RESUMO
Caloric restriction is known to improve inflammatory and autoimmune diseases. However, the mechanisms by which reduced caloric intake modulates inflammation are poorly understood. Here we show that short-term fasting reduced monocyte metabolic and inflammatory activity and drastically reduced the number of circulating monocytes. Regulation of peripheral monocyte numbers was dependent on dietary glucose and protein levels. Specifically, we found that activation of the low-energy sensor 5'-AMP-activated protein kinase (AMPK) in hepatocytes and suppression of systemic CCL2 production by peroxisome proliferator-activator receptor alpha (PPARα) reduced monocyte mobilization from the bone marrow. Importantly, we show that fasting improves chronic inflammatory diseases without compromising monocyte emergency mobilization during acute infectious inflammation and tissue repair. These results reveal that caloric intake and liver energy sensors dictate the blood and tissue immune tone and link dietary habits to inflammatory disease outcome.
Assuntos
Restrição Calórica , Monócitos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Quimiocina CCL2/deficiência , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , PPAR alfa/deficiência , PPAR alfa/genética , PPAR alfa/metabolismoRESUMO
Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid progenitor cells suggests that the clinically tested PPAR-α agonists we used may improve the efficacy of corticosteroids in treating Epo-resistant anaemias.
Assuntos
Células Precursoras Eritroides/citologia , Eritropoese , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo , Doença Aguda , Anemia/tratamento farmacológico , Anemia/metabolismo , Anemia/patologia , Anemia Hemolítica/metabolismo , Animais , Butiratos/farmacologia , Butiratos/uso terapêutico , Técnicas de Cultura de Células , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Doença Crônica , Modelos Animais de Doenças , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Feminino , Fenofibrato/farmacologia , Glucocorticoides/farmacologia , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/embriologia , Camundongos , PPAR alfa/agonistas , PPAR alfa/deficiência , Fenil-Hidrazinas/farmacologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Transdução de Sinais/efeitos dos fármacosRESUMO
Cholestatic liver fibrosis occurs in liver injuries accompanied by inflammation, which develops into cirrhosis if not effectively treated in early stage. The aim of the study is to explore the effect of fenofibrate on liver fibrosis in chronic cholestatic mice. In this study, wild-type (WT) and Pparα-null (KO) mice were dosed alpha-naphthylisothiocyanate (ANIT) diet to induce chronic cholestasis. Induced liver fibrosis was determined by pathological biomarkers. Then fenofibrate 25 mg/kg was orally administrated to mice twice/day for 14 days. Serum and liver samples were collected for analysis of biochemistry and fibrosis. In WT mice, cholestatic biomarkers were increased by 5-8-fold and the expression of tissue inhibitors of metalloproteinases 1 (TIMP-1), Monocyte chemoattractant protein 1 (MCP-1), Collagen protein I (Collagen I) was increased by more than 10-fold. Fenofibrate significantly downgraded the biochemical and fibrotic biomarkers. In Western blot analysis, levels of collagenI and alpha-smooth muscle actin (α-SMA) were strongly inhibited by fenofibrate. In KO mice, liver fibrosis was induced successfully, but no improvement after fenofibrate treatment was observed. These data showed low-dose fenofibrate reverses cholestatic liver fibrosis in WT mice but not in KO mice, suggesting the dependence of therapeutic action on peroxisome proliferator-activated receptor alpha (PPARα). The study offers an additional therapeutic strategy for cholestatic liver fibrosis in practice.
Assuntos
1-Naftilisotiocianato/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Colestase/metabolismo , Fenofibrato/farmacologia , Cirrose Hepática/tratamento farmacológico , 1-Naftilisotiocianato/efeitos adversos , Actinas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Colestase/induzido quimicamente , Colestase/patologia , Colágeno Tipo I/metabolismo , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Cirrose Hepática/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , PPAR alfa/deficiência , Fragmentos de Peptídeos/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
BACKGROUND & AIMS: Many genetic and environmental factors, including family history, dietary fat, and inflammation, increase risk for colon cancer development. Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that regulates systemic lipid homeostasis. We explored the role of intestinal PPARα in colon carcinogenesis. METHODS: Colon cancer was induced in mice with intestine-specific disruption of Ppara (PparaΔIE), Pparafl/fl (control), and mice with disruption of Ppara that express human PPARA (human PPARA transgenic mice), by administration of azoxymethane with or without dextran sulfate sodium (DSS). Colons were collected from mice and analyzed by immunoblots, quantitative polymerase chain reaction, and histopathology. Liquid chromatography coupled with mass spectrometry-based metabolomic analyses were performed on urine and colons. We used molecular biology and biochemical approaches to study mechanisms in mouse colons, primary intestinal epithelial cells, and colon cancer cell lines. Gene expression data and clinical features of patients with colorectal tumors were obtained from Oncomine, and human colorectal-tumor specimens and adjacent normal tissues were collected and analyzed by immunohistochemistry. RESULTS: Levels of Ppara messenger RNA were reduced in colon tumors from mice. PparaΔIE mice developed more and larger colon tumors than control mice following administration of azoxymethane, with or without DSS. Metabolomic analyses revealed increases in methylation-related metabolites in urine and colons from PparaΔIE mice, compared with control mice, following administration of azoxymethane, with or without DSS. Levels of DNA methyltransferase 1 (DNMT1) and protein arginine methyltransferase 6 (PRMT6) were increased in colon tumors from PparaΔIE mice, compared with colon tumors from control mice. Depletion of PPARα reduced the expression of retinoblastoma protein, resulting in increased expression of DNMT1 and PRMT6. DNMT1 and PRMT6 decreased expression of the tumor suppressor genes Cdkn1a (P21) and Cdkn1b (p27) via DNA methylation and histone H3R2 dimethylation-mediated repression of transcription, respectively. Fenofibrate protected human PPARA transgenic mice from azoxymethane and DSS-induced colon cancer. Human colon adenocarcinoma specimens had lower levels of PPARA and retinoblastoma protein and higher levels of DNMT1 and PRMT6 than normal colon tissues. CONCLUSIONS: Loss of PPARα from the intestine promotes colon carcinogenesis by increasing DNMT1-mediated methylation of P21 and PRMT6-mediated methylation of p27 in mice. Human colorectal tumors have lower levels of PPARA messenger RNA and protein than nontumor tissues. Agents that activate PPARα might be developed for chemoprevention or treatment of colon cancer.
Assuntos
Adenocarcinoma/prevenção & controle , Colo/enzimologia , Neoplasias do Colo/prevenção & controle , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Proteínas Nucleares/metabolismo , PPAR alfa/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Anticarcinógenos/farmacologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colo/patologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/efeitos dos fármacos , Bases de Dados Genéticas , Modelos Animais de Doenças , Fenofibrato/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , PPAR alfa/agonistas , PPAR alfa/deficiência , PPAR alfa/genética , Proteína-Arginina N-Metiltransferases/genética , Transdução de SinaisRESUMO
Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs.
Assuntos
Genoma , Fígado/metabolismo , Elementos Reguladores de Transcrição , Transcrição Gênica , Algoritmos , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica/métodos , Camundongos , Camundongos Knockout , PPAR alfa/deficiência , PPAR alfa/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genéticaRESUMO
Agonists for PPARα are used clinically to reduce triglycerides and improve high-density lipoprotein (HDL) cholesterol levels in patients with hyperlipidemia. Whether the mechanism of PPARα activation to lower serum lipids occurs in the liver or other tissues is unknown. To determine the function of hepatic PPARα on lipid profiles in diet-induced obese mice, we placed hepatocyte-specific peroxisome proliferator-activated receptor-α (PPARα) knockout (PparaHepKO) and wild-type (Pparafl/fl) mice on high-fat diet (HFD) or normal fat diet (NFD) for 12 wk. There was no significant difference in weight gain, percent body fat mass, or percent body lean mass between the groups of mice in response to HFD or NFD. Interestingly, the PparaHepKO mice on HFD had worsened hepatic inflammation and a significant shift in the proinflammatory M1 macrophage population. These changes were associated with higher hepatic fat mass and decreased hepatic lean mass in the PparαHepKO on HFD but not in NFD as measured by Oil Red O and noninvasive EchoMRI analysis (31.1 ± 2.8 vs. 20.2 ± 1.5, 66.6 ± 2.5 vs. 76.4 ± 1.5%, P < 0.05). We did find that this was related to significantly reduced peroxisomal gene function and lower plasma ß-hydroxybutyrate in the PparaHepKO on HFD, indicative of reduced metabolism of fats in the liver. Together, these provoked higher plasma triglyceride and apolipoprotein B100 levels in the PparaHepKO mice compared with Pparafl/fl on HFD. These data indicate that hepatic PPARα functions to control inflammation and liver triglyceride accumulation that prevent hyperlipidemia.
Assuntos
Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Hiperlipidemias/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Obesidade/metabolismo , PPAR alfa/deficiência , Adiposidade , Animais , Apolipoproteína B-100/sangue , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Hepatócitos/patologia , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/patologia , Inflamação/sangue , Inflamação/genética , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Fígado/patologia , Camundongos Knockout , Obesidade/sangue , Obesidade/genética , Obesidade/patologia , PPAR alfa/genética , Triglicerídeos/sangueRESUMO
Parkinson's disease (PD) is the second most common devastating human neurodegenerative disorder and despite intense investigation, no effective therapy is available for PD. Cinnamic acid, a naturally occurring aromatic fatty acid of low toxicity, is a precursor for the synthesis of a huge number of plant substances. This study highlights the neuroprotective effect of cinnamic acid in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Oral administration of cinnamic acid protected tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra pars compacta (SNpc) and TH fibers in the striatum of MPTP-insulted mice. Accordingly, oral cinnamic acid also normalized striatal neurotransmitters and improved locomotor activities in MPTP-intoxicated mice. While investigating mechanisms, we found that cinnamic acid induced the activation of peroxisome proliferator-activated receptor α (PPARα), but not PPARß, in primary mouse astrocytes. Cinnamic acid mediated protection of the nigrostriatal system and locomotor activities in WT and PPARß (-/-), but not PPARα (-/-) mice from MPTP intoxication suggests that cinnamic acid requires the involvement of PPARα in protecting dopaminergic neurons in this model of PD. This study delineates a new function of cinnamic acid in protecting dopaminergic neurons via PPARα that could be beneficial for PD.
Assuntos
Cinamatos/uso terapêutico , Corpo Estriado/metabolismo , Intoxicação por MPTP/metabolismo , Fármacos Neuroprotetores/uso terapêutico , PPAR alfa/deficiência , Substância Negra/metabolismo , Animais , Cinamatos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Intoxicação por MPTP/patologia , Intoxicação por MPTP/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/farmacologia , PPAR alfa/agonistas , PPAR alfa/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/prevenção & controle , Substância Negra/efeitos dos fármacos , Substância Negra/patologiaRESUMO
Defects in the renal fatty acid oxidation (FAO) pathway have been implicated in the development of renal fibrosis. Although, compared with young kidneys, aged kidneys show significantly increased fibrosis with impaired kidney function, the mechanisms underlying the effects of aging on renal fibrosis have not been investigated. In this study, we investigated peroxisome proliferator-activated receptor α (PPARα) and the FAO pathway as regulators of age-associated renal fibrosis. The expression of PPARα and the FAO pathway-associated proteins significantly decreased with the accumulation of lipids in the renal tubular epithelial region during aging in rats. In particular, decreased PPARα protein expression associated with increased expression of PPARα-targeting microRNAs. Among the microRNAs with increased expression during aging, miR-21 efficiently decreased PPARα expression and impaired FAO when ectopically expressed in renal epithelial cells. In cells pretreated with oleic acid to induce lipid stress, miR-21 treatment further enhanced lipid accumulation. Furthermore, treatment with miR-21 significantly exacerbated the TGF-ß-induced fibroblast phenotype of epithelial cells. We verified the physiologic importance of our findings in a calorie restriction model. Calorie restriction rescued the impaired FAO pathway during aging and slowed fibrosis development. Finally, compared with kidneys of aged littermate controls, kidneys of aged PPARα-/- mice showed exaggerated lipid accumulation, with decreased activity of the FAO pathway and a severe fibrosis phenotype. Our results suggest that impaired renal PPARα signaling during aging aggravates renal fibrosis development, and targeting PPARα is useful for preventing age-associated CKD.
Assuntos
Envelhecimento/metabolismo , Ácidos Graxos/metabolismo , Rim/patologia , PPAR alfa/metabolismo , Envelhecimento/patologia , Animais , Restrição Calórica , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/genética , Fibrose , Regulação da Expressão Gênica , Rim/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/farmacologia , Ácido Oleico/farmacologia , Oxirredução , PPAR alfa/deficiência , PPAR alfa/genética , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/fisiologiaRESUMO
BACKGROUND: Many molecules and signaling pathways involved in neural development play a role in neurodegenerative diseases and brain tumor progression. Peroxisome proliferator-activated receptor (PPAR) proteins regulate the differentiation of tissues and the progression of many diseases. However, the role of these proteins in neural development is unclear. RESULTS: We examined the function of Pparα in the neural development of zebrafish. Two duplicate paralogs for mammalian PPARA/Ppara, namely pparaa and pparab, are present in the zebrafish genome. Both pparaa and pparab are expressed in the developing central nervous system in zebrafish embryos. Inhibiting the function of Pparα by using either the PPARα/Pparα antagonist GW6471 or pparaa or pparab truncated constructs produced identical phenotypes, which were sufficient to reduce the proliferation of neuronal and glial precursor cells without affecting the formation of neural progenitors. CONCLUSIONS: We demonstrated that both Pparαa and Pparαb proteins are essential regulators of the proliferation of neuronal and glial precursors. This study provides a better understanding of the functions of PPARα/Pparα in neural development and further expands our knowledge of the potential role of PPARα/Pparα in neurological disorders and brain tumors. Developmental Dynamics 247:1264-1275, 2018. © 2018 Wiley Periodicals, Inc.
Assuntos
Proliferação de Células/efeitos dos fármacos , Sistema Nervoso Central/citologia , Neuroglia/citologia , Neurônios/citologia , PPAR alfa/fisiologia , Células-Tronco/citologia , Animais , Sistema Nervoso Central/embriologia , Neurogênese , PPAR alfa/deficiência , Peixe-Zebra/embriologiaRESUMO
BACKGROUND: Diarrhea is a severe complication in HIV-1-infected patients with Trans-activator of transcription (HIV-1 Tat) protein being recognized as a major underlying cause. Beside its direct enterotoxic effects, Tat protein has been recently shown to affect enteric glial cell (EGC) activity. EGCs regulate intestinal inflammatory responses by secreting pro-inflammatory molecules; nonetheless, they might also release immune-regulatory factors, as palmytoilethanolamide (PEA), which exerts anti-inflammatory effects by activating PPARα receptors. We aimed at clarifying whether EGCs are involved in HIV-1 Tat-induced diarrhea and if PEA exerts antidiarrheal activity. METHODS: Diarrhea was induced by intracolonic administration of HIV-1 Tat protein in rats at day 1. PEA alone or in the presence of peroxisome proliferator-activated receptor (PPAR) antagonists was given intraperitoneally from day 2 to day 7. S100B, iNOS, NF-kappaB, TLR4 and GFAP expression were evaluated in submucosal plexi, while S100B and NO levels were measured in EGC submucosal plexi lysates, respectively. To verify whether PEA effects were PPARα-mediated, PPARα-/- mice were also used. After 7 days from diarrhea induction, endogenous PEA levels were measured in submucosal plexi homogenates deriving from rats and PPARα-/- mice. RESULTS: HIV-1 Tat protein induced rapid onset diarrhea alongside with a significant activation of EGCs. Tat administration significantly increased all hallmarks of neuroinflammation by triggering TLR4 and NF-kappaB activation and S100B and iNOS expression. Endogenous PEA levels were increased following HIV-1 Tat exposure in both wildtype and knockout animals. In PPARα-/- mice, PEA displayed no effects. In wildtype rats, PEA, via PPARα-dependent mechanism, resulted in a significant antidiarrheal activity in parallel with marked reduction of EGC-sustained neuroinflammation. CONCLUSIONS: EGCs mediate HIV-1 Tat-induced diarrhea by sustaining the intestinal neuroinflammatory response. These effects are regulated by PEA through a selective PPARα-dependent mechanism. PEA might be considered as an adjuvant therapy in HIV-1-induced diarrhea.
Assuntos
Antivirais/uso terapêutico , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Etanolaminas/uso terapêutico , Neuroglia/efeitos dos fármacos , Ácidos Palmíticos/uso terapêutico , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Amidas , Anestésicos Locais/uso terapêutico , Animais , Modelos Animais de Doenças , Etanolaminas/metabolismo , Trato Gastrointestinal/patologia , Trato Gastrointestinal/virologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Lidocaína/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , PPAR alfa/deficiência , PPAR alfa/genética , Ácidos Palmíticos/metabolismo , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismoRESUMO
We established a mouse model of developmental nonalcoholic steatohepatitis (NASH) by feeding a high polyunsaturated fat liquid diet to female glutathione-S-transferase 4-4 (Gsta4-/-)/peroxisome proliferator activated receptor α (Ppara-/-) double knockout 129/SvJ mice for 12 weeks from weaning. We used it to probe the importance of lipid peroxidation in progression of NASH beyond simple steatosis. Feeding Gsta4-/-/Ppara-/- double-knockout (dKO) mice liquid diets containing corn oil resulted in a percentage fat-dependent increase in steatosis and necroinflammatory injury (P < 0.05). Increasing fat to 70% from 35% resulted in increases in formation of 4-hydroxynonenal protein adducts accompanied by evidence of stellate cell activation, matrix remodeling, and fibrosis (P < 0.05). Comparison of dKO mice with wild-type (Wt) and single knockout mice revealed additive effects of Gsta4-/- and Ppara-/- silencing on steatosis, 4-hydroxynonenal adduct formation, oxidative stress, serum alanine amino transferase, expression of tumor necrosis factor alpha, Il6, interferon mRNA, and liver pathology (P < 0.05). Induction of Cyp2e1 protein by high-fat diet was suppressed in Gsta4-/- and dKO groups (P < 0.05). The dKO mice had similar levels of markers of stellate cell activation and matrix remodeling as Ppara-/- single KO mice. These data suggest that lipid peroxidation products play a role in progression of liver injury to steatohepatitis in NASH produced by high-fat feeding during development but appear less important in development of fibrosis.
Assuntos
Glutationa Transferase/deficiência , Peroxidação de Lipídeos/fisiologia , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Western Blotting , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Fígado/patologia , Camundongos , Camundongos Knockout , PPAR alfa/deficiência , Reação em Cadeia da Polimerase , TranscriptomaRESUMO
Dietary lipids and their metabolites activate members of the peroxisome proliferative-activated receptor (PPAR) family of transcription factors and are critical for colonic health. The PPARα isoform plays a vital role in regulating inflammation in various disease settings, but its role in intestinal inflammation, commensal homeostasis, and mucosal immunity in the gut are unclear. In this study, we demonstrate that the PPARα pathway in innate immune cells orchestrates gut mucosal immunity and commensal homeostasis by regulating the expression of IL-22 and the antimicrobial peptides RegIIIß, RegIIIγ, and calprotectin. Additionally, the PPARα pathway is critical for imparting regulatory phenotype in intestinal macrophages. PPARα deficiency in mice led to commensal dysbiosis in the gut, resulting in a microbiota-dependent increase in the expression of inflammatory cytokines and enhanced susceptibility to intestinal inflammation. Pharmacological activation of this pathway decreased the expression of inflammatory cytokines and ameliorated colonic inflammation. Taken together, these findings identify a new important innate immune function for the PPARα signaling pathway in regulating intestinal inflammation, mucosal immunity, and commensal homeostasis. Thus, the manipulation of the PPARα pathway could provide novel opportunities for enhancing mucosal immunity and treating intestinal inflammation.
Assuntos
Microbioma Gastrointestinal/imunologia , Homeostase , Inflamação/prevenção & controle , PPAR alfa/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Proteínas de Homeodomínio/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/deficiênciaRESUMO
Nonalcoholic fatty liver disease (NAFLD) is one of the main liver diseases today, and may progress to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Some studies have shown the beneficial effects of aerobic exercise on reversing NAFLD. To verify whether chronic aerobic exercise improves the insulin resistance, liver inflammation, and steatohepatitis caused by a high fat diet (HF) and whether PPARα is involved in these actions. C57BL6 wild type (WT) and PPAR-α knockout (KO) mice were fed with a standard diet (SD) or HF during 12 weeks; the HF mice were trained on a treadmill during the last 8 weeks. Serum glucose and insulin tolerances, serum levels of aspartate aminotransferase, hepatic content of triacylglycerol, cytokines, gene expression, and protein expression were evaluated in all animals. Chronic exposure to HF diet increased triacylglycerol accumulation in the liver, leading to NAFLD, increased aminotransferase in the serum, increased peripheral insulin resistance, and higher adiposity index. Exercise reduced all these parameters in both animal genotypes. The liver lipid accumulation was not associated with inflammation; trained KO mice, however, presented a huge inflammatory response that was probably caused by a decrease in PPAR-γ expression. We conclude that exercise improved the damage caused by a HF independently of PPARα, apparently by a peripheral fatty acid oxidation in the skeletal muscle. We also found that the absence of PPARα together with exercise leads to a decrease in PPAR-γ and a huge inflammatory response. J. Cell. Physiol. 232: 1008-1019, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Progressão da Doença , Inflamação/tratamento farmacológico , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/deficiência , Condicionamento Físico Animal , Tiazolidinedionas/uso terapêutico , Animais , Peso Corporal , Jejum/sangue , Inflamação/sangue , Inflamação/complicações , Inflamação/genética , Lipídeos/sangue , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Tamanho do Órgão , PPAR alfa/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RosiglitazonaRESUMO
BACKGROUND: Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5'AMP-activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator-activated receptor-α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. OBJECTIVE: To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. METHODS: C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high-fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. RESULTS: Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP-1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF-21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF-21 in liver of PPARα KO mice. CONCLUSIONS: In mice fed with a high-fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF-21, dependent on PPARα. J. Cell. Physiol. 232: 2168-2177, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado/efeitos dos fármacos , PPAR alfa/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Ativação Enzimática , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Predisposição Genética para Doença , Glucoquinase/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/deficiência , PPAR alfa/genética , Fenótipo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de TempoRESUMO
Peroxisome proliferator-activated receptors (PPARs) play a major role in metabolism and inflammatory control. Exercise can modulate PPAR expression in skeletal muscle, adipose tissue, and macrophages. Little is known about the effects of PPAR-α in metabolic profile and cytokine secretion after acute exercise in macrophages. In this context, the aim of this study was to understand the influence of PPAR-α on exercise-mediated immune metabolic parameters in peritoneal macrophages. Mice C57BL/6 (WT) and PPAR-α knockout (KO) were examined in non-exercising control (n = 4) or 24 hours after acute moderate exercise (n = 8). Metabolic parameters (glucose, non-esterified fatty acids, total cholesterol [TC], and triacylglycerol [TG]) were assessed in serum. Cytokine concentrations (IL-1ß, IL-6, IL-10, TNF-α, and MCP-1) were measured from peritoneal macrophages cultured or not with LPS (2.5 µg/mL) and Rosiglitazone (1 µM). Exercised KO mice exhibited low glucose concentration and higher TC and TG in serum. At baseline, no difference in cytokine production between the genotypes was observed. However, IL-1ß was significantly higher in KO mice after LPS stimulus. IL-6 and IL-1ß had increased concentrations in KO compared with WT, even after exercise. MCP-1 was not restored in exercised KO LPS group. Rosiglitazone was not able to reduce proinflammatory cytokine production in KO mice at baseline level or associated with exercise. Acute exercise did not alter mRNA expression in WT mice. CONCLUSION: PPAR-α seems to be needed for metabolic glucose homeostasis and anti-inflammatory effect of acute exercise. Its absence may induce over-expression of pro-inflammatory cytokines in LPS stimulus. Moreover, moderate exercise or PPAR-γ agonist did not reverse this response.
Assuntos
Inflamação/metabolismo , PPAR alfa/deficiência , Condicionamento Físico Animal , Animais , Colesterol/sangue , Glucose/metabolismo , Homeostase , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , Triglicerídeos/sangueRESUMO
We previously reported that polar compounds (PO) in cooking oil are teratogenic and perturbed retinoic acid (RA) metabolism. Considering PO as a potent peroxisome proliferator-activated receptor α (PPARα) activator, this study aimed to investigate the role of PPARα in PO-induced teratogenesis and disturbance of RA metabolism. Female PPARα knockout or wild type mice were mated with males of the same genotype. Pregnant mice were fed a diet containing 10% fat from either fresh oil (FO) or PO from gestational day1 to day18, and killed at day18. The PO diet significantly increased the incidence of teratogenesis and fetal RA concentrations, regardless of genotype. Though PPARα deficiency disturbed maternal RA homeostasis, itself did not contribute to teratogenesis as long as FO diet was given. The mRNA profile of genes involved in RA metabolism was differentially affected by diet or genotype in mothers and fetuses. Based on hepatic mRNA levels of genes involved in xenobiotic metabolism, we inferred that PO not only activated PPARα, but also altered transactivity of other xenobiotic receptors. We concluded that PO-induced fetal anomalies and RA accumulation were independent of PPARα activation.
Assuntos
Gorduras Insaturadas na Dieta/farmacologia , Óxidos , PPAR alfa/metabolismo , Teratogênese , Animais , Gorduras Insaturadas na Dieta/efeitos adversos , Feminino , Expressão Gênica , Camundongos , Camundongos Knockout , Óxidos/química , PPAR alfa/deficiência , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/efeitos dos fármacos , Teratogênese/efeitos dos fármacos , Teratogênese/genética , Teratogênicos/química , Teratogênicos/farmacologia , Vitamina A/farmacologiaRESUMO
Obesity poses an increased risk of developing metabolic syndrome and closely associated nonalcoholic fatty liver disease, including liver cancer. Satiety hormone leptin-deficient (ob/ob) mice, considered paradigmatic of nutritional obesity, develop hepatic steatosis but are less prone to developing liver tumors. Sustained activation of peroxisome proliferator-activated receptor α (PPARα) in ob/ob mouse liver increases fatty acid oxidation (FAO), which contributes to attenuation of obesity but enhances liver cancer risk. To further evaluate the role of PPARα-regulated hepatic FAO and energy burning in the progression of fatty liver disease, we generated PPARα-deficient ob/ob (PPARα(Δ)ob/ob) mice. These mice become strikingly more obese compared to ob/ob littermates, with increased white and brown adipose tissue content and severe hepatic steatosis. Hepatic steatosis becomes more severe in fasted PPARα(Δ)ob/ob mice as they fail to up-regulate FAO systems. PPARα(Δ)ob/ob mice also do not respond to peroxisome proliferative and mitogenic effects of PPARα agonist Wy-14,643. Although PPARα(Δ)ob/ob mice are severely obese, there was no significant increase in liver tumor incidence, even when maintained on a diet containing Wy-14,643. We conclude that sustained PPARα activation-related increase in FAO in fatty livers of obese ob/ob mice increases liver cancer risk, whereas deletion of PPARα in ob/ob mice aggravates obesity and hepatic steatosis. However, it does not lead to liver tumor development because of reduction in FAO and energy burning.
Assuntos
Ácidos Graxos/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , PPAR alfa/deficiência , Animais , Modelos Animais de Doenças , Immunoblotting , Neoplasias Hepáticas/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Oxirredução , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2), one of the most abundant circulating IGFBPs, is known to attenuate the biological action of IGF-1. Although the effect of IGFBP-2 in preventing metabolic disorders is well known, its regulatory mechanism remains unclear. In the present study, we demonstrated the transcriptional regulation of the Igfbp-2 gene by peroxisome-proliferator-activated receptor (PPAR) α in the liver. During fasting, both Igfbp-2 and PPARα expression levels were increased. Wy14643, a selective PPARα agonist, significantly induced Igfbp-2 gene expression in primary cultured hepatocytes. However, Igfbp-2 gene expression in Pparα null mice was not affected by fasting or Wy14643. In addition, through transient transfection and chromatin immunoprecipitation assay in fasted livers, we determined that PPARα bound to the putative PPAR-responsive element between -511 bp and -499 bp on the Igfbp-2 gene promoter, indicating that the Igfbp-2 gene transcription is activated directly by PPARα. To explore the role of PPARα in IGF-1 signalling, we treated primary cultured hepatocytes with Wy14643 and observed a decrease in the number of IGF-1 receptors (IGF-1Rs) and in Akt phosphorylation. No inhibition was observed in the hepatocytes isolated from Pparα null mice. These results suggest that PPARα controls IGF-1 signalling through the up-regulation of hepatic Igfbp-2 transcription during fasting and Wy14643 treatment.
Assuntos
Jejum/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/deficiência , PPAR alfa/genética , PPAR gama/agonistas , Proliferadores de Peroxissomos/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rosiglitazona , Transdução de Sinais , Tiazolidinedionas/farmacologia , Regulação para Cima/efeitos dos fármacosRESUMO
Obesity and diabetes are associated with hepatic triglyceride overproduction and hypertriglyceridemia. Recent studies have found that the cellular trafficking receptor sortilin 1 (Sort1) inhibits hepatic apolipoprotein B secretion and reduces plasma lipid levels in mice, and its hepatic expression was negatively associated with plasma lipids in humans. This study investigated the regulation of hepatic Sort1 under diabetic conditions and by lipid-lowering fish oil and fenofibrate. Results showed that hepatic Sort1 protein, but not mRNA, was markedly lower in Western diet-fed mice. Knockdown of hepatic Sort1 increased plasma triglyceride in mice. Feeding mice a fish oil-enriched diet completely restored hepatic Sort1 levels in Western diet-fed mice. Fenofibrate also restored hepatic Sort1 protein levels in Western diet-fed wild type mice, but not in peroxisome proliferator-activated receptor α (PPARα) knock-out mice. PPARα ligands did not induce Sort1 in hepatocytes in vitro. Instead, fish oil and fenofibrate reduced circulating and hepatic fatty acids in mice, and n-3 polyunsaturated fatty acids prevented palmitate inhibition of Sort1 protein in HepG2 cells. LC/MS/MS analysis revealed that Sort1 phosphorylation at serine 793 was increased in obese mice and in palmitate-treated HepG2 cells. Mutations that abolished phosphorylation at Ser-793 increased Sort1 stability and prevented palmitate inhibition of Sort1 ubiquitination and degradation in HepG2 cells. In summary, therapeutic strategies that prevent posttranslational hepatic Sort1 down-regulation in obesity and diabetes may be beneficial in improving dyslipidemia.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Dieta Ocidental/efeitos adversos , Fenofibrato/administração & dosagem , Óleos de Peixe/administração & dosagem , Fígado/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Hipolipemiantes/administração & dosagem , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Obesidade/terapia , PPAR alfa/deficiência , PPAR alfa/genética , PPAR alfa/metabolismo , Fosforilação , Estabilidade Proteica , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina/químicaRESUMO
UNLABELLED: Growth arrest and DNA damage-inducible beta (GADD45b) plays an important role in many intracellular events, such as cell cycle arrest, DNA repair, cell survival, apoptosis, and senescence. However, its mechanism of transcriptional regulation remains unclear. In this study the mechanism of peroxisome proliferator-activated receptor α (PPARα) ligand induction of the Gadd45b gene in mouse liver was investigated. Gadd45b messenger RNA (mRNA) was markedly induced by the PPARα agonist Wy-14,643 in wild-type mice but not in Ppara-null mice. Signal transducer and activator of transcription 3 (STAT3) was found to be a repressor of the Gadd45b gene through binding to upstream regulatory elements. The role of STAT3 in control of Gadd45b was confirmed using liver-specific Stat3-null mice. Wy-14,643 treatment stimulated STAT3 ubiquitination leading to activation of the Gadd45b gene as a result of loss of Gadd45b repression by STAT3. STAT3 degradation was induced by forced overexpression of the PPARα target gene-encoded enzyme ACOX1, which produces increased H(2)O(2) as a byproduct of fatty acid ß-oxidation. H(2)O(2) also stimulated expression of Gadd45b in cultured cells. CONCLUSION: PPARα indirectly induces the Gadd45b gene in liver through promoting degradation of the repressor STAT3 as a result of elevated oxidative stress.