Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(32): e2209056119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914139

RESUMO

Contact electrification between water and a solid surface is crucial for physicochemical processes at water-solid interfaces. However, the nature of the involved processes remains poorly understood, especially in the initial stage of the interface formation. Here we report that H2O2 is spontaneously produced from the hydroxyl groups on the solid surface when contact occurred. The density of hydroxyl groups affects the H2O2 yield. The participation of hydroxyl groups in H2O2 generation is confirmed by mass spectrometric detection of 18O in the product of the reaction between 4-carboxyphenylboronic acid and 18O-labeled H2O2 resulting from 18O2 plasma treatment of the surface. We propose a model for H2O2 generation based on recombination of the hydroxyl radicals produced from the surface hydroxyl groups in the water-solid contact process. Our observations show that the spontaneous generation of H2O2 is universal on the surfaces of soil and atmospheric fine particles in a humid environment.


Assuntos
Eletricidade , Peróxido de Hidrogênio , Radical Hidroxila , Água , Atmosfera/química , Umidade , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Espectrometria de Massas , Isótopos de Oxigênio/análise , Isótopos de Oxigênio/química , Tamanho da Partícula , Solo/química , Água/química
2.
Angew Chem Int Ed Engl ; 61(19): e202200413, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35166425

RESUMO

Synthesizing H2 O2 from water and air via a photocatalytic approach is ideal for efficient production of this chemical at small-scale. However, the poor activity and selectivity of the 2 e- water oxidation reaction (WOR) greatly restricts the efficiency of photocatalytic H2 O2 production. Herein we prepare a bipyridine-based covalent organic framework photocatalyst (denoted as COF-TfpBpy) for H2 O2 production from water and air. The solar-to-chemical conversion (SCC) efficiency at 298 K and 333 K is 0.57 % and 1.08 %, respectively, which are higher than the current reported highest value. The resulting H2 O2 solution is capable of degrading pollutants. A mechanistic study revealed that the excellent photocatalytic activity of COF-TfpBpy is due to the protonation of bipyridine monomer, which promotes the rate-determining reaction (2 e- WOR) and then enhances Yeager-type oxygen adsorption to accelerate 2 e- one-step oxygen reduction. This work demonstrates, for the first time, the COF-catalyzed photosynthesis of H2 O2 from water and air; and paves the way for wastewater treatment using photocatalytic H2 O2 solution.


Assuntos
Peróxido de Hidrogênio/síntese química , Estruturas Metalorgânicas , Oxigênio , Fotossíntese , Água
3.
J Am Chem Soc ; 143(43): 18346-18352, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672573

RESUMO

We report that exposing the dipyrrin complex (EMindL)Cu(N2) to air affords rapid, quantitative uptake of O2 in either solution or the solid-state to yield (EMindL)Cu(O2). The air and thermal stability of (EMindL)Cu(O2) is unparalleled in molecular copper-dioxygen coordination chemistry, attributable to the ligand flanking groups which preclude the [Cu(O2)]1+ core from degradation. Despite the apparent stability of (EMindL)Cu(O2), dioxygen binding is reversible over multiple cycles with competitive solvent exchange, thermal cycling, and redox manipulations. Additionally, rapid, catalytic oxidation of 1,2-diphenylhydrazine to azoarene with the generation of hydrogen peroxide is observed, through the intermittency of an observable (EMindL)Cu(H2O2) adduct. The design principles gleaned from this study can provide insight for the formation of new materials capable of reversible scavenging of O2 from air under ambient conditions with low-coordinate CuI sorbents.


Assuntos
Complexos de Coordenação/química , Oxigênio/isolamento & purificação , Ar , Catálise , Cobre/química , Peróxido de Hidrogênio/síntese química , Oxirredução , Oxigênio/química , Fenil-Hidrazinas/química , Pirróis/química
4.
Chembiochem ; 21(20): 2898-2902, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32478965

RESUMO

l-Ascorbate (l-Asc) is often added to assays with isolated FeII - and 2-oxoglutarate (2OG)-dependent oxygenases to enhance activity. l-Asc is proposed to be important in catalysis by some 2OG oxygenases in vivo. We report observations on the nonenzymatic conversion of 2OG to succinate, which is mediated by hydrogen peroxide generated by the reaction of l-Asc and dioxygen. Slow nonenzymatic oxidation of 2OG to succinate occurs with some, but not all, other reducing agents commonly used in 2OG oxygenase assays. We intend these observations will help in the robust assignment of substrates and inhibitors for 2OG oxygenases.


Assuntos
Ácido Ascórbico/química , Ácidos Cetoglutáricos/química , Oxigenases/metabolismo , Substâncias Redutoras/química , Ácido Succínico/síntese química , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Estrutura Molecular , Oxirredução , Oxigênio/química , Ácido Succínico/química
5.
Angew Chem Int Ed Engl ; 59(47): 21143-21150, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32729980

RESUMO

Unpredictable in vivo therapeutic feedback of hydroxyl radical (. OH) efficiency is the major bottleneck of chemodynamic therapy. Herein, we describe novel Fenton-based nanotheranostics NQ-Cy@Fe&GOD for spatio-temporally reporting intratumor . OH-mediated treatment, which innovatively unites dual-channel near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI) signals. Specifically, MRI signal traces the dose distribution of Fenton-based iron oxide nanoparticles (IONPs) with high-spatial resolution, meanwhile timely fluorescence signal quantifies . OH-mediated therapeutic response with high spatio-temporal resolution. NQ-Cy@Fe&GOD can successfully monitor the intracellular release of IONPs and . OH-induced NQO1 enzyme in living cells and tumor-bearing mice, which makes a breakthrough in conquering the inherent unpredictable obstacles on spatio-temporally reporting chemodynamic therapy, so as to manipulate dose-dependent therapeutic process.


Assuntos
Antineoplásicos/farmacologia , Peróxido de Hidrogênio/farmacologia , Radical Hidroxila/farmacologia , Ferro/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética , Imagem Óptica , Células A549 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dicumarol/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Raios Infravermelhos , Ferro/química , Camundongos , Camundongos Nus , Estrutura Molecular , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo
6.
Chem Res Toxicol ; 32(1): 100-112, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30560658

RESUMO

Stimulus-responsive cleavage reactions have found broad use to direct drug release at a particular target disease area. Increased levels of reactive oxygen species (ROS) have been associated with the development and progression of cancer and several other disease states, motivating the development of drug conjugates that can undergo a chemoselective ROS-triggered release. Melatonin (MLT) and the reactive electrophile p-benzoquinone methide ( p-QM) have evidenced either cytoprotective or cytotoxic effects in biological systems, depending on the dose, cellular targets, and time of exposure. In this study, we report the synthesis and biological activity of two MLT derivatives linked to ROS-responsive arylboronate triggers (P1 and P2), which can be activated by endogenously generated hydrogen peroxide (H2O2) to release MLT, or 5-methoxytryptamine (5-MeOT), and p-QM-intermediates. Their H2O2-induced activation mechanism was studied by HPLC-DAD-MS. P1, which rapidly releases MLT and p-QM, was able to strongly induce the Nrf2 antioxidant signaling pathway, but was ineffective to provide protection against H2O2-mediated oxidative damage. By contrast, P1 exhibited strong toxic effects in HeLa cancer cells, without causing significant toxicity to normal NCTC-2544 cells. Similar, although more limited, effects were exerted by P2. In both cases, cytotoxicity was accompanied by depletion of cellular glutathione (GSH), probably as a consequence of p-QM release, and increased ROS levels. A role for MLT in toxicity was also observed, suggesting that the P1 released products, MLT and p-QM, contributed additively to promote cell death.


Assuntos
Ácidos Borônicos/farmacologia , Desenho de Fármacos , Peróxido de Hidrogênio/farmacologia , Melatonina/farmacologia , Ácidos Borônicos/síntese química , Ácidos Borônicos/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células HeLa , Humanos , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Melatonina/síntese química , Melatonina/química , Estrutura Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Inorg Chem ; 58(21): 14294-14298, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31599154

RESUMO

Metal complexes to promote oxidative DNA cleavage by H2O2 are desirable as anticancer drugs. A dicopper(II) complex of known p-cresol-derived methylene-tether ligand Hbcc [Cu2(bcc)]3+ did not promote DNA cleavage by H2O2. Here, we synthesized a new p-cresol-derived amide-tether one, 2,6-bis(1,4,7,10-tetrazacyclododecyl-1-carboxyamide)-p-cresol (Hbcamide). A dicopper(II) complex of the new ligand [Cu2(µ-OH)(bcamide)]2+ was structurally characterized. This complex promoted the oxidative cleavage of supercoiled plasmid pUC19 DNA (Form I) with H2O2 at pH 6.0-8.2 to give Forms II and III. The reaction was largely accelerated in a high pH region. A µ-1,1-hydroperoxo species was formed as the active species and spectroscopically identified. The amide-tether complex is more effective in cytotoxicity against HeLa cells than the methylene-tether one.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Cresóis/farmacologia , Peróxido de Hidrogênio/farmacologia , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Cresóis/química , Clivagem do DNA , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Ligantes , Estrutura Molecular , Oxirredução
8.
Z Naturforsch C J Biosci ; 74(3-4): 101-104, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30379645

RESUMO

There is an increasing interest in the application of peroxygenases in biocatalysis, because of their ability to catalyse the oxyfunctionalisation reaction in a stereoselective fashion and with high catalytic efficiencies, while using hydrogen peroxide or organic peroxides as oxidant. However, enzymes belonging to this class exhibit a very low stability in the presence of peroxides. With the aim of bypassing this fast and irreversible inactivation, we study the use of a gradual supply of hydrogen peroxide to maintain its concentration at stoichiometric levels. In this contribution, we report a multienzymatic cascade for in situ generation of hydrogen peroxide. In the first step, in the presence of NAD+ cofactor, formate dehydrogenase from Candida boidinii (FDH) catalysed the oxidation of formate yielding CO2. Reduced NADH was reoxidised by the reduction of the flavin mononucleotide cofactor bound to an old yellow enzyme homologue from Bacillus subtilis (YqjM), which subsequently reacts with molecular oxygen yielding hydrogen peroxide. Finally, this system was coupled to the hydroxylation of ethylbenzene reaction catalysed by an evolved peroxygenase from Agrocybe aegerita (rAaeUPO). Additionally, we studied the influence of different reaction parameters on the performance of the cascade with the aim of improving the turnover of the hydroxylation reaction.


Assuntos
Proteínas de Bactérias/química , FMN Redutase/química , Formiato Desidrogenases/química , Proteínas Fúngicas/química , Peróxido de Hidrogênio/síntese química , Oxigenases de Função Mista/química , Agrocybe/química , Agrocybe/enzimologia , Bacillus subtilis/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Biocatálise , Candida/química , Candida/enzimologia , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Coenzimas/química , Coenzimas/metabolismo , FMN Redutase/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Formiato Desidrogenases/metabolismo , Formiatos/química , Formiatos/metabolismo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidroxilação , Cinética , Oxigenases de Função Mista/metabolismo , NAD/química , NAD/metabolismo , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Estereoisomerismo
9.
Chemistry ; 24(57): 15227-15235, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29904959

RESUMO

This work reports a combination of aryl diselenides/hydrogen peroxide and carbon-nanotube (CNT)/rhodium nanohybrids (RhCNT) for naphthol oxidation towards the synthesis of 1,4-naphthoquinones and evaluation of their relevant trypanocidal activity. Under a combination of (PhSe)2 /H2 O2 in the presence of O2 in iPrOH/hexane, several benzenoid (A-ring)-substituted quinones were prepared in moderate to high yields. We also studied the contribution of RhCNT as co-catalyst in this process and, in some cases, yields were improved. This method provides an efficient and versatile alternative for preparing A-ring-modified naphthoquinonoid compounds with relevant biological profile.


Assuntos
Peróxido de Hidrogênio/química , Nanotubos de Carbono/química , Naftóis/química , Naftoquinonas/síntese química , Ródio/química , Tripanossomicidas/síntese química , Doença de Chagas/tratamento farmacológico , Humanos , Peróxido de Hidrogênio/síntese química , Modelos Moleculares , Naftóis/síntese química , Naftoquinonas/química , Naftoquinonas/farmacologia , Compostos Organosselênicos/química , Oxirredução , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
10.
J Am Chem Soc ; 139(27): 9108-9111, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28587453

RESUMO

Toward the development of structural and functional models of the oxygen evolving complex (OEC) of photosystem II, we report the synthesis of site-differentiated tetranuclear manganese complexes featuring three six-coordinate and one five-coordinate Mn centers. To incorporate biologically relevant second coordination sphere interactions, substituents capable of hydrogen bonding are included as pyrazolates with arylamine substituents. Complexes with terminal anionic ligands, OH- or Cl-, bound to the lower coordinate metal center are supported through the hydrogen-bonding network in a fashion reminiscent of the enzymatic active site. The hydroxide complex was found to be a competent electrocatalyst for O-O bond formation, a key transformation pertinent to the OEC. In an acetonitrile-water mixture, at neutral pH, electrochemical water oxidation to hydrogen peroxide was observed, albeit with low (15%) Faradaic yield, likely due to competing reactions with organics. In agreement, 9,10-dihydroanthracene is electrochemically oxidized in the presence of this cluster both via H-atom abstraction and oxygenation with ∼50% combined Faradaic yield.


Assuntos
Complexos de Coordenação/química , Técnicas Eletroquímicas , Peróxido de Hidrogênio/síntese química , Manganês/química , Oxigênio/química , Água/química , Catálise , Ligação de Hidrogênio , Peróxido de Hidrogênio/química , Modelos Moleculares , Conformação Molecular , Oxirredução
11.
Anal Chem ; 89(24): 13349-13356, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29211446

RESUMO

Nanomaterials themselves as redox probes and nanocatalysts have many advantages for electrochemical biosensors. However, most nanomaterials with excellent catalytic activity cannot be directly used as redox probe to construct electrochemical biosensor because the redox signal of these nanomaterials can only be obtained in strong acid or alkali solution at high positive or negative potential, which greatly limits their applications in biologic assay. In this study, Cu/Mn double-doped CeO2 nanocomposite (CuMn-CeO2) was synthesized to use as signal tags and signal amplifiers for the construction of electrochemical immunosensor for sensitive assay of procalcitonin (PCT). Herein, CuMn-CeO2 not only possesses excellent catalytic activity toward H2O2 for signal amplification, but also can be directly used as redox probe for electrochemical signal readout achieved in neutral mild buffer solution at low positive potential. Importantly, since doping Cu, Mn into CeO2 lattice structure can generate extra oxygen vacancies, the redox and catalytic performance of obtained CuMn-CeO2 was much better than that of pure CeO2, which improves the performance of proposed immunosensor. Furthermore, CuMn-CeO2 can be implemented as a matrix for immobilizing amounts of secondary antibody anti-PCT by forming ester-like bridging between carboxylic groups of Ab2 and CeO2 without extra chemical modifications, which greatly simplifies the preparative steps. The prepared immunosensor exhibited a wide linear range of 0.1 pg mL-1 to 36.0 ng mL-1 with a low detection limit of 0.03 pg mL-1. This study implements nanomaterial themselves as redox probes and signal amplifiers and paves a new way for constructing electrochemical immunosensor.


Assuntos
Cério/química , Cobre/química , Técnicas Eletroquímicas , Manganês/química , Nanocompostos/química , Pró-Calcitonina/análise , Catálise , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Tamanho da Partícula , Propriedades de Superfície
12.
Bioconjug Chem ; 28(4): 1166-1175, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28191958

RESUMO

d-Amino acid oxidases (DAAOs) are flavor enzymes and have been used in resolution of racemic amino acids and manufacturing of pharmaceuticals. However, the evolved H2O2 during the catalysis has deleterious and inhibitory effects. Decomposition of the hydrogen peroxide by catalase (CAT) can eliminate the negative effects. DAAO and CAT are dimeric and tetrameric proteins, respectively. Here, the N-terminus of the DAAO subunits has been specifically ligated to the C-terminus of the CAT subunits with native peptides through intein-mediated in vivo protein splicing. The in vivo splicing has little effect on the secondary structures of the enzymes as confirmed by circular dichroism (CD) spectra, and fluorescence spectra showed that the spliced product DAAO&CAT has a higher stability than DAAO. In the spliced product DAAO&CAT, the DAAO subunits are in close proximity to the CAT subunits, facilitating immediate transfer of H2O2 from one catalytic site to the other, enabling efficient decomposition of the generated H2O2. The reduced cofactors of the DAAO subunits were reoxidized by the evolved molecular oxygen around. Kinetics analysis showed that the d-alanine substrate follows Michaelis-Menten kinetics. The catalytic efficiency of DAAO&CAT is 22.4-fold that of DAAO. Furthermore, the spliced product DAAO&CAT has been encapsulated within a coordination polymer with an encapsulation efficiency of 91.3 ± 2.7%. The encapsulated DAAO&CAT has retained 98.1 ± 3.1% and 94.9 ± 2.9% of the activity of free DAAO&CAT at 30 and 40 °C, respectively.


Assuntos
Aminoácido Oxirredutases/química , Catalase/química , Peptídeos/química , Aminoácido Oxirredutases/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/metabolismo , Cinética , Processamento de Proteína , Subunidades Proteicas
13.
Anal Chem ; 88(7): 3998-4003, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26948406

RESUMO

By virtue of its high sensitivity and rapidity, Fenton reaction has been demonstrated as a powerful tool for in vitro biochemical analysis; however, in vivo applications of Fenton reaction still remain to be exploited. Herein, we report, for the first time, the design, formation and testing of Fenton reaction for in vivo fluorescence imaging of hydrogen peroxide (H2O2). To realize in vivo fluorescence imaging of H2O2 via Fenton reaction, a functional nanosphere, Fc@MSN-FDNA/PTAD, is fabricated from mesoporous silica nanoparticle (MSN), a Fenton reagent of ferrocene (Fc), ROX-labeled DNA (FDNA), and a cationic perylene derivative (PTAD). The ferrocene molecules are locked in the pore entrances of MSN, and exterior of MSN is covalently immobilized with FDNA. As a key part, PTAD acts as not only the gatekeeper of MSN but also the efficient quencher of ROX. H2O2 can permeate into the nanosphere and react with ferrocene to product hydroxyl radical (·OH) via Fenton reaction, which cleaves FDNA to detach ROX from PTAD, thus in turn, lights the ROX fluorescence. Under physiological condition, H2O2 can be determined from 5.0 nM to 1.0 µM with a detection limit of 2.4 nM. Because of the rapid kinetics of Fenton reaction and high specificity for H2O2, the proposed method meets the requirement for real applications. The feasibility of Fc@MSN-FDNA/PTAD for in vivo applications is demonstrated for fluorescence imaging of exogenous and endogenous H2O2 in cells and mice. We expect that this work will not only contribute to the H2O2-releated studies but also open up a new way to exploit in vivo Fenton reaction for biochemical research.


Assuntos
Compostos Ferrosos/química , Fluorescência , Peróxido de Hidrogênio/análise , Ferro/química , Animais , Linhagem Celular Tumoral , Compostos Ferrosos/síntese química , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Metalocenos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/química , Espectrofotometria
14.
Phys Chem Chem Phys ; 17(32): 20490-4, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26199999

RESUMO

Many alkyl-substituted Criegee intermediates are predicted to undergo an intramolecular 1,4-hydrogen transfer to form isomeric vinyl hydroperoxide species (C[double bond, length as m-dash]COOH moiety), which break apart to release OH and vinoxy radicals. We report direct detection of stabilized vinyl hydroperoxides formed via carboxylic acid-catalyzed tautomerization of Criegee intermediates. A doubly hydrogen-bonded interaction between the Criegee intermediate and carboxylic acid facilitates efficient hydrogen transfer through a double hydrogen shift. Deuteration of formic or acetic acid permits migration of a D atom to yield partially deuterated vinyl hydroperoxides, which are distinguished from the CH3CHOO, (CH3)2COO, and CH3CH2CHOO Criegee intermediates by mass. Using 10.5 eV photoionization, three prototypical vinyl hydroperoxides, CH2[double bond, length as m-dash]CHOOD, CH2[double bond, length as m-dash]C(CH3)OOD, and CH3CH[double bond, length as m-dash]CHOOD, are detected directly. Complementary electronic structure calculations reveal several reaction pathways, including the barrierless acid-catalyzed tautomerization reaction predicted previously and a barrierless addition reaction that yields hydroperoxy alkyl formate.


Assuntos
Peróxido de Hidrogênio/química , Compostos de Vinila/química , Ácidos Carboxílicos/química , Catálise , Peróxido de Hidrogênio/síntese química , Radical Hidroxila/síntese química , Radical Hidroxila/química , Compostos de Vinila/síntese química
15.
Biofizika ; 60(4): 673-80, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26394466

RESUMO

Continuous generation of hydrogen peroxide catalyzed by low concentrations of 1,1-dimethylhydrazine (heptyl)--a rocket fuel component--in air saturated water was shown by the method of enhanced chemiluminescence in the system of luminol-p-iodophenol-peroxidase. The concentration dependence and the influence of heat and light on the formation of hydrogen peroxide in the water under the influence of dimethylhydrazine at concentrations considerably lower than maximum allowable concentrations were studied, and the physical-chemical mechanism of this process was considered. It is supposed that dimethylhydrazine at ultra-low concentrations is associated with air nanobubbles and represents a long-lived complex performing catalysis of hydrogen peroxide formation under the influence of heat and light. We put forward the new concept of.toxicity of dimethylhydrazine at very low concentrations due to violation of homeostasis of reactive oxygen species formation in aqueous solutions entering the body of humans and animals.


Assuntos
Poluentes Ocupacionais do Ar/química , Dimetilidrazinas/química , Peróxido de Hidrogênio/síntese química , Oxigênio/química , Água/química , Animais , Catálise , Temperatura Alta , Humanos , Peróxido de Hidrogênio/análise , Iodobenzenos/química , Luz , Medições Luminescentes , Luminol/química , Peroxidase/química , Espécies Reativas de Oxigênio/química
16.
Angew Chem Int Ed Engl ; 54(49): 14753-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26482466

RESUMO

Although the use of reactive oxygen species (ROS) has been extensively studied, current systems employ external stimuli such as light or electrical energy to produce ROS, which limits their practical usage. In this report, biocompatible metals were used to construct a novel electrochemical system that can spontaneously generate H2O2 without any external light or voltage. The corrosion of Mg transfers electrons to Au-decorated oxidized Ti in an energetically favorable process, and the spontaneous generation of H2O2 in an oxygen reduction reaction was revealed to occur at titanium by combined spectroscopic and electrochemical analyses. The controlled release of H2O2 noticeably enhanced in vitro angiogenesis even in the absence of growth factors. Finally, a new titanium implant prototype was developed by Mg incorporation, and its potential for promoting angiogenesis was demonstrated.


Assuntos
Indutores da Angiogênese/química , Peróxido de Hidrogênio/síntese química , Magnésio/química , Titânio/química , Materiais Biocompatíveis/química , Técnicas Eletroquímicas , Peróxido de Hidrogênio/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
17.
J Am Chem Soc ; 136(14): 5185-8, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24673361

RESUMO

A discrete nanocage of core-shell design, in which carboxylic acid groups were tethered to the core and silanol to the shell interior, was found to react with Co2(CO)8 to form and stabilize a Co(I)-CO species. The singular CO stretching band of this new Co species at 1958 cm(-1) and its magnetic susceptibility were consistent with Co(I) compounds. When exposed to O2, it transformed from an EPR inactive to an EPR active species indicative of oxidation of Co(I) to Co(II) with the formation of H2O2. It could be oxidized also by organoazide or water. Its residence in the nanocage interior was confirmed by size selectivity in the oxidation process and the fact that the entrapped Co species could not be accessed by an electrode.


Assuntos
Ácidos Carboxílicos/química , Cobalto/química , Silanos/química , Monóxido de Carbono/química , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Estrutura Molecular , Oxigênio/química
18.
Langmuir ; 30(12): 3579-88, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24617746

RESUMO

This paper reports the facile synthesis and characterization of spongelike nanoporous Pd (snPd) and Pd/Au (snPd/Au) prepared by a tailored galvanic replacement reaction (GRR). Initially, a large amount of Co particles as sacrificial templates was electrodeposited onto the glassy carbon surface using a cyclic voltammetric method. This is the key step to the subsequent fabrication of the snPd/Au (or snPd) architectures by a surface replacement reaction. Using Co films as sacrificial templates, snPd/Au catalysts were prepared through a two-step GRR technique. In the first step, the Pd metal precursor (at different concentrations), K2PdCl4, reacted spontaneously to the formed Co frames through the GRR, resulting in a snPd series. snPd/Au was then prepared via the second GRR between snPd (prepared with 27.5 mM Pd precursor) and Au precursor (10 mM HAuCl4). The morphology and surface area of the prepared snPd series and snPd/Au were characterized using spectroscopic and electrochemical methods. Rotating disk electrode (RDE) experiments for oxygen reduction in 0.1 M NaOH showed that the snPd/Au has higher catalytic activity than snPd and the commercial Pd-20/C and Pt-20/C catalysts. Rotating ring-disk electrode (RRDE) experiments reconfirmed that four electrons were involved in the electrocatalytic reduction of oxygen at the snPd/Au. Furthermore, RDE voltammetry for the H2O2 oxidation/reduction was used to monitor the catalytic activity of snPd/Au. The amperometric i-t curves of the snPd/Au catalyst for a H2O2 electrochemical reaction revealed the possibility of applications as a H2O2 oxidation/reduction sensor with high sensitivity (0.98 mA mM(-1) cm(-2) (r = 0.9997) for H2O2 oxidation and -0.95 mA mM(-1) cm(-2) (r = 0.9997) for H2O2 reduction), low detection limit (1.0 µM), and a rapid response (<∼1.5 s).


Assuntos
Técnicas Eletroquímicas , Ouro/química , Nanopartículas Metálicas/química , Paládio/química , Catálise , Eletrodos , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
19.
Environ Sci Technol ; 48(17): 10182-90, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25118824

RESUMO

Organic aerosols in the atmosphere are composed of a wide variety of species, reflecting the multitude of sources and growth processes of these particles. Especially challenging is predicting how these particles act as cloud condensation nuclei (CCN). Previous studies have characterized the CCN efficiency for organic compounds in terms of a hygroscopicity parameter, κ. Here we extend these studies by systematically testing the influence of the number and location of molecular functional groups on the hygroscopicity of organic aerosols. Organic compounds synthesized via gas-phase and liquid-phase reactions were characterized by high-performance liquid chromatography coupled with scanning flow CCN analysis and thermal desorption particle beam mass spectrometry. These experiments quantified changes in κ with the addition of one or more functional groups to otherwise similar molecules. The increase in κ per group decreased in the following order: hydroxyl ≫ carboxyl > hydroperoxide > nitrate ≫ methylene (where nitrate and methylene produced negative effects, and hydroperoxide and nitrate groups produced the smallest absolute effects). Our results contribute to a mechanistic understanding of chemical aging and will help guide input and parametrization choices in models relying on simplified treatments such as the atomic oxygen:carbon ratio to predict the evolution of organic aerosol hygroscopicity.


Assuntos
Aerossóis/química , Atmosfera/química , Compostos Orgânicos/química , Carbono/análise , Cromatografia Líquida de Alta Pressão , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Oxigênio/análise , Tamanho da Partícula , Molhabilidade
20.
Langmuir ; 29(18): 5573-80, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23570415

RESUMO

The production of H2O2 has been taken for a crucial reason for antimicrobial activity of ZnO without light irradiation. However, how the H2O2 generates in ZnO suspension is not clear. In the present work, the comparatively detections on three kinds of ZnO, tetrapod-like ZnO whiskers (t-ZnO), nanosized ZnO particles (n-ZnO), and microsized ZnO particles (m-ZnO), showed that the antimicrobial activity of ZnO was correlated with its production of H2O2. Oxygen vacancy (V(O)) in the surface layer of ZnO crystals determined by XPS indicated that it was quite probably involved in the production of H2O2. To validate the role of V(O), the concentration of VO in t-ZnO was adjusted by heat-treatment under the atmospheres of H2, vacuum, and O2, respectively, and the H2O2 production and antimicrobial effect were detected. Consistently, the t-ZnO treated in H2, which possessed the most V(O) in its crystal, produced the most H2O2 and displayed the best antimicrobial activity. These results provide the basis for developing a more detailed mechanism for H2O2 generation catalyzed by ZnO and for taking greater advantage of this type of antimicrobial agent.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/síntese química , Oxigênio/química , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cristalização , Peróxido de Hidrogênio/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA