Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513084

RESUMO

Insects have repeatedly forged symbioses with heritable microbes, gaining novel traits. For the microbe, the transition to symbioses can lead to the degeneration of the symbiont's genome through transmission bottlenecks, isolation, and the loss of DNA repair enzymes. However, some insect-microbial symbioses have persisted for millions of years, suggesting that natural selection slows genetic drift and maintains functional consistency between symbiont populations. By sampling in multiple countries, we examine genomic diversity within a symbiont species, a heritable symbiotic bacterium found only in human head lice. We find that human head louse symbionts contain genetic diversity that appears to have arisen contemporaneously with the appearance of anatomically modern humans within Africa and/or during the colonization of Eurasia by humans. We predict that the observed genetic diversity underlies functional differences in extant symbiont lineages, through the inactivation of genes involved in symbiont membrane construction. Furthermore, we find evidence of additional gene losses prior to the appearance of modern humans, also impacting the symbiont membrane. From this, we conclude that symbiont genome degeneration is proceeding, via gene inactivation and subsequent loss, in human head louse symbionts, while genomic diversity is maintained. Collectively, our results provide a look into the genomic diversity within a single symbiont species and highlight the shared evolutionary history of humans, lice, and bacteria.


Assuntos
Hominidae , Pediculus , Animais , Humanos , Pediculus/genética , Filogenia , Genoma Bacteriano , Evolução Molecular , Bactérias/genética , Genômica , Hominidae/genética , Insetos/genética , Simbiose/genética
2.
Clin Infect Dis ; 76(8): 1382-1390, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36571112

RESUMO

BACKGROUND: Louse-borne trench fever caused by Bartonella quintana is a neglected public health concern, known to be transmitted from body louse feces via scratching. No viable B. quintana have ever been isolated from head lice before; therefore, their role as a vector is still poorly understood. METHODS: In Senegal, the implementation of a permanent local surveillance system in a point-of-care laboratory (POC) allows the monitoring of emerging diseases. Here we used culture as well as molecular and genomic approaches to document an outbreak of trench fever associated with head lice in the village of Ndiop. Head lice and blood samples were collected from febrile patients between November 2010 and April 2015. Genomes of 2 isolated strains of B. quintana were sequenced and analyzed. RESULTS: A total of 2289 blood samples were collected in the 2010-2015 period. From 2010-2013, B. quintana DNA was detected by polymerase chain reaction (PCR) in 0.25% (4/1580). In 2014, 228 blood samples were collected, along with 161 head lice from 5 individuals. B. quintana DNA was detected in 4.4% (10/228) of blood samples, and in lice specimens collected from febrile patients (61.7%, 50/81) and non-febrile patients (61.4%, 43/70). Two B. quintana strains were isolated from blood and head lice from 2 different patients. Genomic sequence analysis showed 99.98% overall similarity between both strains. CONCLUSIONS: The presence of live B. quintana in head lice, and the genetic identity of strains from patients' blood and head lice during a localized outbreak in Senegal, supports the evidence of head lice vectorial capacity.


Assuntos
Bartonella quintana , Infestações por Piolhos , Pediculus , Febre das Trincheiras , Animais , Humanos , Bartonella quintana/genética , Pediculus/genética , Febre das Trincheiras/epidemiologia , Senegal/epidemiologia , Infestações por Piolhos/epidemiologia , Surtos de Doenças , DNA
3.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34963129

RESUMO

Over the past few decades, there has been a growing demand for genome analysis of ancient human remains. Destructive sampling is increasingly difficult to obtain for ethical reasons, and standard methods of breaking the skull to access the petrous bone or sampling remaining teeth are often forbidden for curatorial reasons. However, most ancient humans carried head lice and their eggs abound in historical hair specimens. Here we show that host DNA is protected by the cement that glues head lice nits to the hair of ancient Argentinian mummies, 1,500-2,000 years old. The genetic affinities deciphered from genome-wide analyses of this DNA inform that this population migrated from north-west Amazonia to the Andes of central-west Argentina; a result confirmed using the mitochondria of the host lice. The cement preserves ancient environmental DNA of the skin, including the earliest recorded case of Merkel cell polyomavirus. We found that the percentage of human DNA obtained from nit cement equals human DNA obtained from the tooth, yield 2-fold compared with a petrous bone, and 4-fold to a bloodmeal of adult lice a millennium younger. In metric studies of sheaths, the length of the cement negatively correlates with the age of the specimens, whereas hair linear distance between nit and scalp informs about the environmental conditions at the time before death. Ectoparasitic lice sheaths can offer an alternative, nondestructive source of high-quality ancient DNA from a variety of host taxa where bones and teeth are not available and reveal complementary details of their history.


Assuntos
DNA Ambiental , Pediculus , Animais , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Pediculus/genética , Crânio
4.
Med Vet Entomol ; 37(2): 209-212, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35822871

RESUMO

There are at least three known knockdown resistance (kdr) mutations reported globally in the human head louse Pediculus humanus capitis De Geer (Phthiraptera: Anoplura) that are associated with reduced sensitivity to pyrethroids. However, the prevalence of kdr mutation in head lice is not known in the Indian subcontinent. To identify kdr mutations in the Indian head lice population, the genomic region of the voltage-gated sodium channel gene encompassing IIS1-2 linker to IIS6 segments was PCR-amplified and sequenced from P. humanus capitis samples collected from different geographic localities of India. DNA sequencing revealed the presence of four kdr mutations: M827I, T929I, L932F and L1014F. The presence of a classical kdr mutation L1014F, the most widely reported mutation across insect-taxa associated with the kdr-trait, is being reported for the first time in P. humanus capitis.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Piretrinas , Humanos , Animais , Pediculus/genética , Resistência a Inseticidas/genética , Infestações por Piolhos/veterinária , Mutação , Inseticidas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
5.
Parasitol Res ; 122(12): 3087-3100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847393

RESUMO

An investigation was conducted for the first time to determine the prevalence and genetic diversity of human lice, for the first time in Nigeria, using conventional PCR and sequencing methods. Three mitochondrial genes, cytochrome oxidase subunit 1 (cox1), cytochrome b (cytb), and 12S rRNA of Nigerian human lice, were amplified, sequenced, and analyzed. Overall, high prevalence (72.5%; 103/142) of lice infestation was recorded among the examined volunteers. Head lice infestation was more common 63 (61.2%) than body lice infestation 34 (33.0%). Co-infestation with both head and body lice was recorded in six humans (5.8%). The Nigerian human lice specimens were placed mostly into clade A with few in clade E, including body lice for the first time. Six, three, and eight haplotypes of Nigerian human lice were obtained for the cytb, cox1, and 12S rRNA genes, respectively. Additionally, one (E51), three (A31, A32, and E5), and six (A20, A21, A23, A24, A30, and E1) novel haplotypes were recorded for cox1, cytb, and 12S rRNA, respectively, from the Nigerian specimens which were corroborated by the ML phylogenetic trees and MJ network analyses. Genetic diversity indices indicate minimal variation in the parameters analyzed among the clades of the three genes. However, a statistically significant Snn test, negative Tajima's D test for clade A (cox1 and 12S rRNA genes), and negative Fu and Li's D test in clade A for cox1 gene indicate a geographical structure and the signature of population expansion of the Nigerian human lice. The findings from this study provide additional data on the human lice structure in Africa.


Assuntos
Infestações por Piolhos , Pediculus , Animais , Humanos , Infestações por Piolhos/epidemiologia , Pediculus/genética , Filogenia , Haplótipos , Nigéria , Variação Genética , Citocromos b/genética
6.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 382-389, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809265

RESUMO

Pediculosis is an integumentary disease caused by the ecto-parasite Pediculus humanus capitis, which infests human hair. It is a common public health problem that is most prominent worldwide in elementary school children. The current study aimed to investigate the prevalence, risk factors, and genetic diversity of P. humanus capitis among primary school children in the Erbil province. For this purpose, this study was conducted from October 2019 to December 2019 among 1100 randomly selected elementary school children aged 6-12. Data collection was performed via a regular questionnaire and physical hair examination. For the genetic diversity part, after collecting one louse randomly from each individual, DNA was extracted. The mitochondrial Cox1 gene was then amplified by universal primer and PCR. Gene sequencing was performed by ABI (BioNEER, South Korea). Data analysis was done by Chi-Square and T-test using the SPSS ver. 23. The overall infestation rate was 21.27%, and the rate was significantly higher among females (34.93%) compared to males (7.91%). Some variables had found the prevalence rate to be strongly affected. This included age; the rate was not significant (26.87%) in the age group 8-9 years compared to other age groups. According to hair length, the rate was significantly increased (36.52%) among children with tall hair. In terms of hair type, the incidence of curly-haired children was significantly higher (31.54%); in terms of hair color, there were not significant differences among blonde children (25.90%) and others. According to the results of Cox1 gene sequencing, of 234 infested children to lice, 86 (36.75%) of them were exposed to clade A, 38 (16.24%) were exposed to clade B, clade C has not been seen among any children (0%), 105 students (44.87%) were exposed to clade D, and 5 of them exposed to clade E (2.14%). Eventually, a significantly higher incidence (33.78%) was reported in rural primary school children. The infection rate of human head lice in Erbil province is still high, which is one of the health problems of children in public schools.


Assuntos
Pediculus , Adulto , Animais , Criança , Feminino , Variação Genética , Humanos , Masculino , Pediculus/genética , Prevalência , Fatores de Risco , Instituições Acadêmicas
7.
Pestic Biochem Physiol ; 181: 105013, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082036

RESUMO

Pediculus lice represent one of the longest and most prevalent parasitic infestations of humans. Head lice are an economic and social concern whereas body lice pose a more serious public health threat. Significant progress has been made in the study of human lice over the last 10 years, allowing for new approaches in their control. An in vitro rearing system has made it possible to maintain insecticide-susceptible and -resistant reference strains, which allowed an in depth study of pediculicide resistance, including its underlying molecular mechanisms and the detection and monitoring of resistance. The generation of inbreed strains facilitated the efficient sequencing, assembly and annotation of the genomes and transcriptomes of both lice. The use of functional genomics and reverse genetics elucidated the genetics involved in the evolution of resistance and the discovery of novel target sites for the development of new pediculicides. In this review, four new effective pediculicide products, each with different mode of action and unique chemistries, will be presented. They have been found to be safe and selective, and control resistant lice. As such, they meet the criteria necessary to be used in rotations as a sustainable resistance management strategy.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Animais , Humanos , Inseticidas/farmacologia , Infestações por Piolhos/prevenção & controle , Pediculus/genética
8.
Korean J Parasitol ; 60(3): 217-221, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35772742

RESUMO

The head louse Pediculus humanus capitis (De Geer) is a hematophagous ectoparasite that inhabits the human scalp. The infestations are asymptomatic; however, skin irritation from scratching occasionally may cause secondary bacterial infections. The present study determined the presence and frequency of the knockdown resistance (kdr) mutation T929I in 245 head lice collected from Mexico, Peru, and Canada. Head lice were collected manually using a comb in the private head lice control clinic. Allele mutation at T9291 was present in 100% of the total sampled populations (245 lice) examined. In addition, 4.89% of the lice were homozygous susceptible, whereas 6.93% heterozygous and 88.16% homozygous were resistant, respectively. This represents the second report in Mexico and Quebec and fist in Lima.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Animais , Canadá , Frequência do Gene , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Infestações por Piolhos/parasitologia , México , Mutação , Pediculus/genética , Peru , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
9.
Mol Pharmacol ; 102(2): 116-127, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-35858760

RESUMO

Human louse Pediculus humanus is a cosmopolitan obligatory blood-feeding ectoparasite causing pediculosis and transmitting many bacterial pathogens. Control of infestation is difficult due to the developed resistance to insecticides that mainly target GABA (γ-aminobutyric acid) receptors. Previous work showed that Pediculus humanus humanus (Phh) GABA receptor subunit resistance to dieldrin (RDL) is the target of lotilaner, a synthetic molecule of the isoxazoline chemical class. To enhance our understanding of how insecticides act on GABA receptors, two other GABA receptor subunits were cloned and characterized: three variants of Phh-grd (glycine-like receptor of Drosophila) and one variant of Phh-lcch3 (ligand-gated chloride channel homolog 3). Relative mRNA expression levels of Phh-rdl, Phh-grd, and Phh-lcch3 revealed that they were expressed throughout the developmental stages (eggs, larvae, adults) and in the different parts of adult lice (head, thorax, and abdomen). When expressed individually in the Xenopus oocyte heterologous expression system, Phh-GRD1, Phh-GRD2, Phh-GRD3, and Phh-LCCH3 were unable to reconstitute functional channels, whereas the subunit combinations Phh-GRD1/Phh-LCCH3, Phh-GRD1/Phh-RDL, and Phh-LCCH3/Phh-RDL responded to GABA in a concentration-dependent manner. The three heteromeric receptors were similarly sensitive to the antagonistic effect of picrotoxin and fipronil, whereas Phh-GRD1/Phh-RDL and Phh-LCCH3/Phh-RDL were respectively about 2.5-fold and 5-fold more sensitive to ivermectin than Phh-GRD1/Phh-LCCH3. Moreover, the heteropentameric receptor constituted by Phh-GRD1/Phh-LCCH3 was found to be permeable and highly sensitive to the extracellular sodium concentration. These findings provided valuable additions to our knowledge of the complex nature of GABA receptors in human louse that could help in understanding the resistance pattern to commonly used pediculicides. SIGNIFICANCE STATEMENT: Human louse is an ectoparasite that causes pediculosis and transmits several bacterial pathogens. Emerging strains developed resistance to the commonly used insecticides, especially those targeting GABA receptors. To understand the molecular mechanisms underlying this resistance, two subunits of GABA receptors were cloned and described: Phh-grd and Phh-lcch3. The heteromeric receptor reconstituted with the two subunits was functional in Xenopus oocytes and sensitive to commercially available insecticides. Moreover, both subunits were transcribed throughout the parasite lifecycle.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Ftirápteros , Animais , Drosophila/metabolismo , Humanos , Inseticidas/farmacologia , Pediculus/genética , Pediculus/metabolismo , Ftirápteros/metabolismo , Receptores de GABA , Ácido gama-Aminobutírico
10.
PLoS Genet ; 14(8): e1007569, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080859

RESUMO

Ivermectin has emerged as very promising pediculicide, particularly in cases of resistance to commonly used pediculicides. Recently, however, the first field-evolved ivermectin-resistance in lice was reported. To gain insight into the mechanisms underlying ivermectin-resistance, we both looked for mutations in the ivermectin-target site (GluCl) and searched the entire proteome for potential new loci involved in resistance from laboratory susceptible and ivermectin-selected resistant body lice. Polymorphism analysis of cDNA GluCl showed no non-silent mutations. Proteomic analysis identified 22 differentially regulated proteins, of which 13 were upregulated and 9 were downregulated in the resistant strain. We evaluated the correlation between mRNA and protein levels by qRT-PCR and found that the trend in transcriptional variation was consistent with the proteomic changes. Among differentially expressed proteins, a complexin i.e. a neuronal protein which plays a key role in regulating neurotransmitter release, was shown to be the most significantly down-expressed in the ivermectin-resistant lice. Moreover, DNA-mutation analysis revealed that some complexin transcripts from resistant lice gained a premature stop codon, suggesting that this down-expression might be due, in part, to secondary effects of a nonsense mutation inside the gene. We further confirmed the association between complexin and ivermectin-resistance by RNA-interfering and found that knocking down the complexin expression induces resistance to ivermectin in susceptible lice. Our results provide evidence that complexin plays a significant role in regulating ivermectin resistance in body lice and represents the first evidence that links complexin to insecticide resistance.


Assuntos
Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Ivermectina , Proteínas do Tecido Nervoso/metabolismo , Pediculus/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Inseticidas , Infestações por Piolhos/tratamento farmacológico , Proteínas do Tecido Nervoso/genética , Proteômica , RNA Mensageiro/genética , Análise de Sequência de DNA
11.
Mol Biol Evol ; 34(7): 1743-1757, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419279

RESUMO

Insects with restricted diets rely on symbiotic bacteria to provide essential metabolites missing in their diet. The blood-sucking lice are obligate, host-specific parasites of mammals and are themselves host to symbiotic bacteria. In human lice, these bacterial symbionts supply the lice with B-vitamins. Here, we sequenced the genomes of symbiotic and heritable bacterial of human, chimpanzee, gorilla, and monkey lice and used phylogenomics to investigate their evolutionary relationships. We find that these symbionts have a phylogenetic history reflecting the louse phylogeny, a finding contrary to previous reports of symbiont replacement. Examination of the highly reduced symbiont genomes (0.53-0.57 Mb) reveals much of the genomes are dedicated to vitamin synthesis. This is unchanged in the smallest symbiont genome and one that appears to have been reorganized. Specifically, symbionts from human lice, chimpanzee lice, and gorilla lice carry a small plasmid that encodes synthesis of vitamin B5, a vitamin critical to the bacteria-louse symbiosis. This plasmid is absent in an old world monkey louse symbiont, where this pathway is on its primary chromosome. This suggests the unique genomic configuration brought about by the plasmid is not essential for symbiosis, but once obtained, it has persisted for up to 25 My. We also find evidence that human, chimpanzee, and gorilla louse endosymbionts have lost a pathway for synthesis of vitamin B1, whereas the monkey louse symbiont has retained this pathway. It is unclear whether these changes are adaptive, but they may point to evolutionary responses of louse symbionts to shifts in primate biology.


Assuntos
Anoplura/genética , Pediculus/genética , Simbiose/genética , Animais , Bactérias/genética , Evolução Biológica , Evolução Molecular , Genoma Bacteriano , Genômica/métodos , Hominidae/genética , Humanos , Pan troglodytes/genética , Filogenia , Plasmídeos/genética , Primatas/genética , Análise de Sequência de DNA/métodos
12.
Bioinformatics ; 33(12): 1782-1788, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28186221

RESUMO

MOTIVATION: Despite considerable advancements in sequencing and computing technologies, de novo assembly of whole eukaryotic genomes is still a time-consuming task that requires a significant amount of computational resources and expertise. A targeted assembly approach to perform local assembly of sequences of interest remains a valuable option for some applications. This is especially true for gene-centric assemblies, whose resulting sequence can be readily utilized for more focused biological research. Here we describe Kollector, an alignment-free targeted assembly pipeline that uses thousands of transcript sequences concurrently to inform the localized assembly of corresponding gene loci. Kollector robustly reconstructs introns and novel sequences within these loci, and scales well to large genomes-properties that makes it especially useful for researchers working on non-model eukaryotic organisms. RESULTS: We demonstrate the performance of Kollector for assembling complete or near-complete Caenorhabditis elegans and Homo sapiens gene loci from their respective, input transcripts. In a time- and memory-efficient manner, the Kollector pipeline successfully reconstructs respectively 99% and 80% (compared to 86% and 73% with standard de novo assembly techniques) of C.elegans and H.sapiens transcript targets in their corresponding genomic space using whole genome shotgun sequencing reads. We also show that Kollector outperforms both established and recently released targeted assembly tools. Finally, we demonstrate three use cases for Kollector, including comparative and cancer genomics applications. AVAILABILITY AND IMPLEMENTATION: Kollector is implemented as a bash script, and is available at https://github.com/bcgsc/kollector. CONTACT: ibirol@bcgsc.ca. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Eucariotos/genética , Loci Gênicos , Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Animais , Caenorhabditis elegans/genética , Humanos , Pediculus/genética , Picea/genética
13.
Insect Mol Biol ; 27(1): 73-82, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28960749

RESUMO

We previously observed that ivermectin-induced detoxification genes, including ATP binding cassette transporter C4 (PhABCC4) and cytochrome P450 6CJ1 (CYP6CJ1) were identified from body lice following a brief exposure to a sublethal dose of ivermectin using a non-invasive induction assay. In this current study, the functional properties of PhABCC4 and CYP6CJ1 were investigated after expression in either X. laevis oocytes or using a baculovirus expression system, respectively. Efflux of [3 H]-9-(2-phosphonomethoxyethyl) adenine ([3 H]-PMEA), a known ABCC4 substrate in humans, was detected from PhABCC4 cRNA-injected oocytes by liquid scintillation spectrophotometric analysis and PhABCC4 expression in oocytes was confirmed using ABC transporter inhibitors. Efflux was also determined to be ATP-dependent. Using a variety of insecticides in a competition assay, only co-injection of ivermectin and dichlorodiphenyltrichloroethane led to decreased efflux of [3 H]-PMEA. PhABCC4-expressing oocytes also directly effluxed [3 H]-ivermectin, which increased over time. In addition, ivermectin appeared to be oxidatively metabolized and/or sequestered, although at low levels, following functional expression of CYP6CJ1 along with cytochrome P450 reductase in Sf9 cells. Our study suggests that PhABCC4 and perhaps CYP6CJ1 are involved in the Phase III and Phase I xenobiotic metabolism of ivermectin, respectively, and may play an important role in the evolution of ivermectin resistance in lice and other insects as field selection occurs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Inseticidas/metabolismo , Ivermectina/metabolismo , Pediculus/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Inativação Metabólica , Proteínas de Insetos/metabolismo , Pediculus/metabolismo
14.
Med Vet Entomol ; 32(2): 226-234, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29266297

RESUMO

Insect reproduction is extremely variable, but the implications of alternative genetic systems are often overlooked in studies on the evolution of insecticide resistance. Both ecotypes of Pediculus humanus (Phthiraptera: Pediculidae), the human head and body lice, are human ectoparasites, the control of which is challenged by the recent spread of resistance alleles. The present study conclusively establishes for the first time that both head and body lice reproduce through paternal genome elimination (PGE), an unusual genetic system in which males transmit only their maternally derived chromosomes. Here, we investigate inheritance patterns of parental genomes using a genotyping approach across families of both ecotypes and show that heterozygous males exclusively or preferentially pass on one allele only, whereas females transmit both in a Mendelian fashion. We do however observe occasional transmission of paternal chromosomes through males, representing the first known case of PGE in which whole-genome meiotic drive is incomplete. Finally, we discuss the potential implications of this finding for the evolution of resistance and invite the development of new theoretical models of how this knowledge might contribute to increasing the success of pediculicide-based management schemes.


Assuntos
Genoma de Inseto , Hereditariedade , Herança Paterna , Pediculus/genética , Animais , Ecótipo , Masculino
15.
Mol Biol Evol ; 33(8): 2117-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189539

RESUMO

Current sequencing technologies are making available unprecedented amounts of genetic data for a large variety of species including nonmodel organisms. Although many phylogenomic surveys spend considerable time finding orthologs from the wealth of sequence data, these results do not transcend the original study and after being processed for specific phylogenetic purposes these orthologs do not become stable orthology hypotheses. We describe a procedure to detect and document the phylogenetic distribution of orthologs allowing researchers to use this information to guide selection of loci best suited to test specific evolutionary questions. At the core of this pipeline is a new phylogenetic orthology method that is neither affected by the position of the root nor requires explicit assignment of outgroups. We discuss the properties of this new orthology assessment method and exemplify its utility for phylogenomics using a small insects dataset. In addition, we exemplify the pipeline to identify and document stable orthologs for the group of orb-weaving spiders (Araneoidea) using RNAseq data. The scripts used in this study, along with sample files and additional documentation, are available at https://github.com/ballesterus/UPhO.


Assuntos
Genômica/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Animais , Afídeos/genética , Evolução Molecular , Pediculus/genética , Filogenia , Software
16.
Parasitol Res ; 116(10): 2637-2643, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28803388

RESUMO

The present work aimed at investigating the genetic diversity of the head louse Pediculus humanus capitis (P. humanus capitis) among infested primary school girls at Bisha governorate, Saudi Arabia, based on the sequence of mitochondrial cytochrome b (mt cyt b) gene of 121 P. humanus capitis adults. Additionally, the prevalence of pediculosis capitis was surveyed. The results of sequencing were compared with the sequence of human head lice that are genotyped previously. Phylogenetic tree analysis showed the presence of 100% identity (n = 26) of louse specimens with clade A (prevalent worldwide) of the GenBank data base. Louse individuals (n = 50) showed 99.8% similarity with the same clade A reference having a single base pair difference. Also, a number of 22 louse individuals revealed 99.8% identity with clade B reference (prevalent in North and Central Americas, Europe, and Australia) with individual diversity in two base pairs. Moreover, 14 louse individual sequences revealed 99.4% identity with three base pair differences. It was concluded that moderate pediculosis (~13%) prevailed among the female students of the primary schools. It was age-and hair texture (straight or curly)-dependent. P. humanus capitis prevalence diversity is of clades A and B genotyping.


Assuntos
Variação Genética , Infestações por Piolhos/parasitologia , Pediculus/genética , Animais , Austrália , Criança , Citocromos b/genética , Bases de Dados de Ácidos Nucleicos , Europa (Continente) , Feminino , Genótipo , Humanos , Infestações por Piolhos/epidemiologia , Pediculus/classificação , Filogenia , Prevalência , Arábia Saudita/epidemiologia , Instituições Acadêmicas
17.
Mol Biol Evol ; 32(10): 2749-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169943

RESUMO

Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation.


Assuntos
Processamento Alternativo/genética , Ftirápteros/genética , Animais , Ontologia Genética , Genes de Insetos , Humanos , Pediculus/genética
18.
BMC Genomics ; 16: 661, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26335315

RESUMO

BACKGROUND: Blood-sucking lice in the genera Pediculus and Pthirus are obligate ectoparasites of great apes. Unlike most bilateral animals, which have 37 mitochondrial (mt) genes on a single circular chromosome, the sucking lice of humans have extensively fragmented mt genomes. The head louse, Pediculus capitis, and the body louse, Pe. humanus, have their 37 mt genes on 20 minichromosomes. The pubic louse, Pthirus pubis, has its 34 mt genes known on 14 minichromosomes. To understand the process of mt genome fragmentation in the sucking lice of great apes, we sequenced the mt genome of the chimpanzee louse, Pe. schaeffi, and compared it with the three human lice. RESULTS: We identified all of the 37 mt genes typical of bilateral animals in the chimpanzee louse; these genes are on 18 types of minichromosomes. Seventeen of the 18 minichromosomes of the chimpanzee louse have the same gene content and gene arrangement as their counterparts in the human head louse and the human body louse. However, five genes, cob, trnS 1 , trnN, trnE and trnM, which are on three minichromosomes in the human head louse and the human body louse, are together on one minichromosome in the chimpanzee louse. CONCLUSIONS: Using the human pubic louse, Pt. pubis, as an outgroup for comparison, we infer that a single minichromosome has fragmented into three in the lineage leading to the human head louse and the human body louse since this lineage diverged from the chimpanzee louse ~6 million years ago. Our results provide insights into the process of mt genome fragmentation in the sucking lice in a relatively fine evolutionary scale.


Assuntos
Comportamento Alimentar , Genoma Mitocondrial , Pan troglodytes/parasitologia , Pediculus/genética , Animais , Sequência de Bases , Cromossomos de Insetos/genética , Genes Mitocondriais , Humanos , Dados de Sequência Molecular , Recombinação Genética/genética , Alinhamento de Sequência
19.
J Med Entomol ; 52(5): 918-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26336229

RESUMO

The genus Pediculus L. that parasitize humans comprise two subspecies: the head lice Pediculus humanus capitis De Geer and the body lice Pediculus humanus humanus De Geer. Despite the 200 yr of the first description of these two species, there is still a long debate about their taxonomic status. Some authors proposed that these organisms are separate species, conspecifics, or grouped in clades. The sequencing of both forms indicated that the difference between them is one gene absent in the head louse. However, their chromosomal number remains to be determined. In this study, we described the male and female karyotypes, and male meiosis of head and body lice, and examined the chromatin structure by means of C-banding. In P. h. humanus and P. h. capitis, the diploid chromosome complement was 2 n = 12 in both sexes. In oogonial prometaphase and metaphase and spermatogonial metaphase, it is evident that chromosomes lack of a primary constriction. No identifiable sex chromosomes or B chromosomes were observed in head and body lice. Neither chiasmata nor chromatin connections between homologous chromosomes were detected in male meiosis. The meiotic behaviour of the chromosomes showed that they are holokinetic. C-banding revealed the absence of constitutive heterochromatin. Our results provide relevant information to be used in mapping studies of genes associated with sex determination and environmental sensing and response.


Assuntos
Cariótipo , Infestações por Piolhos/parasitologia , Pediculus/genética , Animais , Argentina , Criança , Pré-Escolar , Cromatina/genética , Cromatina/metabolismo , Feminino , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Meiose , Pediculus/classificação
20.
Med Vet Entomol ; 29(1): 94-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25346378

RESUMO

Pediculus humanus L. (Psocodea: Pediculidae) can be characterized into three deeply divergent lineages (clades) based on mitochondrial DNA. Clade A consists of both head lice and clothing lice and is distributed worldwide. Clade B consists of head lice only and is mainly found in North and Central America, and in western Europe and Australia. Clade C, which consists only of head lice, is found in Ethiopia, Nepal and Senegal. Twenty-six head lice collected from pupils at different elementary schools in two localities in Algiers (Algeria) were analysed using molecular methods for genotyping lice (cytochrome b and the multi-spacer typing (MST) method. For the first time, we found clade B head lice in Africa living in sympatry with clade A head lice. The phylogenetic analysis of the concatenated sequences of these populations of head lice showed that clade A and clade B head lice had recombined, suggesting that interbreeding occurs when lice live in sympatry.


Assuntos
Infestações por Piolhos/classificação , Pediculus/classificação , Pediculus/genética , Simpatria , Argélia/epidemiologia , Animais , Sequência de Bases , Criança , Citocromos b/genética , DNA Intergênico/genética , Humanos , Proteínas de Insetos/genética , Lansoprazol , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/parasitologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA