Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.289
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 632(8025): 686-694, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112701

RESUMO

The dopamine transporter has a crucial role in regulation of dopaminergic neurotransmission by uptake of dopamine into neurons and contributes to the abuse potential of psychomotor stimulants1-3. Despite decades of study, the structure, substrate binding, conformational transitions and drug-binding poses of human dopamine transporter remain unknown. Here we report structures of the human dopamine transporter in its apo state, and in complex with the substrate dopamine, the attention deficit hyperactivity disorder drug methylphenidate, and the dopamine-uptake inhibitors GBR12909 and benztropine. The dopamine-bound structure in the occluded state precisely illustrates the binding position of dopamine and associated ions. The structures bound to drugs are captured in outward-facing or inward-facing states, illuminating distinct binding modes and conformational transitions during substrate transport. Unlike the outward-facing state, which is stabilized by cocaine, GBR12909 and benztropine stabilize the dopamine transporter in the inward-facing state, revealing previously unseen drug-binding poses and providing insights into how they counteract the effects of cocaine. This study establishes a framework for understanding the functioning of the human dopamine transporter and developing therapeutic interventions for dopamine transporter-related disorders and cocaine addiction.


Assuntos
Benzotropina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Inibidores da Captação de Dopamina , Dopamina , Humanos , Apoproteínas/metabolismo , Apoproteínas/química , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Benzotropina/metabolismo , Benzotropina/farmacologia , Sítios de Ligação , Cocaína/farmacologia , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Modelos Moleculares , Piperazinas/metabolismo , Piperazinas/farmacologia , Ligação Proteica , Conformação Proteica
2.
Nature ; 632(8026): 930-937, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085602

RESUMO

The noradrenaline transporter (also known as norepinephrine transporter) (NET) has a critical role in terminating noradrenergic transmission by utilizing sodium and chloride gradients to drive the reuptake of noradrenaline (also known as norepinephrine) into presynaptic neurons1-3. It is a pharmacological target for various antidepressants and analgesic drugs4,5. Despite decades of research, its structure and the molecular mechanisms underpinning noradrenaline transport, coupling to ion gradients and non-competitive inhibition remain unknown. Here we present high-resolution complex structures of NET in two fundamental conformations: in the apo state, and bound to the substrate noradrenaline, an analogue of the χ-conotoxin MrlA (χ-MrlAEM), bupropion or ziprasidone. The noradrenaline-bound structure clearly demonstrates the binding modes of noradrenaline. The coordination of Na+ and Cl- undergoes notable alterations during conformational changes. Analysis of the structure of NET bound to χ-MrlAEM provides insight into how conotoxin binds allosterically and inhibits NET. Additionally, bupropion and ziprasidone stabilize NET in its inward-facing state, but they have distinct binding pockets. These structures define the mechanisms governing neurotransmitter transport and non-competitive inhibition in NET, providing a blueprint for future drug design.


Assuntos
Apoproteínas , Bupropiona , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Norepinefrina , Piperazinas , Tiazóis , Humanos , Regulação Alostérica/efeitos dos fármacos , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/metabolismo , Sítios de Ligação , Transporte Biológico , Bupropiona/química , Bupropiona/metabolismo , Bupropiona/farmacologia , Cloretos/química , Cloretos/metabolismo , Conotoxinas/química , Conotoxinas/metabolismo , Conotoxinas/farmacologia , Modelos Moleculares , Norepinefrina/química , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/química , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Piperazinas/química , Piperazinas/metabolismo , Piperazinas/farmacologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Sódio/química , Sódio/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia
3.
Cell ; 149(5): 1060-72, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632970

RESUMO

Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration.


Assuntos
Morte Celular , Ferro/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Cicloexilaminas/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Humanos , Técnicas In Vitro , Metabolismo dos Lipídeos , Neoplasias/patologia , Fenilenodiaminas/farmacologia , Piperazinas/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Pharmacol ; 106(1): 56-70, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38769018

RESUMO

The antidepressants trazodone and nefazodone were approved some 4 and 3 decades ago, respectively. Their action is thought to be mediated, at least in part, by inhibition of the serotonin transporter [SERT/solute carrier (SLC)-6A4]. Surprisingly, their mode of action on SERT has not been characterized. Here, we show that, similar to the chemically related drug vilazodone, trazodone and nefazodone are allosteric ligands: trazodone and nefazodone inhibit uptake by and transport-associated currents through SERT in a mixed-competitive and noncompetitive manner, respectively. Contrary to noribogaine and its congeners, all three compounds preferentially interact with the Na+-bound outward-facing state of SERT. Nevertheless, they act as pharmacochaperones and rescue the folding-deficient variant SERT-P601A/G602A. The vast majority of disease-associated point mutations of SLC6 family members impair folding of the encoded transporter proteins. Our findings indicate that their folding defect can be remedied by targeting allosteric sites on SLC6 transporters. SIGNIFICANCE STATEMENT: The serotonin transporter is a member of the solute carrier-6 family and is the target of numerous antidepressants. Trazodone and nefazodone have long been used as antidepressants. Here, this study shows that their inhibition of the serotonin transporter digressed from the competitive mode seen with other antidepressants. Trazodone and nefazodone rescued a folding-deficient variant of the serotonin transporter. This finding demonstrates that folding defects of mutated solute carrier-6 family members can also be corrected by allosteric ligands.


Assuntos
Antidepressivos , Piperazinas , Proteínas da Membrana Plasmática de Transporte de Serotonina , Trazodona , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Trazodona/farmacologia , Trazodona/metabolismo , Humanos , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Piperazinas/farmacologia , Piperazinas/metabolismo , Regulação Alostérica/efeitos dos fármacos , Células HEK293 , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Triazóis/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Cloridrato de Vilazodona/farmacologia , Cloridrato de Vilazodona/metabolismo
5.
Nat Prod Rep ; 41(9): 1327-1345, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38629495

RESUMO

Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.


Assuntos
Alcaloides , Antineoplásicos , Estrutura Molecular , Alcaloides/farmacologia , Alcaloides/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/metabolismo , Fungos/metabolismo , Fungos/química , Família Multigênica , Indóis
6.
Chem Res Toxicol ; 37(1): 109-116, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173279

RESUMO

Ferroptosis is an iron-related cell death caused by irregular lipid peroxidation that has been implicated with a variety of disease. Erastin is a canonical ferroptosis inducer that is known to function by inhibiting system Xc- and cystine transport; however, the global interactome of erastin in cells remains unexplored. In this work, we employed a quantitative chemoproteomic approach to profile direct interacting proteins of erastin in living cells using a multifunctional photo-cross-linking probe. A number of novel erastin-interacting proteins were identified, including a serine hydrolase, ABHD6, whose overexpression showed a potentiating impact on ferroptosis. Further biochemical experiments revealed that erastin can allosterically activate ABHD6's activity to produce more arachidonic acids and elevate the level of lipid reactive oxygen species. Collectively, our work provided a global portrait of erastin-interacting proteins and discovered ABHD6 as a new ferroptosis regulator.


Assuntos
Piperazinas , Morte Celular , Piperazinas/farmacologia , Piperazinas/metabolismo , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo
7.
Rapid Commun Mass Spectrom ; 38(17): e9846, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38923663

RESUMO

RATIONALE: Lomerizine (LMZ) is an antimigraine drug that works as a calcium channel blocker and has selective effects on the central nervous system. It is metabolized into trimetazidine (TMZ), which is a prohibited substance owing to its performance-enhancing effects in both human and animal sports. Effective doping control measures are imperative to distinguish the source of TMZ in samples to ensure integrity and fairness of the sport, therefore a comprehensive analysis of LMZ metabolites is essential to identify potential biomarkers in camel urine for effective doping control. METHODS: Camel urine samples were collected from four healthy animals following a single oral administration of LMZ at a dosage of 1 mg/kg body weight. In vitro studies were conducted using homogenized camel liver samples. Lomerizine and its metabolites were extracted using solid-phase extraction and analyzed with a Thermo Fisher Orbitrap Exploris liquid chromatography mass spectrometry system. The acquired data was processed with the Compound Discoverer software. RESULTS: The study conducted a comprehensive analysis of LMZ metabolites in camels and identified 10 phase I and one phase II metabolites. The primary pathway for the formation of phase I metabolites was de-alkylation, while phase II metabolite was formed through alkylation of the parent drug. The study provided valuable insights into the unique metabolic pathways of LMZ in camels under specific experimental conditions. CONCLUSION: The developed method enables the detection and characterization of LMZ and its metabolites in camels. The identified metabolites has the potential to act as marker metabolites for the distinctive detection of LMZ in camel urine to ensure efficient analytical strategies for routine doping control applications.


Assuntos
Camelus , Dopagem Esportivo , Animais , Dopagem Esportivo/prevenção & controle , Piperazinas/urina , Piperazinas/metabolismo , Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos , Detecção do Abuso de Substâncias/veterinária , Cromatografia Líquida/métodos , Masculino
8.
J Chem Inf Model ; 64(14): 5701-5711, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38940754

RESUMO

Sigma-1 receptor (S1R) is involved in a large array of biological functions due to its ability to interact with various proteins and ion channels. Crystal structures of human S1R revealed the trimeric organization for which each protomer comprises the ligand binding pocket. This study applied a multistep computational procedure to develop a pharmacophore model obtained from molecular dynamics simulations of available cocrystal structures of well-known S1R ligands. Apart from the well-established positive ionizable and hydrophobic features, the obtained model included an additional specific hydrophobic feature and different excluded volumes, thus increasing the selectivity of the model as well as a more detailed determination of the distance between two essential features. The obtained pharmacophore model passed the validation test by receiver operating characteristic (ROC) curve analysis of active and inactive S1R ligands. Finally, the pharmacophoric performance was experimentally investigated through the synthesis and binding assay of new 4-phenylpiperazine-based compounds. The most active new ligand 2-(3-methyl-1-piperidyl)-1-(4-phenylpiperazin-1-yl)ethanone (3) showed an S1R affinity close to the reference compound haloperidol (Ki values of 4.8 and 2.6 nM, respectively). The proposed pharmacophore model can represent a useful tool to design and discover new potent S1R ligands.


Assuntos
Simulação de Dinâmica Molecular , Receptores sigma , Receptor Sigma-1 , Receptores sigma/metabolismo , Receptores sigma/química , Ligantes , Humanos , Piperazinas/química , Piperazinas/metabolismo , Ligação Proteica , Sítios de Ligação , Conformação Proteica
9.
Bioorg Med Chem ; 103: 117685, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503009

RESUMO

Genome sequencing on an intertidal zone-derived Aspergillus flavipes strain revealed its great potential to produce secondary metabolites. To activate the cryptic compounds of A. flavipes, the global regulator flLaeA was knocked out, leading to substantial up-regulation of the expression of two NRPS-like biosynthetic gene clusters in the ΔflLaeA mutant. With a scaled-up fermentation of the ΔflLaeA strain, five compounds, including two previously undescribed piperazine derivatives flavipamides A and B (1 and 2), along with three known compounds (3-5), were obtained by LC-MS guided isolation. The new compounds were elucidated by spectroscopic analysis and electronic circular dichroism (ECD) calculations, and the biosynthetic pathway was proposed on the bias of bioinformatic analysis and 13C isotope labeling evidence. This is the first report to access cryptic fungi secondary metabolites by inactivating global regulator LaeA and may provide a new approach to discovering new secondary metabolites by such genetic manipulation.


Assuntos
Aspergillus , Fungos , Aspergillus/genética , Aspergillus/metabolismo , Piperazinas/farmacologia , Piperazinas/metabolismo
10.
Nature ; 558(7711): 620-623, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925951

RESUMO

G-protein-coupled receptors (GPCRs) form the largest family of receptors encoded by the human genome (around 800 genes). They transduce signals by coupling to a small number of heterotrimeric G proteins (16 genes encoding different α-subunits). Each human cell contains several GPCRs and G proteins. The structural determinants of coupling of Gs to four different GPCRs have been elucidated1-4, but the molecular details of how the other G-protein classes couple to GPCRs are unknown. Here we present the cryo-electron microscopy structure of the serotonin 5-HT1B receptor (5-HT1BR) bound to the agonist donitriptan and coupled to an engineered Go heterotrimer. In this complex, 5-HT1BR is in an active state; the intracellular domain of the receptor is in a similar conformation to that observed for the ß2-adrenoceptor (ß2AR) 3 or the adenosine A2A receptor (A2AR) 1 in complex with Gs. In contrast to the complexes with Gs, the gap between the receptor and the Gß-subunit in the Go-5-HT1BR complex precludes molecular contacts, and the interface between the Gα-subunit of Go and the receptor is considerably smaller. These differences are likely to be caused by the differences in the interactions with the C terminus of the Go α-subunit. The molecular variations between the interfaces of Go and Gs in complex with GPCRs may contribute substantially to both the specificity of coupling and the kinetics of signalling.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT1B de Serotonina/ultraestrutura , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Nitrilas/química , Nitrilas/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Conformação Proteica , Receptor 5-HT1B de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Triptaminas/química , Triptaminas/metabolismo
11.
J Sep Sci ; 47(15): e2400346, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087624

RESUMO

Palbociclib (Ibrance; Pfizer) was approved for the management of metastatic breast cancer characterized by hormone receptor-positive/human epidermal growth factor receptor 2 negative status. The objective of this study was to create a fast, precise, environmentally friendly, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry approach for quantifying palbociclib (PAB) in human liver microsomes with the application for assessing metabolic stability. The validation features were performed in agreement with the bioanalytical method validation standards outlined by the US Food and Drug Administration. The StarDrop software (WhichP450 and DEREK modules) was used in screening the metabolic lability and structural alerts of PAB. The separation of PAB and encorafenib (as an internal standard) was achieved on a C8 column, employing an isocratic mobile phase. The inter-day and intra-day accuracy and precision ranged from -6.00% to 4.64% and from -2.33% to 3.13%, respectively. The constructed calibration curve displayed a linearity in the range of 1-3000 ng/mL. The sensitivity of the established approach was proven by the lower limit of quantification of 0.73 ng/mL. The Analytical GREEness calculator results revealed the high level of greenness of the developed method. The PAB's metabolic stability (t1/2 of 18.5 min and a moderate clearance (Clint) of 44.8 mL/min/kg) suggests a high extraction ratio medication that matched the WhichP450 software results.


Assuntos
Microssomos Hepáticos , Piperazinas , Piridinas , Espectrometria de Massas em Tandem , Humanos , Piperazinas/metabolismo , Piperazinas/análise , Piperazinas/química , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/química , Piridinas/metabolismo , Piridinas/química , Piridinas/análise , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Antineoplásicos/análise , Antineoplásicos/metabolismo , Antineoplásicos/química
12.
Angew Chem Int Ed Engl ; 63(20): e202401324, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38499463

RESUMO

We report the discovery and biosynthesis of new piperazine alkaloids-arizonamides, and their derived compounds-arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non-heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3-alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG.


Assuntos
Alcaloides , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/biossíntese , Piperazinas/química , Piperazinas/metabolismo , Ferro/química , Ferro/metabolismo , Ciclização , Biocatálise , Estrutura Molecular , Compostos de Espiro/química , Compostos de Espiro/metabolismo , Oxirredução , Piperazina/química , Piperazina/metabolismo
13.
Blood ; 137(1): 115-125, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33205809

RESUMO

Ciraparantag, an anticoagulant reversal agent, is a small molecule specifically designed to bind noncovalently by charge-charge interaction to unfractionated heparin and low-molecular-weight heparin. It shows binding characteristics that are similar to those of direct oral anticoagulants (DOACs). A dynamic light-scattering methodology was used to demonstrate ciraparantag's binding to the heparins and DOACs and its lack of binding to a variety of proteins including coagulation factors and commonly used drugs. Ciraparantag reaches maximum concentration within minutes after IV administration with a half-life of 12 to 19 minutes. It is primarily hydrolyzed by serum peptidases into 2 metabolites, neither of which has substantial activity. Ciraparantag and its metabolites are recovered almost entirely in the urine. In animal models of bleeding (rat tail transection and liver laceration), a single IV dose of ciraparantag given at peak concentrations of the anticoagulant, but before the bleeding injury, significantly reduced the blood loss. Ciraparantag, given after the bleeding injury, also significantly reduced blood loss. It appears to have substantial ability to reduce blood loss in animal models in which a variety of anticoagulants are used and has potential as a useful DOAC reversal agent.


Assuntos
Arginina/análogos & derivados , Coagulação Sanguínea/efeitos dos fármacos , Hemorragia/tratamento farmacológico , Piperazinas/farmacologia , Piperazinas/farmacocinética , Animais , Anticoagulantes/efeitos adversos , Arginina/metabolismo , Arginina/farmacocinética , Arginina/farmacologia , Feminino , Meia-Vida , Hemorragia/induzido quimicamente , Humanos , Masculino , Piperazinas/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Proc Natl Acad Sci U S A ; 117(30): 17808-17819, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661168

RESUMO

p53 is the most frequently mutated, well-studied tumor-suppressor gene, yet the molecular basis of the switch from p53-induced cell-cycle arrest to apoptosis remains poorly understood. Using a combination of transcriptomics and functional genomics, we unexpectedly identified a nodal role for the caspase-8 paralog and only human pseudo-caspase, FLIP(L), in regulating this switch. Moreover, we identify FLIP(L) as a direct p53 transcriptional target gene that is rapidly up-regulated in response to Nutlin-3A, an MDM2 inhibitor that potently activates p53. Genetically or pharmacologically inhibiting expression of FLIP(L) using siRNA or entinostat (a clinically relevant class-I HDAC inhibitor) efficiently promoted apoptosis in colorectal cancer cells in response to Nutlin-3A, which otherwise predominantly induced cell-cycle arrest. Enhanced apoptosis was also observed when entinostat was combined with clinically relevant, p53-activating chemotherapy in vitro, and this translated into enhanced in vivo efficacy. Mechanistically, FLIP(L) inhibited p53-induced apoptosis by blocking activation of caspase-8 by the TRAIL-R2/DR5 death receptor; notably, this activation was not dependent on receptor engagement by its ligand, TRAIL. In the absence of caspase-8, another of its paralogs, caspase-10 (also transcriptionally up-regulated by p53), induced apoptosis in Nutlin-3A-treated, FLIP(L)-depleted cells, albeit to a lesser extent than in caspase-8-proficient cells. FLIP(L) depletion also modulated transcription of canonical p53 target genes, suppressing p53-induced expression of the cell-cycle regulator p21 and enhancing p53-induced up-regulation of proapoptotic PUMA. Thus, even in the absence of caspase-8/10, FLIP(L) silencing promoted p53-induced apoptosis by enhancing PUMA expression. Thus, we report unexpected, therapeutically relevant roles for FLIP(L) in determining cell fate following p53 activation.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzamidas/farmacologia , Caspase 8/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sinergismo Farmacológico , Regulação da Expressão Gênica , Humanos , Imidazóis/metabolismo , Modelos Biológicos , Piperazinas/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Piridinas/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Supressora de Tumor p53/genética
15.
Chembiochem ; 23(23): e202200341, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-35997236

RESUMO

Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.


Assuntos
Produtos Biológicos , Gliotoxina , Produtos Biológicos/farmacologia , Família Multigênica , Sulfetos , Piperazinas/metabolismo , Piperazinas/farmacologia
16.
FASEB J ; 35(2): e21319, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33433933

RESUMO

The tumor suppressor p53 is known as a critical mediator of many cellular processes, including cellular senescence, but its role in mitochondrial dynamics is not fully understood. We have previously shown that p53 regulates mitochondrial dynamics via the PKA-Drp1 pathway to induce cellular senescence. In this study, to further understand the role of p53-dependent regulation of mitochondrial dynamics, the effect of p53 expression on mitochondrial morphology was examined in various cancer cell lines and normal human cells. We found that p53 induced remarkable mitochondrial elongation and cellular senescence in various cancer cells regardless of their p53 status. p53 also induced mitochondrial elongation in various human primary normal cells, suggesting that p53-mediated mitochondrial elongation is a general phenomenon. Moreover, we found that p53 plays an essential role in mitochondrial elongation in H-Ras-induced cellular senescence and in the replicative senescence of normal human cells. Treatment with the MDM-2 antagonist Nutlin-3a also induced mitochondrial elongation through the PKA-Drp1 pathway in IMR90 normal human cells. Furthermore, the inhibition of PKA activity in late-passage normal cells significantly reduced both mitochondrial elongation and cellular senescence, suggesting that the p53-PKA pathway is essential for maintaining the senescence phenotype in normal cells. Together, these results further confirm the direct regulation of mitochondrial dynamics by p53 and the important role of p53-mediated mitochondrial elongation in cellular senescence.


Assuntos
Senescência Celular/fisiologia , Mitocôndrias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Senescência Celular/genética , Humanos , Imidazóis/metabolismo , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Piperazinas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
PLoS Biol ; 17(4): e3000229, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31039149

RESUMO

Hepatitis A virus (HAV), an enigmatic and ancient pathogen, is a major causative agent of acute viral hepatitis worldwide. Although there are effective vaccines, antivirals against HAV infection are still required, especially during fulminant hepatitis outbreaks. A more in-depth understanding of the antigenic characteristics of HAV and the mechanisms of neutralization could aid in the development of rationally designed antiviral drugs targeting HAV. In this paper, 4 new antibodies-F4, F6, F7, and F9-are reported that potently neutralize HAV at 50% neutralizing concentration values (neut50) ranging from 0.1 nM to 0.85 nM. High-resolution cryo-electron microscopy (cryo-EM) structures of HAV bound to F4, F6, F7, and F9, together with results of our previous studies on R10 fragment of antigen binding (Fab)-HAV complex, shed light on the locations and nature of the epitopes recognized by the 5 neutralizing monoclonal antibodies (NAbs). All the epitopes locate within the same patch and are highly conserved. The key structure-activity correlates based on the antigenic sites have been established. Based on the structural data of the single conserved antigenic site and key structure-activity correlates, one promising drug candidate named golvatinib was identified by in silico docking studies. Cell-based antiviral assays confirmed that golvatinib is capable of blocking HAV infection effectively with a 50% inhibitory concentration (IC50) of approximately 1 µM. These results suggest that the single conserved antigenic site from complete HAV capsid is a good antiviral target and that golvatinib could function as a lead compound for anti-HAV drug development.


Assuntos
Anticorpos Neutralizantes/ultraestrutura , Desenho de Fármacos , Vírus da Hepatite A/imunologia , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Anticorpos Monoclonais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais , Antígenos Virais , Capsídeo/metabolismo , Simulação por Computador , Epitopos , Antígenos da Hepatite A/metabolismo , Antígenos da Hepatite A/ultraestrutura , Vírus da Hepatite A/patogenicidade , Vírus da Hepatite A/ultraestrutura , Humanos , Piperazinas/metabolismo , Piperazinas/farmacologia , Ligação Proteica
18.
Bioorg Med Chem Lett ; 57: 128497, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896213

RESUMO

In this paper, we designed and synthesized a series of novel phenylpiperazine-phenylacetate derivatives as rapid recovery hypnotic agents. The best compound 10 had relatively high affinity for the GABAA receptor and low affinity for thirteen other off-target receptors. In three animal models (mice, rats, and rabbits), compound 10 exerted potent hypnotic effects (HD50 = 5.2 mg/kg in rabbits), comparable duration of the loss of righting reflex (LORR), and significant shorter recovery time (time to walk) than propanidid. Furthermore, compound 10 (TI = 18.1) showed higher safety profile than propanidid (TI = 14.7) in rabbits. Above results suggested that compound 10 may have predictable and rapid recovery profile in anesthesia.


Assuntos
Hipnóticos e Sedativos/farmacologia , Fenilacetatos/farmacologia , Piperazinas/farmacologia , Animais , Desenho de Fármacos , Cobaias , Hipnóticos e Sedativos/síntese química , Hipnóticos e Sedativos/metabolismo , Masculino , Camundongos , Fenilacetatos/síntese química , Fenilacetatos/metabolismo , Piperazinas/síntese química , Piperazinas/metabolismo , Coelhos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo
19.
Nature ; 531(7593): 258-62, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26961658

RESUMO

Two-pore channels (TPCs) comprise a subfamily (TPC1-3) of eukaryotic voltage- and ligand-gated cation channels with two non-equivalent tandem pore-forming subunits that dimerize to form quasi-tetramers. Found in vacuolar or endolysosomal membranes, they regulate the conductance of sodium and calcium ions, intravesicular pH, trafficking and excitability. TPCs are activated by a decrease in transmembrane potential and an increase in cytosolic calcium concentrations, are inhibited by low luminal pH and calcium, and are regulated by phosphorylation. Here we report the crystal structure of TPC1 from Arabidopsis thaliana at 2.87 Å resolution as a basis for understanding ion permeation, channel activation, the location of voltage-sensing domains and regulatory ion-binding sites. We determined sites of phosphorylation in the amino-terminal and carboxy-terminal domains that are positioned to allosterically modulate cytoplasmic Ca(2+) activation. One of the two voltage-sensing domains (VSD2) encodes voltage sensitivity and inhibition by luminal Ca(2+) and adopts a conformation distinct from the activated state observed in structures of other voltage-gated ion channels. The structure shows that potent pharmacophore trans-Ned-19 (ref. 17) acts allosterically by clamping the pore domains to VSD2. In animals, Ned-19 prevents infection by Ebola virus and other filoviruses, presumably by altering their fusion with the endolysosome and delivery of their contents into the cytoplasm.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Arabidopsis/química , Canais de Cálcio/química , Ativação do Canal Iônico , Regulação Alostérica/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Cálcio/farmacologia , Canais de Cálcio/metabolismo , Carbolinas/metabolismo , Carbolinas/farmacologia , Cristalografia por Raios X , Ebolavirus/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/virologia , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Modelos Moleculares , Fosforilação , Piperazinas/metabolismo , Piperazinas/farmacologia , Estrutura Terciária de Proteína/efeitos dos fármacos
20.
Cereb Cortex ; 31(6): 2868-2885, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497440

RESUMO

Food restriction (FR) evokes running, which may promote adaptive foraging in times of food scarcity, but can become lethal if energy expenditure exceeds caloric availability. Here, we demonstrate that chemogenetic activation of either the general medial prefrontal cortex (mPFC) pyramidal cell population, or the subpopulation projecting to dorsal striatum (DS) drives running specifically during hours preceding limited food availability, and not during ad libitum food availability. Conversely, suppression of mPFC pyramidal cells generally, or targeting mPFC-to-DS cells, reduced wheel running specifically during FR and not during ad libitum food access. Post mortem c-Fos analysis and electron microscopy of mPFC layer 5 revealed distinguishing characteristics of mPFC-to-DS cells, when compared to neighboring non-DS-projecting pyramidal cells: 1) greater recruitment of GABAergic activity and 2) less axo-somatic GABAergic innervation. Together, these attributes position the mPFC-to-DS subset of pyramidal cells to dominate mPFC excitatory outflow, particularly during FR, revealing a specific and causal role for mPFC-to-DS control of the decision to run during food scarcity. Individual differences in GABAergic activity correlate with running response to further support this interpretation. FR enhancement of PFC-to-DS activity may influence neural circuits both in studies using FR to motivate animal behavior and in human conditions hallmarked by FR.


Assuntos
Restrição Calórica/tendências , Tomada de Decisões/fisiologia , Metabolismo Energético/fisiologia , Rede Nervosa/metabolismo , Córtex Pré-Frontal/metabolismo , Corrida/fisiologia , Animais , Tomada de Decisões/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Rede Nervosa/química , Rede Nervosa/efeitos dos fármacos , Piperazinas/administração & dosagem , Piperazinas/metabolismo , Córtex Pré-Frontal/química , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/química , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Corrida/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA