
Ocitocina , Receptores de Ocitocina , Camundongos , Animais , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Neurônios/fisiologia , Bulbo Olfatório/metabolismo , Neurogênese
8.
Cell ; 159(2): 295-305, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303526

RESUMO

Human imaging studies have revealed that intranasal administration of the "prosocial" hormone oxytocin (OT) activates the frontal cortex, and this action of OT correlates with enhanced brain function in autism. Here, we report the discovery of a population of somatostatin (Sst)-positive, regular spiking interneurons that express the oxytocin receptor (OxtrINs). Silencing of OxtrINs in the medial prefrontal cortex (mPFC) of female mice resulted in loss of social interest in male mice specifically during the sexually receptive phase of the estrous cycle. This sociosexual deficit was also present in mice in which the Oxtr gene was conditionally deleted from the mPFC and in control mice infused with an Oxtr antagonist. Our data demonstrate a gender-, cell type-, and state-specific role for OT/Oxtr signaling in the mPFC and identify a latent cortical circuit element that may modulate other complex social behaviors in response to OT.


Assuntos
Interneurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Ocitocina/metabolismo , Comportamento Sexual Animal , Animais , Ciclo Estral , Feminino , Masculino , Camundongos , Ocitocina/metabolismo , Córtex Pré-Frontal/citologia , Caracteres Sexuais , Comportamento Social
9.
Nature ; 621(7980): 788-795, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730989

RESUMO

Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.


Assuntos
Comportamento Materno , Vias Neurais , Neurônios , Ocitocina , Vocalização Animal , Animais , Feminino , Camundongos , Sinais (Psicologia) , Hipotálamo/citologia , Hipotálamo/fisiologia , Comportamento Materno/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Fotometria , Núcleos Talâmicos/fisiologia , Vocalização Animal/fisiologia , Vigília
10.
Nature ; 618(7966): 790-798, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316665

RESUMO

Psychedelics are a broad class of drugs defined by their ability to induce an altered state of consciousness1,2. These drugs have been used for millennia in both spiritual and medicinal contexts, and a number of recent clinical successes have spurred a renewed interest in developing psychedelic therapies3-9. Nevertheless, a unifying mechanism that can account for these shared phenomenological and therapeutic properties remains unknown. Here we demonstrate in mice that the ability to reopen the social reward learning critical period is a shared property across psychedelic drugs. Notably, the time course of critical period reopening is proportional to the duration of acute subjective effects reported in humans. Furthermore, the ability to reinstate social reward learning in adulthood is paralleled by metaplastic restoration of oxytocin-mediated long-term depression in the nucleus accumbens. Finally, identification of differentially expressed genes in the 'open state' versus the 'closed state' provides evidence that reorganization of the extracellular matrix is a common downstream mechanism underlying psychedelic drug-mediated critical period reopening. Together these results have important implications for the implementation of psychedelics in clinical practice, as well as the design of novel compounds for the treatment of neuropsychiatric disease.


Assuntos
Período Crítico Psicológico , Alucinógenos , Aprendizagem , Recompensa , Animais , Humanos , Camundongos , Estado de Consciência/efeitos dos fármacos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Aprendizagem/efeitos dos fármacos , Fatores de Tempo , Ocitocina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos
11.
Nature ; 596(7873): 553-557, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381215

RESUMO

Maternal care, including by non-biological parents, is important for offspring survival1-8. Oxytocin1,2,9-15, which is released by the hypothalamic paraventricular nucleus (PVN), is a critical maternal hormone. In mice, oxytocin enables neuroplasticity in the auditory cortex for maternal recognition of pup distress15. However, it is unclear how initial parental experience promotes hypothalamic signalling and cortical plasticity for reliable maternal care. Here we continuously monitored the behaviour of female virgin mice co-housed with an experienced mother and litter. This documentary approach was synchronized with neural recordings from the virgin PVN, including oxytocin neurons. These cells were activated as virgins were enlisted in maternal care by experienced mothers, who shepherded virgins into the nest and demonstrated pup retrieval. Virgins visually observed maternal retrieval, which activated PVN oxytocin neurons and promoted alloparenting. Thus rodents can acquire maternal behaviour by social transmission, providing a mechanism for adapting the brains of adult caregivers to infant needs via endogenous oxytocin.


Assuntos
Aprendizagem , Comportamento Materno/psicologia , Mães/psicologia , Neurônios/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Abstinência Sexual/psicologia , Ensino , Animais , Feminino , Abrigo para Animais , Tamanho da Ninhada de Vivíparos , Camundongos , Comportamento de Nidação , Plasticidade Neuronal
12.
Proc Natl Acad Sci U S A ; 121(26): e2314795121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38905241

RESUMO

Oxytocin plays a critical role in regulating social behaviors, yet our understanding of its function in both neurological health and disease remains incomplete. Real-time oxytocin imaging probes with spatiotemporal resolution relevant to its endogenous signaling are required to fully elucidate oxytocin's role in the brain. Herein, we describe a near-infrared oxytocin nanosensor (nIROXT), a synthetic probe capable of imaging oxytocin in the brain without interference from its structural analogue, vasopressin. nIROXT leverages the inherent tissue-transparent fluorescence of single-walled carbon nanotubes (SWCNT) and the molecular recognition capacity of an oxytocin receptor peptide fragment to selectively and reversibly image oxytocin. We employ these nanosensors to monitor electrically stimulated oxytocin release in brain tissue, revealing oxytocin release sites with a median size of 3 µm in the paraventricular nucleus of C57BL/6 mice, which putatively represents the spatial diffusion of oxytocin from its point of release. These data demonstrate that covalent SWCNT constructs, such as nIROXT, are powerful optical tools that can be leveraged to measure neuropeptide release in brain tissue.


Assuntos
Encéfalo , Camundongos Endogâmicos C57BL , Nanotubos de Carbono , Imagem Óptica , Ocitocina , Vasopressinas , Animais , Ocitocina/metabolismo , Camundongos , Imagem Óptica/métodos , Vasopressinas/metabolismo , Nanotubos de Carbono/química , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Masculino , Receptores de Ocitocina/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos
13.
Nature ; 587(7834): 426-431, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33029014

RESUMO

Infant cries evoke powerful responses in parents1-4. Whether parental animals are intrinsically sensitive to neonatal vocalizations, or instead learn about vocal cues for parenting responses is unclear. In mice, pup-naive virgin females do not recognize the meaning of pup distress calls, but retrieve isolated pups to the nest after having been co-housed with a mother and litter5-9. Distress calls are variable, and require co-caring virgin mice to generalize across calls for reliable retrieval10,11. Here we show that the onset of maternal behaviour in mice results from interactions between intrinsic mechanisms and experience-dependent plasticity in the auditory cortex. In maternal females, calls with inter-syllable intervals (ISIs) from 75 to 375 milliseconds elicited pup retrieval, and cortical responses were generalized across these ISIs. By contrast, naive virgins were neuronally and behaviourally sensitized to the most common ('prototypical') ISIs. Inhibitory and excitatory neural responses were initially mismatched in the cortex of naive mice, with untuned inhibition and overly narrow excitation. During co-housing experiments, excitatory responses broadened to represent a wider range of ISIs, whereas inhibitory tuning sharpened to form a perceptual boundary. We presented synthetic calls during co-housing and observed that neurobehavioural responses adjusted to match these statistics, a process that required cortical activity and the hypothalamic oxytocin system. Neuroplastic mechanisms therefore build on an intrinsic sensitivity in the mouse auditory cortex, and enable rapid plasticity for reliable parenting behaviour.


Assuntos
Córtex Auditivo/fisiologia , Comportamento Materno/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Abrigo para Animais , Comportamento Materno/psicologia , Camundongos , Inibição Neural/fisiologia , Ocitocina/metabolismo , Sinapses/metabolismo , Fatores de Tempo , Vocalização Animal
14.
Nature ; 584(7820): 252-256, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760004

RESUMO

A fundamental challenge in developing treatments for autism spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of cases1-3. Subsets of risk genes can be grouped into functionally related pathways, most prominently those involving synaptic proteins, translational regulation, and chromatin modifications. To attempt to minimize this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4-6, which regulate aspects of social behaviour in mammals7. However, it is unclear whether genetic risk factors predispose individuals to autism as a result of modifications to oxytocinergic signalling. Here we report that an autism-associated mutation in the synaptic adhesion molecule Nlgn3 results in impaired oxytocin signalling in dopaminergic neurons and in altered behavioural responses to social novelty tests in mice. Notably, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3-knockout mice with a new, highly specific, brain-penetrant inhibitor of MAP kinase-interacting kinases resets the translation of mRNA and restores oxytocin signalling and social novelty responses. Thus, this work identifies a convergence between the genetic autism risk factor Nlgn3, regulation of translation, and oxytocinergic signalling. Focusing on such common core plasticity elements might provide a pragmatic approach to overcoming the heterogeneity of autism. Ultimately, this would enable mechanism-based stratification of patient populations to increase the success of therapeutic interventions.


Assuntos
Transtorno Autístico/metabolismo , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Ocitocina/metabolismo , Comportamento Social , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 120(7): e2213682120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745816

RESUMO

Oxytocin (OT) is a prominent regulator of many aspects of mammalian social behavior and stored in large dense-cored vesicles (LDCVs) in hypothalamic neurons. It is released in response to activity-dependent Ca2+ influx, but is also dependent on Ca2+ release from intracellular stores, which primes LDCVs for exocytosis. Despite its importance, critical aspects of the Ca2+-dependent mechanisms of its secretion remain to be identified. Here we show that lysosomes surround dendritic LDCVs, and that the direct activation of endolysosomal two-pore channels (TPCs) provides the critical Ca2+ signals to prime OT release by increasing the releasable LDCV pool without directly stimulating exocytosis. We observed a dramatic reduction in plasma OT levels in TPC knockout mice, and impaired secretion of OT from the hypothalamus demonstrating the importance of priming of neuropeptide vesicles for activity-dependent release. Furthermore, we show that activation of type 1 metabotropic glutamate receptors sustains somatodendritic OT release by recruiting TPCs. The priming effect could be mimicked by a direct application of nicotinic acid adenine dinucleotide phosphate, the endogenous messenger regulating TPCs, or a selective TPC2 agonist, TPC2-A1-N, or blocked by the antagonist Ned-19. Mice lacking TPCs exhibit impaired maternal and social behavior, which is restored by direct OT administration. This study demonstrates an unexpected role for lysosomes and TPCs in controlling neuropeptide secretion, and in regulating social behavior.


Assuntos
Canais de Cálcio , Ocitocina , Camundongos , Animais , Canais de Cálcio/metabolismo , Ocitocina/metabolismo , Cálcio/metabolismo , Camundongos Knockout , Lisossomos/metabolismo , NADP/metabolismo , Sinalização do Cálcio/fisiologia , Mamíferos/metabolismo
16.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38438259

RESUMO

Oxytocinergic transmission blocks nociception at the peripheral, spinal, and supraspinal levels through the oxytocin receptor (OTR). Indeed, a neuronal pathway from the hypothalamic paraventricular nucleus (PVN) to the spinal cord and trigeminal nucleus caudalis (Sp5c) has been described. Hence, although the trigeminocervical complex (TCC), an anatomical area spanning the Sp5c, C1, and C2 regions, plays a role in some pain disorders associated with craniofacial structures (e.g., migraine), the role of oxytocinergic transmission in modulating nociception at this level has been poorly explored. Hence, in vivo electrophysiological recordings of TCC wide dynamic range (WDR) cells sensitive to stimulation of the periorbital or meningeal region were performed in male Wistar rats. PVN electrical stimulation diminished the neuronal firing evoked by periorbital or meningeal electrical stimulation; this inhibition was reversed by OTR antagonists administered locally. Accordingly, neuronal projections (using Fluoro-Ruby) from the PVN to the WDR cells filled with Neurobiotin were observed. Moreover, colocalization between OTR and calcitonin gene-related peptide (CGRP) or OTR and GABA was found near Neurobiotin-filled WDR cells. Retrograde neuronal tracers deposited at the meningeal (True-Blue, TB) and infraorbital nerves (Fluoro-Gold, FG) showed that at the trigeminal ganglion (TG), some cells were immunopositive to both fluorophores, suggesting that some TG cells send projections via the V1 and V2 trigeminal branches. Together, these data may imply that endogenous oxytocinergic transmission inhibits the nociceptive activity of second-order neurons via OTR activation in CGRPergic (primary afferent fibers) and GABAergic cells.


Assuntos
Estimulação Elétrica , Ocitocina , Núcleo Hipotalâmico Paraventricular , Ratos Wistar , Receptores de Ocitocina , Transmissão Sináptica , Animais , Masculino , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Ocitocina/metabolismo , Ocitocina/análogos & derivados , Ratos , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/antagonistas & inibidores , Transmissão Sináptica/fisiologia , Nociceptores/fisiologia , Nociceptores/metabolismo , Nociceptividade/fisiologia , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos dos fármacos , Meninges/fisiologia , Inibição Neural/fisiologia
17.
Physiol Rev ; 98(3): 1805-1908, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897293

RESUMO

The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαi or Gαq proteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Animais , Arginina Vasopressina/metabolismo , Comportamento Aditivo/metabolismo , Sinalização do Cálcio , Ingestão de Alimentos , Evolução Molecular , Humanos , Sistema de Sinalização das MAP Quinases , Receptores de Ocitocina/genética , Resposta de Saciedade
18.
Nature ; 569(7754): 116-120, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30944474

RESUMO

A critical period is a developmental epoch during which the nervous system is expressly sensitive to specific environmental stimuli that are required for proper circuit organization and learning. Mechanistic characterization of critical periods has revealed an important role for exuberant brain plasticity during early development, and for constraints that are imposed on these mechanisms as the brain matures1. In disease states, closure of critical periods limits the ability of the brain to adapt even when optimal conditions are restored. Thus, identification of manipulations that reopen critical periods has been a priority for translational neuroscience2. Here we provide evidence that developmental regulation of oxytocin-mediated synaptic plasticity (long-term depression) in the nucleus accumbens establishes a critical period for social reward learning. Furthermore, we show that a single dose of (+/-)-3,4-methylendioxymethamphetamine (MDMA) reopens the critical period for social reward learning and leads to a metaplastic upregulation of oxytocin-dependent long-term depression. MDMA-induced reopening of this critical period requires activation of oxytocin receptors in the nucleus accumbens, and is recapitulated by stimulation of oxytocin terminals in the nucleus accumbens. These findings have important implications for understanding the pathogenesis of neurodevelopmental diseases that are characterized by social impairments and of disorders that respond to social influence or are the result of social injury3.


Assuntos
Período Crítico Psicológico , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Ocitocina/metabolismo , Recompensa , Envelhecimento/fisiologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Feminino , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Transdução de Sinais/efeitos dos fármacos
19.
J Neurosci ; 43(49): 8306-8316, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37783507

RESUMO

The Scn7A gene encodes NaX, an atypical noninactivating Na+ channel, whose expression in sensory circumventricular organs is essential to maintain homeostatic responses for body fluid balance. However, NaX has also been detected in homeostatic effector neurons, such as vasopressin (VP)-releasing magnocellular neurosecretory cells (MNCVP) that secrete VP (antidiuretic hormone) into the bloodstream in response to hypertonicity and hypernatremia. Yet, the physiological relevance of NaX expression in these effector cells remains unclear. Here, we show that rat MNCVP in males and females is depolarized and excited in proportion with isosmotic increases in [Na+]. These responses were caused by an inward current resulting from a cell-autonomous increase in Na+ conductance. The Na+-evoked current was unaffected by blockers of other Na+-permeable ion channels but was significantly reduced by shRNA-mediated knockdown of Scn7A expression. Furthermore, reducing the density of NaX channels selectively impaired the activation of MNCVP by systemic hypernatremia without affecting their responsiveness to hypertonicity in vivo These results identify NaX as a physiological Na+ sensor, whose expression in MNCVP contributes to the generation of homeostatic responses to hypernatremia.SIGNIFICANCE STATEMENT In this study, we provide the first direct evidence showing that the sodium-sensing channel encoded by the Scn7A gene (NaX) mediates cell-autonomous sodium detection by MNCs in the low millimolar range and that selectively reducing the expression of these channels in MNCs impairs their activation in response to a physiologically relevant sodium stimulus in vitro and in vivo These data reveal that NaX operates as a sodium sensor in these cells and that the endogenous sensory properties of osmoregulatory effector neurons contribute to their homeostatic activation in vivo.


Assuntos
Hipernatremia , Núcleo Supraóptico , Canais de Sódio Disparados por Voltagem , Animais , Feminino , Masculino , Ratos , Hipernatremia/metabolismo , Ocitocina/metabolismo , Sódio/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/fisiologia
20.
J Physiol ; 602(14): 3375-3400, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38698722

RESUMO

Chronic intermittent hypoxia (CIH) in rodents mimics the hypoxia-induced elevation of blood pressure seen in individuals experiencing episodic breathing. The brainstem nucleus tractus solitarii (nTS) is the first site of visceral sensory afferent integration, and thus is critical for cardiorespiratory homeostasis and its adaptation during a variety of stressors. In addition, the paraventricular nucleus of the hypothalamus (PVN), in part through its nTS projections that contain oxytocin (OT) and/or corticotropin-releasing hormone (CRH), contributes to cardiorespiratory regulation. Within the nTS, these PVN-derived neuropeptides alter nTS activity and the cardiorespiratory response to hypoxia. Nevertheless, their contribution to nTS activity after CIH is not fully understood. We hypothesized that OT and CRH would increase nTS activity to a greater extent following CIH, and co-activation of OT+CRH receptors would further magnify nTS activity. Our data show that compared to their normoxic controls, 10 days' CIH exaggerated nTS discharge, excitatory synaptic currents and Ca2+ influx in response to CRH, which were further enhanced by the addition of OT. CIH increased the tonic functional contribution of CRH receptors, which occurred with elevation of mRNA and protein. Together, our data demonstrate that intermittent hypoxia exaggerates the expression and function of neuropeptides on nTS activity. KEY POINTS: Episodic breathing and chronic intermittent hypoxia (CIH) are associated with autonomic dysregulation, including elevated sympathetic nervous system activity. Altered nucleus tractus solitarii (nTS) activity contributes to this response. Neurons originating in the paraventricular nucleus (PVN), including those containing oxytocin (OT) and corticotropin-releasing hormone (CRH), project to the nTS, and modulate the cardiorespiratory system. Their role in CIH is unknown. In this study, we focused on OT and CRH individually and together on nTS activity from rats exposed to either CIH or normoxia control. We show that after CIH, CRH alone and with OT increased to a greater extent overall nTS discharge, neuronal calcium influx, synaptic transmission to second-order nTS neurons, and OT and CRH receptor expression. These results provide insights into the underlying circuits and mechanisms contributing to autonomic dysfunction during periods of episodic breathing.


Assuntos
Hormônio Liberador da Corticotropina , Hipóxia , Neurônios , Ocitocina , Ratos Sprague-Dawley , Núcleo Solitário , Animais , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Ocitocina/metabolismo , Hipóxia/fisiopatologia , Hipóxia/metabolismo , Masculino , Neurônios/fisiologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA