Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Environ Res ; 252(Pt 2): 118910, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604487

RESUMO

Earthworms can resist high levels of soil copper (Cu) contamination and play an essential role in absorbing them effectively. However, the molecular mechanisms underlying Cu tolerance in earthworms are poorly understood. To address this research gap, we studied alterations of Eisenia fetida in antioxidant enzymes, gut microbiota, metabolites, and genes under varying levels of Cu exposure soils (0, 67.58, 168.96, 337.92 mg/kg). Our results revealed a reduction in antioxidant enzyme activities across all treatment groups, indicating an adaptive response to alleviate Cu-induced oxidative stress. Analysis of gut microbiota revealed a significant increase in the abundance of bacteria associated with nutrient uptake and Cu2+ excretion under Cu stress. Furthermore, metabolomic analysis discovered an increase in certain metabolites associated with energy metabolism, such as pyruvic acid, L-malic acid, and fumaric acid, as Cu concentration escalated. These results suggested that enhanced energy supply contributes to the elevated tolerance of E. fetida towards Cu. Additionally, transcriptome analysis not only identified crucial detoxification genes (Hsp70, CTSL, GST, CHAC, and GCLC), but also confirmed the critical role of glutathione metabolism as a key pathway in E. fetida Cu detoxification processes. These findings provide a new perspective on the molecular mechanisms of Cu tolerance in earthworms.


Assuntos
Cobre , Oligoquetos , Poluentes do Solo , Oligoquetos/metabolismo , Oligoquetos/efeitos dos fármacos , Animais , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolômica , Estresse Oxidativo/efeitos dos fármacos , Multiômica
2.
Environ Res ; 252(Pt 2): 118896, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642644

RESUMO

Green pesticides, derived from natural sources, have gained wider attention as an alternative to synthetic pesticides for managing polyphagous pests, such as Spodoptera litura. In this study, the methanolic flower extract of Nyctanthes arbor-tristis (Mx-Na-t) was subjected to chemical screening, and 3-hydroxy-1,2-dimethyl-4(1H)-pyridone (3H-dp) and tyrosol (Ty-ol) were identified as the major derivatives. The toxic effects of Mx-Na-t (500 ppm) were highest in third-instar S. litura larvae (96.4%), while those of 3H-dp and Ty-ol (5 ppm) were highest in second-instar larvae (76.5% and 81.4%, respectively). The growth and development of S. litura larvae and pupae were significantly reduced by all three treatments. Fecundity rates were also reduced by all treatments [from 1020 eggs (control) to 540 eggs by Mx-Na-t treatment, 741 eggs by 3H-dp treatment, and 721 eggs by Ty-ol treatment]. The extract and its active constituents decreased adult emergence and slowed total larval development in a dose-dependent manner. A decrease was noted in the major gut enzymes of young S. litura larvae exposed to Mx-Na-t, 3H-dp, and Ty-ol. Moreover, midgut tissues of fourth-instar larvae were severely damaged by Mx-Na-t (250 ppm), 3H-dp (2.5 ppm), and Ty-ol (2.5 ppm); the treatments induced structural damage to the epithelial cells and gut lumen. The earthworm Eisenia fetida was used to assess nontarget toxicity. Compared with cypermethrin, the phytochemicals exhibited minimal effects on the earthworm's detoxifying enzymes superoxide dismutase and catalase after 14 days of treatment. Moreover, in silico predictions using BeeTox and ProTox-II indicated little or no toxicity of 3H-dp and Ty-ol toward honey bees and other nontarget species.


Assuntos
Flores , Larva , Oligoquetos , Extratos Vegetais , Spodoptera , Animais , Spodoptera/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Extratos Vegetais/toxicidade , Larva/efeitos dos fármacos , Flores/química , Inibidores Enzimáticos/toxicidade
3.
Ecotoxicol Environ Saf ; 282: 116746, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053046

RESUMO

Biodegradable polylactic acid (PLA) mulch has been developed to replace conventional polyethylene (PE) mulch in agriculture as a response to growing concerns about recalcitrant plastic pollution and the accumulation of microplastics (MPs) in soil. Cadmium is a significant soil pollutant in China. MPs have been shown to adsorb metals. In this study the earthworm Lumbricus terrestris was exposed to either Cd (1.0-100 mg / kg) or MPs (PE and PLA, 0.1-3 % w / w), or a combination of the two, for 28 days. Cd bioavailability significantly decreased in the presence of MPs. In particular, at the end of the experiment, PLA treatments had lower measured Cd concentrations in both earthworms (2.127-29.24 mg / kg) and pore water (below detection limits - 0.1384 mg /L) relative to PE treatments (2.720-33.77 mg / kg and below detection limits - 0.2489 mg / L). In our adsorption experiment PLA MPs adsorbed significantly more Cd than PE MPs with maximum adsorption capacities of 126.0 and 23.2 mg / kg respectively. These results suggest that the PLA MPs reduce earthworm exposure to Cd relative to PE by removing it from solution and reducing its bioavailability.


Assuntos
Cádmio , Microplásticos , Oligoquetos , Poliésteres , Polietileno , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Oligoquetos/efeitos dos fármacos , Cádmio/toxicidade , Poliésteres/química , Microplásticos/toxicidade , Adsorção , Bioacumulação , China , Disponibilidade Biológica , Solo/química
4.
Ecotoxicol Environ Saf ; 281: 116643, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925033

RESUMO

Selenium (Se) pollution is mainly caused by anthropogenic activities, and the resulting biosecurity concerns have garnered significant attention in recent years. Using one-compartmental toxicokinetic (TK) modelling, this study explored the kinetic absorption, sub-tissue distribution, and elimination processes of the main Se species (selenate, Se(VI)) in the cultivated aerobic soil of the earthworm Eisenia fetida. The bio-accessibility of earthworm-derived Se was assessed using an in vitro simulated gastrointestinal digestion test to evaluate its potential trophic risk. The results demonstrated that Se accumulated in the pre-clitellum (PC) and total tissues (TT) of earthworms in a time- and dose-dependent manner. The highest Se levels in the PC, post-clitellum (PoC), and TT were 70.54, 57.93, and 64.26 mg/kg during the uptake phase, respectively. The kinetic Se contents in the earthworms PC and TT were consistent with the TK model but not with PoC. The earthworm TT exhibited a faster uptake (Kus = 0.83-1.02 mg/kg/day) and elimination rate of Se (Kee = 0.044-0.049 mg/kg/day), as well as a shorter half-life time (LT1/2 = 15.88-14.22 days) than PC at low soil Se levels (≤5 mg/kg). Conversely, the opposite trend was observed with higher Se concentrations (10 and 20 mg/kg). These results are likely attributable to the tissue specificity and concentration of the toxicant. Earthworms PC and TT exhibited a higher kinetic Se accumulation factor (BAFk) than steady-state BAF (BAFss), with values ranging from 8 to 24 and 3-13, respectively. Furthermore, the bio-accessibility of earthworm-derived Se to poultry ranged from 66.25 % to 84.35 %. As earthworms are at the bottom of the terrestrial food chain, the high bio-accessibility of earthworm-derived Se poses a potential risk to predators. This study offers data support and a theoretical foundation for understanding the biological footprint of soil Se and its toxicological impacts and ecological hazards.


Assuntos
Oligoquetos , Selênio , Poluentes do Solo , Toxicocinética , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Animais , Poluentes do Solo/toxicidade , Poluentes do Solo/farmacocinética , Selênio/toxicidade , Selênio/farmacocinética , Selênio/análise , Ácido Selênico/toxicidade , Ácido Selênico/farmacocinética , Distribuição Tecidual , Solo/química
5.
Ecotoxicol Environ Saf ; 277: 116374, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677072

RESUMO

Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.


Assuntos
Clorpirifos , Proteínas de Choque Térmico HSP70 , Nitrilas , Oligoquetos , Estresse Oxidativo , Piretrinas , Poluentes do Solo , Superóxido Dismutase , Animais , Oligoquetos/efeitos dos fármacos , Clorpirifos/toxicidade , Piretrinas/toxicidade , Nitrilas/toxicidade , Superóxido Dismutase/metabolismo , Poluentes do Solo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Carboxilesterase/metabolismo , Inseticidas/toxicidade , Caspase 3/metabolismo , Caspase 3/genética , Calreticulina/genética , Calreticulina/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética
6.
Ecotoxicology ; 33(6): 590-607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733499

RESUMO

Urban tropical lagoons are commonly impacted by silting, domestic sewage and industrial wastes and the dredging of their sediments is often required to minimize environmental impacts. However, the ecological implications of land disposal of dredged sediments are still poorly investigated in the tropics. Aiming to contribute to filling this gap, an ecotoxicological evaluation was conducted with dredged sediments from Tijuca Lagoon (Rio de Janeiro, Brazil) using different lines of evidence, including soil and sediment characterization, metal determination, and acute and avoidance bioassays with Eisenia andrei. Two different dredged sediment samples, a sandy sediment and another muddy one, were obtained in two distinct and spatially representative sectors of the Tijuca Lagoon. The sediments were mixed with an artificial soil, Ferralsol and Spodosol to obtain doses between 0 (pure soil) and 12%. The sediment dose that caused mortality (LC50) or avoidance responses (EC50) to 50% of the organisms was estimated through PriProbit analysis. Metal concentrations and toxicity levels were higher in the muddy sediment (artificial soil LC50 = 3.84%; Ferralsol LC50 = 4.58%; Spodosol LC50 = 2.85%) compared to the sandy one (artificial soil LC50 = 10.94%; Ferralsol LC50 = 14.36%; Spodosol LC50 = 10.38%), since fine grains tend to adsorb more organic matter and contaminants. Mortality and avoidance responses were the highest in Spodosol due to its extremely sandy texture (98% of sand). Metal concentrations in surviving earthworms were generally low, except sodium whose bioaccumulation was high. Finally, the toxicity is probably linked to marine salts, and the earthworms seem to accumulate water in excess to maintain osmotic equilibrium, increasing their biomass.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Oligoquetos , Sedimentos Geológicos/química , Animais , Brasil , Oligoquetos/efeitos dos fármacos , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
7.
Pestic Biochem Physiol ; 202: 105974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879315

RESUMO

In fact, less than 1% of applied pesticides reach their target pests, while the remainder pollute the neighboring environment and adversely impact human health as well as non-target organisms in agricultural ecosystem. Pesticides can contribute to the loss of agrobiodiversity, which are essential to maintaining the agro-ecosystem's structure and functioning in order to produce and secure enough food. This review article examines the negative effects of pesticides on non-target invertebrates including earthworms, honeybees, predators, and parasitoids. It also highlights areas where further research is needed to address unresolved issues related to pesticide exposure, aiming to improve conservation efforts for these crucial species. These organisms play crucial roles in ecosystem functioning, such as soil health, pollination, and pest control. Both lethal and sub-lethal effects of pesticides on the selected non-target invertebrates were discussed. Pesticides affect DNA integrity, enzyme activity, growth, behavior, and reproduction of earthworms even at low concentrations. Pesticides could also induce a reduction in individual survival, disruption in learning performance and memory, as well as a change in the foraging behavior of honeybees. Additionally, pesticides adversely affect population growth indices, reproduction, development, longevity, and consumption of predators and parasitoids. As a result, pesticides must pass adequate ecotoxicological risk assessment to be enlisted by regulatory authorities. Therefore, it is important to adopt integrated pest management (IPM) strategies that minimize pesticide use and promote the conservation of beneficial organisms in order to maintain agrobiodiversity and sustainable agricultural systems. Furthermore, adopting precision agriculture and organic farming lessen these negative effects as well.less than.


Assuntos
Agricultura , Ecossistema , Invertebrados , Praguicidas , Animais , Praguicidas/toxicidade , Invertebrados/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Oligoquetos/efeitos dos fármacos
8.
Pestic Biochem Physiol ; 203: 106022, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084781

RESUMO

The extensive application of pesticides and antibiotics in agricultural production makes it possible for them to coexist in farmland, and the interaction of the two pollutants can lead to changes in environmental behavior and toxicity, creating uncertainty risks to soil and soil organisms. In this study, we explored the environmental behavior and the effects of earthworms under co-exposure to amoxicillin and boscalid and further explored the accumulation and toxic effects on earthworms. The results showed that amoxicillin increased the adsorption of boscalid in soil and inhibited its degradation. In addition, we noticed that the co-exposure of amoxicillin and boscalid caused intestinal barrier damage, which increased the bioaccumulation of earthworms for boscalid and led to more severe oxidative stress and metabolic disorders in earthworms. In summary, our findings indicate that amoxicillin can increase the ecological risk of boscalid in the environment and imply that the encounter between antibiotics and pesticides in the environment can amplify the toxic effects of pesticides, which provides new insights into the ecological risks of antibiotics.


Assuntos
Amoxicilina , Compostos de Bifenilo , Niacinamida , Oligoquetos , Animais , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Amoxicilina/toxicidade , Amoxicilina/farmacologia , Niacinamida/farmacologia , Niacinamida/toxicidade , Niacinamida/análogos & derivados , Poluentes do Solo/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Estresse Oxidativo/efeitos dos fármacos
9.
J Environ Manage ; 366: 121731, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981260

RESUMO

In this study, four ecotoxicological tests on Vibrio fischeri bacteria, Sinapis alba L. (white mustard), Daphnia magna S. (daphnia's) and earthworms were performed for three types of aqueous slag (ladle, blast furnace and converter) leachates with two-grain sizes (<4 mm, <10 mm). Concentrations of toxic elements and concentrations of Cr(VI), Ca, Na, Al, and other ions were determined. The raw slags were analyzed using X-ray fluorescence spectroscopy (XRFS), and major substances were determined by X-ray powder diffraction (XRD). The aqueous slag leachates passed ecotoxicological tests and met the required criteria, showing no toxicity to Vibrio fischeri and complying with white mustard test criteria. According to the results of the ecotoxicity tests with daphnia, the blast furnace slag samples were not ecotoxic, while two other slag samples were found to be entirely compliant. Characterization of the slags showed that the effect of element/ion leachability and slag grain size is essential. Biplot principal component analysis (PCA) showed that grain size does not significantly affect the separation of individuals on the plane. A positive correlation on toxicity was found with pH, conductivity, calcium content, dissolved content, salinity and fluoride concentration, whereas a negative correlation was found with magnesium concentration, dissolved organic carbon and potassium concentration. The effective concentration at 50% inhibition (EC50) value for Vibrio fischeri correlated with the first dimension of bivariate assessment. In summary, it was found that the investigated slags can be effectively reused as they comply with regulations and do not endanger the environment.


Assuntos
Aliivibrio fischeri , Daphnia , Ecotoxicologia , Daphnia/efeitos dos fármacos , Animais , Aliivibrio fischeri/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Testes de Toxicidade , Sinapis/efeitos dos fármacos , Sinapis/química
10.
Environ Geochem Health ; 46(6): 189, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695970

RESUMO

The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.


Assuntos
Microplásticos , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Compostagem , Polietileno/toxicidade , Plásticos Biodegradáveis
11.
Environ Geochem Health ; 46(8): 290, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976075

RESUMO

Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Oligoquetos , Reprodução , Poluentes do Solo , Oligoquetos/efeitos dos fármacos , Metais Pesados/toxicidade , Animais , Poluentes do Solo/toxicidade , Reprodução/efeitos dos fármacos , Recuperação e Remediação Ambiental/métodos , Ensaio Cometa , Espectroscopia de Infravermelho com Transformada de Fourier , Dano ao DNA , Solo/química
12.
Environ Sci Pollut Res Int ; 31(20): 29174-29184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568309

RESUMO

Pesticide formulations are typically applied as mixtures, and their synergistic effects can increase toxicity to the organisms in the environment. Despite pesticide mixtures being the leading cause of pesticide exposure incidents, little attention has been given to assessing their combined toxicity and interactions. This survey purposed to reveal the cumulative toxic effects of deltamethrin (DEL) and cyazofamid (CYA) on earthworms (Eisenia fetida) by examining multiple endpoints. Our findings revealed that the LC50 values of DEL for E. fetida, following 7- and 14-day exposures, ranged from 887.7 (728-1095) to 1552 (1226-2298) mg kg-1, while those of CYA ranged from 316.8 (246.2-489.4) to 483.2 (326.1-1202) mg kg-1. The combinations of DEL and CYA induced synergistic influences on the organisms. The contents of Cu/Zn-SOD and CarE showed significant variations when exposed to DEL, CYA, and their combinations compared to the untreated group. Furthermore, the mixture administration resulted in more pronounced alterations in the expression of five genes (hsp70, tctp, gst, mt, and crt) associated with cellular stress, carcinogenesis, detoxification, and endoplasmic reticulum compared to single exposures. In conclusion, our comprehensive findings provided detailed insights into the cumulative toxic effects of chemical mixtures across miscellaneous endpoints and concentration ranges. These results underscored the importance of considering mixture administration during ecological risk evaluations of chemicals.


Assuntos
Nitrilas , Oligoquetos , Piretrinas , Animais , Oligoquetos/efeitos dos fármacos , Piretrinas/toxicidade , Nitrilas/toxicidade
13.
Sci Total Environ ; 928: 172267, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38583628

RESUMO

Soils represent crucial sinks for pharmaceuticals and microplastics, making them hotspots for pharmaceuticals and plastic pollution. Despite extensive research on the toxicity of pharmaceuticals and microplastics individually, there is limited understanding of their combined effects on soil biota. This study focused on the earthworm Eisenia fetida as test organism to evaluate the biotoxicity and bioaccumulation of the typical pharmaceutical naproxen and microplastics in earthworms. Results demonstrated that high concentrations of naproxen (100 mg kg-1) significantly increased the malondialdehyde (MDA) content, inducing lipid peroxidation. Even though the low exposure of naproxen exhibits no significant influence to Eisenia fetida, the lipid peroxidation caused by higher concentration than environmental relevant concentrations necessitate attention due to temporal and spatial concentration variability found in the soil environment. Meanwhile, microplastics caused oxidative damage to antioxidant enzymes by reducing the superoxide dismutase (SOD) activity and MDA content in earthworms. Metabolome analysis revealed increased lipid metabolism in naproxen-treated group and reduced lipid metabolism in the microplastic-treated group. The co-exposure of naproxen and microplastics exhibited a similar changing trend to the microplastics-treated group, emphasizing the significant influence of microplastics. The detection of numerous including lipids like 17-Hydroxyandrostane-3-glucuronide, lubiprostone, morroniside, and phosphorylcholine, serves to identify potential biomarkers for naproxen and microplastics exposure. Additionally, microplastics increased the concentration of naproxen in earthworms at sub-organ and subcellular level. This study contributes valuable insights into the biotoxicity and distribution of naproxen and microplastics in earthworms, enhancing our understanding of their combined ecological risk to soil biota.


Assuntos
Microplásticos , Naproxeno , Oligoquetos , Poluentes do Solo , Oligoquetos/efeitos dos fármacos , Naproxeno/toxicidade , Animais , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Ecotoxicologia , Solo/química , Monitoramento Ambiental
14.
Chemosphere ; 359: 142250, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710415

RESUMO

Pesticides are typically present as combinations within soil ecosystems and have detrimental effects on untamed surroundings. However, the collective impacts and fundamental mechanisms of pesticides on soil living beings are currently inadequately assessed. In our current work, we evaluated the interactive consequences of clothianidin (CLO) and prochloraz (PRO) on earthworms (Eisenia fetida) using several toxicological tests, such as acute adverse effects, biocatalytic activity, and alterations in transcriptional activity. The findings revealed that CLO (with a 14-day LC50 value of 6.08 mg kg-1) exhibited greater toxicity compared to PRO (with a 14-day LC50 value of 79.41 mg kg-1). Moreover, the combinations of CLO and PRO had synergistic acute effects on E. fetida. Additionally, the activities of POD, CAT, and GST were significantly varied in most instances of single and mixed treatments when compared to the control. Surprisingly, the transcriptional levels of four genes (gst, sod, crt, and ann), related to oxidative load, metabolic detoxification systems, endoplasmic reticulum, and oxytocin neuropeptide, respectively, were also altered in response to single and mixture exposures, as compared to the control. Alterations in enzyme activity and gene transcriptional level could serve as early indicators for detecting co-exposure to pesticides. The findings of this research offered valuable holistic understanding regarding the toxicity of pesticide combinations on earthworms. Further research should be conducted to investigate the persistent effects of pesticide mixtures on terrestrial invertebrates in order to draw definitive conclusions about the associated risks.


Assuntos
Guanidinas , Imidazóis , Neonicotinoides , Oligoquetos , Poluentes do Solo , Tiazóis , Oligoquetos/efeitos dos fármacos , Animais , Neonicotinoides/toxicidade , Tiazóis/toxicidade , Guanidinas/toxicidade , Imidazóis/toxicidade , Poluentes do Solo/toxicidade , Inseticidas/toxicidade , Praguicidas/toxicidade
15.
Sci Total Environ ; 948: 174733, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032744

RESUMO

Soil thallium (Tl) contamination is of major public concern but little is known about soil Tl ecological toxicity or potential ecological remediation strategies. Here, two soil animal species with different ecological niches, Folsomia candida and Enchytraeus crypticus, were used to test Tl toxicity and modification by exogenous organic materials (i.e. maize straw and biochar). The endpoints of Tl ecotoxicity to F. candida and E. crypticus were studied at two biological levels, i.e., the individual (body Tl concentrations) and the population (survival, reproduction, and growth). Thallium concentrations in F. candida and E. crypticus increased with increasing soil Tl concentration, and their survival and reproduction rates decreased with increasing soil Tl concentration. The LC50 value of Tl effects on F. candida mortality (28 d) was 24.0 mg kg-1 and the EC50 value of reproduction inhibition was 6.51 mg kg-1. The corresponding values were 4.15 mg kg-1 and 2.31 mg kg-1 respectively for E. crypticus showing higher sensitivity to soil Tl than F. candida. These effective values are comparable to or much lower than the environmental Tl concentrations in field soils, suggesting high potential ecological risk. Both biochar and straw can decrease animal body Tl concentrations in different ways, i.e. reducing Tl availability or offering clean food sources, and addition of exogenous organic materials clearly mitigated Tl ecotoxicity in highly polluted soil. The results highlight the potential Tl ecological risk to soil animals and the potential use of organic materials to control the toxicity.


Assuntos
Oligoquetos , Poluentes do Solo , Tálio , Animais , Tálio/toxicidade , Poluentes do Solo/toxicidade , Oligoquetos/efeitos dos fármacos , Solo/química , Carvão Vegetal , Zea mays
16.
J Hazard Mater ; 470: 134163, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554518

RESUMO

Ecotoxicity of heavy metals in soil is primarily associated with their bioaccessibility and bioavailability in the soil media. However, in some exceptional cases, soil ecotoxicity has been observed despite high total metal concentrations and low extractable metal concentrations in contaminated field sites; therefore, other exposure pathways must be considered. Therefore, the aim of this study was to evaluate the soil-particle induced ecotoxicity in an old mining area. We hypothesized that heavy metals, strongly adsorbed onto soil particles of consumable size for soil organisms, exhibit ecotoxicity, especially on soil particles ∼1 µm to 300 µm in size. A plant seedling assay, in vivo cytotoxicity assay using earthworm immune cells, and a metal bioconcentration assessment were performed. The results of soil particle toxicity revealed that the soil from the study area (A1-A4) had a low contribution to the soil ecotoxicity of extractable metals. For instance, the concentration of extractable arsenic was only 1.9 mg/kg soil, despite the total arsenic concentration reaching 36,982 mg/kg soil at the A1 site. The qualitative and quantitative analyses using SEM-EDX and ICP-OES, as well as principal component analyses, supported the hypothesis of the present study. Overall, the study results emphasize the importance of soil particle-induced ecotoxicity in long-term contaminated field soils. Our study results can inform on effective site-specific soil ecological risk assessment as they suggest the inclusion of soil particle-induced ecotoxicity as an important criterion in old, contaminated field sites, even when the extractable metal fraction in the field soil is low. ENVIRONMENTAL IMPLICATION: Bioaccessibility and bioavailability are primary factors contributing to the soil ecotoxicity of heavy metals. However, in some cases, such as long-term contaminated field sites, soil ecotoxicity has been confirmed even when low extractable metal concentrations were detected alongside high total metal concentrations. The findings of this study reveal that soil particles of edible size could be sources of soil ecotoxicity in the case of long-term contaminated fields with low extractable metal concentrations. The results of this study would contribute to the area of site-specific soil ecological risk assessment.


Assuntos
Metais Pesados , Mineração , Oligoquetos , Poluentes do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Oligoquetos/efeitos dos fármacos , Animais , Metais Pesados/toxicidade , Metais Pesados/análise , Solo/química , Plântula/efeitos dos fármacos , Tamanho da Partícula
17.
Environ Sci Pollut Res Int ; 31(32): 44815-44827, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955968

RESUMO

To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.


Assuntos
Benzimidazóis , Carbamatos , Ivermectina , Oligoquetos , Poluentes do Solo , Solo , Animais , Oligoquetos/efeitos dos fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Carbamatos/toxicidade , Benzimidazóis/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Estresse Oxidativo , Praguicidas/toxicidade
18.
Environ Sci Pollut Res Int ; 31(32): 44800-44814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954347

RESUMO

Naphthalene (NAP) was frequently detected in polycyclic aromatic hydrocarbons (PAHs)-contaminated soil, and its residues may pose an eco-toxicological threat to soil organisms. The toxic effects of NAP were closely tied to phenolic and quinone metabolites in biological metabolism. However, the present knowledge concerning the eco-toxicological impacts of NAP metabolites at the animal level is scanty. Here, we assessed the differences in the eco-toxicological responses of Eisenia fetida (E. fetida) in NAP, 1-naphthol (1-NAO) or 1,4-naphthoquinone (1,4-NQ) contaminated soils. NAP, 1-NAO, and 1,4-NQ exposure triggered the onset of oxidative stress as evidenced by the destruction of the antioxidant enzyme system. The lipid peroxidation and DNA oxidative damage levels induced by 1-NAO and 1,4-NQ were higher than those of NAP. The elevation of DNA damage varied considerably depending on differences in oxidative stress and the direct mode of action of NAP or its metabolites with DNA. All three toxicants induced different degrees of physiological damage to the body wall, but only 1, 4-NQ caused the shedding of intestinal epithelial cells. The integrated biomarker response for different exposure times illustrated that the comprehensive toxicity at the animal level was 1,4-NQ > 1-NAO > NAP, and the time-dependent trends of oxidative stress responses induced by the three toxicants were similar. At the initial stage, the antioxidant system of E. fetida responded positively to the provocation, but the ability of E. fetida to resist stimulation decreased with the prolongation of time resulting in provocation oxidative damage. This study would provide new insights into the toxicological effects and biohazard of PAHs on soil animals.


Assuntos
Naftalenos , Oligoquetos , Estresse Oxidativo , Poluentes do Solo , Animais , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Poluentes do Solo/toxicidade , Naftalenos/toxicidade , Solo/química , Dano ao DNA , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos
19.
Environ Pollut ; 351: 124111, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710360

RESUMO

Pesticides are substances used for controlling, preventing, and repelling pests in agriculture. Among them, neonicotinoids have become the fastest-growing class of insecticides because of their efficiency in targeting pests. They work by strongly binding to nicotinic acetylcholine receptors (nAChRs) in the central nervous system of insects, leading to receptor blockage, paralysis, and death. Despite their selectivity for insects, these substances may be hazardous to non-target creatures, including earthworms. Although earthworms may be invasive in some regions like north America, they contribute to the development of soil structure, water management, nutrient cycling, pollution remediation, and cultural services, positively impacting the environment, particularly in the soil ecosystem. Thus, this study aimed to develop a novel earthworm behavior assay since behavior is a sensitive marker for toxicity assay, and demonstrated its application in evaluating the toxicity of various neonicotinoids. Here, we exposed Eisenia fetida to 1 and 10 ppb of eight neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram pestanal, thiacloprid, thiametoxam, and sulfoxaflor) for 3 days to observe their behavior toxicities. Overall, all of the neonicotinoids decreased their locomotion, showed by a reduction of average speed by 24.94-68.63% and increment in freezing time movement ratio by 1.51-4.25 times, and altered their movement orientation and complexity, indicated by the decrement in the fractal dimension value by 24-70%. Moreover, some of the neonicotinoids, which were acetamiprid, dinotefuran, imidacloprid, nitenpyram, and sulfoxaflor, could even alter their exploratory behaviors, which was shown by the increment in the time spent in the center area value by 6.94-12.99 times. Furthermore, based on the PCA and heatmap clustering results, thiametoxam was found as the neonicotinoid that possessed the least pronounced behavior toxicity effects among the tested pesticides since these neonicotinoid-treated groups in both concentrations were grouped in the same major cluster with the control group. Finally, molecular docking was also conducted to examine neonicotinoids' possible binding mechanism to Acetylcholine Binding Protein (AChBP), which is responsible for neurotransmission. The molecular docking result confirmed that each of the neonicotinoids has a relatively high binding energy with AChBP, with the lowest binding energy was possessed by thiametoxam, which consistent with its relatively low behavior toxicities. Thus, these molecular docking results might hint at the possible mechanism behind the observed behavior alterations. To sum up, the present study demonstrated that all of the neonicotinoids altered the earthworm behaviors which might be due to their ability to bind with some specific neurotransmitters and the current findings give insights into the toxicities of neonicotinoids to the environment, especially animals in a soil ecosystem.


Assuntos
Inseticidas , Locomoção , Neonicotinoides , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/efeitos dos fármacos , Neonicotinoides/toxicidade , Locomoção/efeitos dos fármacos , Inseticidas/toxicidade , Poluentes do Solo/toxicidade , Nitrocompostos/toxicidade , Testes de Toxicidade , Receptores Nicotínicos/metabolismo , Guanidinas/toxicidade , Tiazinas , Tiazóis
20.
Sci Rep ; 14(1): 12575, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822086

RESUMO

This study investigated batch-fed vermicomposting of cow manure, with a specific focus on assessing the effects of tylosin on the weight of earthworms and the overall quality of the resulting manure. Five reactors, including three concentrations of tylosin (50, 100, and 150 mg/kg) and two control reactors, were employed. Residual tylosin concentrations were measured using high-performance liquid chromatography (HPLC). Quality parameters such as pH, temperature, volatile solids (VS), organic carbon content (OCC), electrical conductivity (EC), ash content, C/N ratio, total Kjeldahl nitrogen (TKN), and microbial content were evaluated. The toxicity and maturity of vermicompost were assessed by determining the germination index (GI). The study also monitored variations in the earthworm's weight. The results demonstrated a decreasing trend in VS, OCC, C/N, and fecal coliforms, along with increased pH, EC, ash content, and TKN during the vermicomposting process. Furthermore, investigations revealed significant reductions in the reactors with tylosin concentrations of 50, 100, and 150 mg/kg, resulting in the removal of 98%, 90.48%, and 89.38% of the initial tylosin, respectively. This result confirms the faster removal of tylosin in reactors with lower concentrations. Degradation of tylosin also conforms to first-order kinetics. The findings showed a significant influence of tylosin on the weight of Eisenia fetida earthworms and the lowest antibiotic concentration led to the highest weight gain. Finally, the high percentage of germination index (90-100%) showed that the quality and maturity of vermicompost is by national and international standards.


Assuntos
Compostagem , Esterco , Oligoquetos , Tilosina , Animais , Tilosina/farmacologia , Esterco/análise , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Bovinos , Compostagem/métodos , Solo/química , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA