RESUMO
BACKGROUND: Tuberculosis is usually treated with a 6-month rifampin-based regimen. Whether a strategy involving shorter initial treatment may lead to similar outcomes is unclear. METHODS: In this adaptive, open-label, noninferiority trial, we randomly assigned participants with rifampin-susceptible pulmonary tuberculosis to undergo either standard treatment (rifampin and isoniazid for 24 weeks with pyrazinamide and ethambutol for the first 8 weeks) or a strategy involving initial treatment with an 8-week regimen, extended treatment for persistent clinical disease, monitoring after treatment, and retreatment for relapse. There were four strategy groups with different initial regimens; noninferiority was assessed in the two strategy groups with complete enrollment, which had initial regimens of high-dose rifampin-linezolid and bedaquiline-linezolid (each with isoniazid, pyrazinamide, and ethambutol). The primary outcome was a composite of death, ongoing treatment, or active disease at week 96. The noninferiority margin was 12 percentage points. RESULTS: Of the 674 participants in the intention-to-treat population, 4 (0.6%) withdrew consent or were lost to follow-up. A primary-outcome event occurred in 7 of the 181 participants (3.9%) in the standard-treatment group, as compared with 21 of the 184 participants (11.4%) in the strategy group with an initial rifampin-linezolid regimen (adjusted difference, 7.4 percentage points; 97.5% confidence interval [CI], 1.7 to 13.2; noninferiority not met) and 11 of the 189 participants (5.8%) in the strategy group with an initial bedaquiline-linezolid regimen (adjusted difference, 0.8 percentage points; 97.5% CI, -3.4 to 5.1; noninferiority met). The mean total duration of treatment was 180 days in the standard-treatment group, 106 days in the rifampin-linezolid strategy group, and 85 days in the bedaquiline-linezolid strategy group. The incidences of grade 3 or 4 adverse events and serious adverse events were similar in the three groups. CONCLUSIONS: A strategy involving initial treatment with an 8-week bedaquiline-linezolid regimen was noninferior to standard treatment for tuberculosis with respect to clinical outcomes. The strategy was associated with a shorter total duration of treatment and with no evident safety concerns. (Funded by the Singapore National Medical Research Council and others; TRUNCATE-TB ClinicalTrials.gov number, NCT03474198.).
Assuntos
Antituberculosos , Diarilquinolinas , Linezolida , Rifampina , Tuberculose Pulmonar , Humanos , Antituberculosos/efeitos adversos , Antituberculosos/uso terapêutico , Esquema de Medicação , Quimioterapia Combinada , Etambutol/efeitos adversos , Etambutol/uso terapêutico , Isoniazida/efeitos adversos , Isoniazida/uso terapêutico , Linezolida/efeitos adversos , Linezolida/uso terapêutico , Pirazinamida/efeitos adversos , Pirazinamida/uso terapêutico , Rifampina/efeitos adversos , Rifampina/uso terapêutico , Resultado do Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/complicações , Diarilquinolinas/efeitos adversos , Diarilquinolinas/uso terapêuticoRESUMO
BACKGROUND: Two thirds of children with tuberculosis have nonsevere disease, which may be treatable with a shorter regimen than the current 6-month regimen. METHODS: We conducted an open-label, treatment-shortening, noninferiority trial involving children with nonsevere, symptomatic, presumably drug-susceptible, smear-negative tuberculosis in Uganda, Zambia, South Africa, and India. Children younger than 16 years of age were randomly assigned to 4 months (16 weeks) or 6 months (24 weeks) of standard first-line antituberculosis treatment with pediatric fixed-dose combinations as recommended by the World Health Organization. The primary efficacy outcome was unfavorable status (composite of treatment failure [extension, change, or restart of treatment or tuberculosis recurrence], loss to follow-up during treatment, or death) by 72 weeks, with the exclusion of participants who did not complete 4 months of treatment (modified intention-to-treat population). A noninferiority margin of 6 percentage points was used. The primary safety outcome was an adverse event of grade 3 or higher during treatment and up to 30 days after treatment. RESULTS: From July 2016 through July 2018, a total of 1204 children underwent randomization (602 in each group). The median age of the participants was 3.5 years (range, 2 months to 15 years), 52% were male, 11% had human immunodeficiency virus infection, and 14% had bacteriologically confirmed tuberculosis. Retention by 72 weeks was 95%, and adherence to the assigned treatment was 94%. A total of 16 participants (3%) in the 4-month group had a primary-outcome event, as compared with 18 (3%) in the 6-month group (adjusted difference, -0.4 percentage points; 95% confidence interval, -2.2 to 1.5). The noninferiority of 4 months of treatment was consistent across the intention-to-treat, per-protocol, and key secondary analyses, including when the analysis was restricted to the 958 participants (80%) independently adjudicated to have tuberculosis at baseline. A total of 95 participants (8%) had an adverse event of grade 3 or higher, including 15 adverse drug reactions (11 hepatic events, all but 2 of which occurred within the first 8 weeks, when the treatments were the same in the two groups). CONCLUSIONS: Four months of antituberculosis treatment was noninferior to 6 months of treatment in children with drug-susceptible, nonsevere, smear-negative tuberculosis. (Funded by the U.K. Medical Research Council and others; SHINE ISRCTN number, ISRCTN63579542.).
Assuntos
Antituberculosos/administração & dosagem , Tuberculose/tratamento farmacológico , Adolescente , África , Criança , Pré-Escolar , Esquema de Medicação , Quimioterapia Combinada , Feminino , Humanos , Índia , Lactente , Análise de Intenção de Tratamento , Isoniazida/administração & dosagem , Masculino , Gravidade do Paciente , Pirazinamida/administração & dosagem , Rifampina/administração & dosagem , Resultado do TratamentoRESUMO
The rise of pyrazinamide (PZA)-resistant strains of Mycobacterium tuberculosis (MTB) poses a major challenge to conventional tuberculosis (TB) treatments. PZA, a cornerstone of TB therapy, must be activated by the mycobacterial enzyme pyrazinamidase (PZase) to convert its active form, pyrazinoic acid, which targets the ribosomal protein S1. Resistance, often associated with mutations in the RpsA protein, complicates treatment and highlights a critical gap in the understanding of structural dynamics and mechanisms of resistance, particularly in the context of the G97D mutation. This study utilizes a novel integration of computational techniques, including multiscale biomolecular and molecular dynamics simulations, physicochemical and medicinal chemistry predictions, quantum computations and virtual screening from the ZINC and Chembridge databases, to elucidate the resistance mechanism and identify lead compounds that have the potential to improve treatment outcomes for PZA-resistant MTB, namely ZINC15913786, ZINC20735155, Chem10269711, Chem10279789 and Chem10295790. These computational methods offer a cost-effective, rapid alternative to traditional drug trials by bypassing the need for organic subjects while providing highly accurate insight into the binding sites and efficacy of new drug candidates. The need for rapid and appropriate drug development emphasizes the need for robust computational analysis to justify further validation through in vitro and in vivo experiments.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Pirazinamida/química , Pirazinamida/metabolismo , Pirazinamida/farmacologia , Mycobacterium tuberculosis/genética , Antituberculosos/química , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Tuberculose/microbiologia , Mutação , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: In 2019, the World Health Organization called for operational research on all-oral shortened regimens for multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB). We report safety and effectiveness of three 9-month all-oral regimens containing bedaquiline (Bdq), linezolid (Lzd), and levofloxacin (Lfx) and reinforced with cycloserine (Cs) and clofazimine (Cfz), delamanid (Dlm) and pyrazinamide (Z), or Dlm and Cfz. METHODS: We conducted a prospective cohort study of patients initiating treatment for pulmonary MDR/RR-TB under operational research conditions at public health facilities in Kazakhstan. Participants were screened monthly for adverse events. Participants with baseline resistance were excluded from the study and treated with a longer regimen. We analyzed clinically relevant adverse events of special interest in all participants and sputum culture conversion and end-of-treatment outcomes among individuals who were not excluded. RESULTS: Of 510 participants, 41% were women, the median age was 37 years (25th-75th percentile: 28-49), 18% had a body mass index <18.5â kg/m2, and 51% had cavitary disease. A total of 399 (78%) initiated Bdq-Lzd-Lfx-Cs-Cfz, 83 (16%) started Bdq-Lzd-Lfx-Dlm-Z, and 28 (5%) initiated Bdq-Lzd-Lfx-Dlm-Cfz. Fifty-eight individuals (11%) were excluded from the study, most commonly due to identification of baseline drug resistance (n = 52; 90%). Among the remaining 452 participants, treatment success frequencies were 92% (95% CI: 89-95%), 89% (95% CI: 80-94%), and 100% (95% CI: 86-100%) for regimens with Cs/Cfz, Dlm/Z, and Dlm/Cfz, respectively. Clinically relevant adverse events of special interest were uncommon. CONCLUSIONS: All regimens demonstrated excellent safety and effectiveness, expanding the potential treatment options for patients, providers, and programs.
Assuntos
Antituberculosos , Clofazimina , Rifampina , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Feminino , Masculino , Adulto , Antituberculosos/uso terapêutico , Antituberculosos/efeitos adversos , Antituberculosos/administração & dosagem , Cazaquistão , Estudos Prospectivos , Rifampina/uso terapêutico , Rifampina/administração & dosagem , Rifampina/efeitos adversos , Pessoa de Meia-Idade , Clofazimina/uso terapêutico , Clofazimina/administração & dosagem , Clofazimina/efeitos adversos , Quimioterapia Combinada , Linezolida/uso terapêutico , Linezolida/administração & dosagem , Linezolida/efeitos adversos , Levofloxacino/uso terapêutico , Levofloxacino/administração & dosagem , Levofloxacino/efeitos adversos , Resultado do Tratamento , Oxazóis/uso terapêutico , Oxazóis/efeitos adversos , Oxazóis/administração & dosagem , Nitroimidazóis/efeitos adversos , Nitroimidazóis/uso terapêutico , Nitroimidazóis/administração & dosagem , Administração Oral , Pirazinamida/uso terapêutico , Pirazinamida/administração & dosagem , Pirazinamida/efeitos adversos , Diarilquinolinas/uso terapêutico , Diarilquinolinas/efeitos adversos , Diarilquinolinas/administração & dosagem , Adulto Jovem , Ciclosserina/uso terapêutico , Ciclosserina/administração & dosagem , Ciclosserina/efeitos adversos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológicoRESUMO
Despite known treatments, tuberculosis (TB) remains the world's top infectious killer, highlighting the pressing need for new drug regimens. To prioritize the most efficacious drugs for clinical testing, we previously developed a PK-PD translational platform with bacterial dynamics that reliably predicted short-term monotherapy outcomes in Phase IIa trials from preclinical mouse studies. In this study, we extended our platform to include PK-PD models that account for drug-drug interactions in combination regimens and bacterial regrowth in our bacterial dynamics model to predict cure at the end of treatment and relapse 6 months post-treatment. The Phase III STAND trial testing a new regimen comprised of pretomanid (Pa), moxifloxacin (M), and pyrazinamide (Z) (PaMZ) was suspended after a separate ongoing trial (NC-005) suggested that adding bedaquiline (B) to the PaMZ regimen would improve efficacy. To forecast if the addition of B would, indeed, benefit the PaMZ regimen, we applied an extended translational platform to both regimens. We predicted currently available short- and long-term clinical data well for drug combinations related to BPaMZ. We predicted the addition of B to PaMZ to shorten treatment duration by 2 months and to have similar bacteriological success to standard HRZE treatment (considering only treatment success but not withdrawal from side effects and other adverse events), both at the end of treatment for treatment efficacy and 6 months after treatment has ended in relapse prevention. Using BPaMZ as a case study, we have demonstrated our translational platform can predict Phase II and III outcomes prior to actual trials, allowing us to better prioritize the regimens most likely to succeed.
Assuntos
Antituberculosos , Diarilquinolinas , Moxifloxacina , Mycobacterium tuberculosis , Pirazinamida , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Pirazinamida/uso terapêutico , Pirazinamida/farmacologia , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Moxifloxacina/uso terapêutico , Moxifloxacina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Quimioterapia Combinada , Nitroimidazóis/uso terapêutico , Nitroimidazóis/farmacologia , Resultado do Tratamento , Interações MedicamentosasRESUMO
Infection with Mycobacterium tuberculosis remains one of the biggest causes of death from a single microorganism worldwide, and the continuous emergence of drug resistance aggravates our ability to cure the disease. New improved resistance detection methods are needed to provide adequate treatment, such as whole genome sequencing (WGS), which has been used increasingly to identify resistance-conferring mutations over the last decade. The steadily increasing knowledge of resistance-conferring mutations increases our ability to predict resistance based on genomic data alone. This study evaluates the performance of WGS to predict M. tuberculosis complex resistance. It compares WGS predictions with the phenotypic (culture-based) drug susceptibility results based on 20 years of nationwide Danish data. Analyzing 6,230 WGS-sequenced samples, the sensitivities for isoniazid, rifampicin, ethambutol, and pyrazinamide were 82.5% [78.0%-86.5%, 95% confidence interval (CI)], 97.3% (90.6%-99.7%, 95% CI), 58.0% (43.2%-71.8%, 95% CI), and 60.5% (49.0%-71.2%, 95% CI), respectively, and specificities were 99.8% (99.7%-99.9%, 95% CI), 99.8% (99.7%-99.9%, 95% CI), 99.4% (99.2%-99.6%, 95% CI), and 99.9% (99.7%-99.9%, 95% CI), respectively. A broader range of both sensitivities and specificities was observed for second-line drugs. The results conform with previously reported values and indicate that WGS is reliable for routine resistance detection in resource-rich tuberculosis low-incidence and low-resistance settings such as Denmark.
Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Dinamarca/epidemiologia , Antituberculosos/farmacologia , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Isoniazida/farmacologia , Etambutol/farmacologia , Rifampina/farmacologia , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Mutação , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genéticaRESUMO
Pyrazinamide, an antituberculosis but documented toxic drug, is subjected to computational investigation along with the metal complexes via a DFT approach to predict the structure-activity and structure-toxicity relationship. 6-31G(d,p) basis set was used for Zn, Ni, Mn, Fe, and Co, while the SDD basis set was applied to Cu, Cr, Cd, and Hg. Several reactivity parameters and charge distribution were calculated and the reactivity profile was estimated. The complexes were found to be soft and polarizable which could be responsible for their binding with bacterial targets to inhibit their growth. In contrast, pyrazinamide which is found to be hard among all is susceptible to being toxic. Moreover, the electronegative nature of the complexes can endow them with a better antibacterial effect. Since metal complexes have been found to be less toxic and more biologically interactive by computational methods, they can be employed as potent drugs for the cure of tuberculosis.
Assuntos
Complexos de Coordenação , Mercúrio , Pirazinamida/farmacologia , Complexos de Coordenação/farmacologia , AntibacterianosRESUMO
Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.
Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Tuberculose Resistente a Múltiplos Medicamentos , Adulto , Humanos , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/tratamento farmacológico , Tuberculose Meníngea/líquido cefalorraquidiano , Mycobacterium tuberculosis/genética , Pirazinamida , Sensibilidade e Especificidade , Rifampina/farmacologia , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Líquido Cefalorraquidiano , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: In South Africa, an estimated 11% of the population have high alcohol use, a major risk factor for TB. Alcohol and other substance use are also associated with poor treatment response, with a potential mechanism being altered TB drug pharmacokinetics. OBJECTIVES: To investigate the impact of alcohol and illicit substance use on the pharmacokinetics of first-line TB drugs in participants with pulmonary TB. METHODS: We prospectively enrolled participants ≥15 years old, without HIV, and initiating drug-susceptible TB treatment in Worcester, South Africa. Alcohol use was measured via self-report and blood biomarkers. Other illicit substances were captured through a urine drug test. Plasma samples were drawn 1 month into treatment pre-dose, and 1.5, 3, 5 and 8 h post-dose. Non-linear mixed-effects modelling was used to describe the pharmacokinetics of rifampicin, isoniazid, pyrazinamide and ethambutol. Alcohol and drug use were tested as covariates. RESULTS: The study included 104 participants, of whom 70% were male, with a median age of 37 years (IQR 27-48). Alcohol use was high, with 42% and 28% of participants having moderate and high alcohol use, respectively. Rifampicin and isoniazid had slightly lower pharmacokinetics compared with previous reports, whereas pyrazinamide and ethambutol were consistent. No significant alcohol use effect was detected, other than 13% higher ethambutol clearance in participants with high alcohol use. Methaqualone use reduced rifampicin bioavailability by 19%. CONCLUSION: No clinically relevant effect of alcohol use was observed on the pharmacokinetics of first-line TB drugs, suggesting that poor treatment outcome is unlikely due to pharmacokinetic alterations. That methaqualone reduced rifampicin means dose adjustment may be beneficial.
Assuntos
Antituberculosos , Rifampina , Humanos , Masculino , Adulto , Feminino , Antituberculosos/farmacocinética , África do Sul , Pessoa de Meia-Idade , Estudos Prospectivos , Rifampina/farmacocinética , Isoniazida/farmacocinética , Consumo de Bebidas Alcoólicas/efeitos adversos , Tuberculose Pulmonar/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias , Pirazinamida/farmacocinética , Pirazinamida/administração & dosagem , Etambutol/farmacocinética , Adulto JovemRESUMO
BACKGROUND: New and shorter regimens against multi-drug resistant tuberculosis (TB) remain urgently needed. To inform treatment duration in clinical trials, this study aimed to identify human pharmacokinetic equivalent doses, antimycobacterial and sterilizing activity of a novel regimen, containing bedaquiline, delamanid, moxifloxacin and sutezolid (BDMU), in the standard mouse model (BALB/c) of Mycobacterium tuberculosis (Mtb) infection. METHODS: Treatment of mice with B25D0.6M200U200, B25D0.6M200, B25D0.6M200(U2003) or H10R10Z150E100 (isoniazid, rifampicin, pyrazinamide, ethambutol, HRZE), started 3 weeks after Mtb infection. Bactericidal activity was assessed after 1, 2, 3 and 4 months of treatment and relapse rates were assessed 3 months after completing treatment durations of 2, 3 and 4 months. RESULTS: B25D0.6M200U200 generated human equivalent exposures in uninfected BALB/c mice. After 1 month of treatment, a higher bactericidal activity was observed for the B25D0.6M200U200 and the B25D0.6M200 regimen compared to the standard H10R10Z150E100 regimen. Furthermore, 3 months of therapy with both BDM-based regimens resulted in negative lung cultures, whereas all H10R10Z150E100 treated mice were still culture positive. After 3 months of therapy 7% and 13% of mice relapsed receiving B25D0.6M200U200 and B25D0.6M200, respectively, compared to 40% for H10R10Z150E100 treatment showing an increased sterilizing activity of both BDM-based regimens. CONCLUSIONS: BDM-based regimens, with and without sutezolid, have a higher efficacy than the HRZE regimen in the BALB/c model of TB, with some improvement by adding sutezolid. By translating these results to TB patients, this novel BDMU regimen should be able to reduce treatment duration by 25% compared to HRZE therapy.
Assuntos
Antituberculosos , Diarilquinolinas , Modelos Animais de Doenças , Quimioterapia Combinada , Camundongos Endogâmicos BALB C , Moxifloxacina , Mycobacterium tuberculosis , Nitroimidazóis , Oxazóis , Animais , Nitroimidazóis/uso terapêutico , Nitroimidazóis/administração & dosagem , Nitroimidazóis/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/farmacocinética , Antituberculosos/administração & dosagem , Antituberculosos/farmacologia , Diarilquinolinas/uso terapêutico , Diarilquinolinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Camundongos , Oxazóis/uso terapêutico , Oxazóis/administração & dosagem , Oxazóis/farmacologia , Moxifloxacina/uso terapêutico , Moxifloxacina/administração & dosagem , Moxifloxacina/farmacologia , Feminino , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Oxazolidinonas/uso terapêutico , Oxazolidinonas/administração & dosagem , Oxazolidinonas/farmacocinética , Pirazinamida/uso terapêutico , Pirazinamida/administração & dosagem , Resultado do Tratamento , IsoxazóisRESUMO
As one of the oldest infectious diseases in the world, tuberculosis (TB) is the second most deadly infectious disease after COVID-19. Tuberculosis is caused by Mycobacterium tuberculosis (Mtb), which can attack various organs of the human body. Up to now, drug-resistant TB continues to be a public health threat. Pyrazinamide (PZA) is regarded as a sterilizing drug in the treatment of TB due to its distinct ability to target Mtb persisters. Previously we demonstrated that a D67N mutation in Mycobacterium tuberculosis polynucleotide phosphorylase (MtbPNPase, Rv2783c) confers resistance to PZA and Rv2783c is a potential target for PZA, but the mechanism leading to PZA resistance remains unclear. To gain further insight into the MtbPNPase, we determined the cryo-EM structures of apo Rv2783c, its mutant form and its complex with RNA. Our studies revealed the Rv2783c structure at atomic resolution and identified its enzymatic functional groups essential for its phosphorylase activities. We also investigated the molecular mechanisms underlying the resistance to PZA conferred by the mutation. Our research findings provide structural and functional insights enabling the development of new anti-tuberculosis drugs.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , Microscopia Crioeletrônica , Amidoidrolases , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Pirazinamida/química , Pirazinamida/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Mutação , RNARESUMO
BACKGROUND: Tuberculosis (TB) lymphadenitis is the most common form of extra-pulmonary TB, and the treatment duration is six months. This non-inferiority based randomized clinical trial in South India evaluated the efficacy and safety of a four-month ofloxacin containing regimen in tuberculosis lymphadenitis (TBL) patients. METHODS: New, adult, HIV-negative, microbiologically and or histopathologically confirmed superficial lymph node TB patients were randomized to either four-month oflaxacin containing test regimen [ofloxacin (O), isoniazid (H), rifampicin (R), pyrazinamide (Z) -2RHZO daily/ 2RHO thrice-weekly] or a six-month thrice-weekly control regimen (2HRZ, ethambutol/4RH). The treatment was directly observed. Clinical progress was monitored monthly during and up to 12 months post-treatment, and thereafter every three months up to 24 months. The primary outcome was determined by response at the end of treatment and TB recurrence during the 24 months post-treatment. RESULTS: Of the 302 patients randomized, 298 (98.7%) were eligible for modified intention-to-treat (ITT) analysis and 294 (97%) for per-protocol (PP) analysis. The TB recurrence-free favourable response in the PP analysis was 94.0% (95% CI: 90.1-97.8) and 94.5% (95% CI: 90.8-98.2) in the test and control regimen respectively, while in the ITT analysis, it was 92.7% and 93.2%. The TB recurrence-free favourable response in the test regimen was non-inferior to the control regimen 0.5% (95% CI: -4.8-5.9) in the PP analysis based on the 6% non-inferiority margin. Treatment was modified for drug toxicity in two patients in the test regimen, while one patient had a paradoxical reaction. CONCLUSION: The 4-month ofloxacin containing regimen was found to be non-inferior and as safe as the 6-month thrice-weekly control regimen.
Assuntos
Antituberculosos , Ofloxacino , Tuberculose dos Linfonodos , Humanos , Ofloxacino/administração & dosagem , Ofloxacino/efeitos adversos , Ofloxacino/uso terapêutico , Adulto , Masculino , Feminino , Tuberculose dos Linfonodos/tratamento farmacológico , Antituberculosos/uso terapêutico , Antituberculosos/efeitos adversos , Antituberculosos/administração & dosagem , Resultado do Tratamento , Pessoa de Meia-Idade , Índia , Rifampina/uso terapêutico , Rifampina/administração & dosagem , Rifampina/efeitos adversos , Adulto Jovem , Isoniazida/uso terapêutico , Isoniazida/administração & dosagem , Isoniazida/efeitos adversos , Quimioterapia Combinada , Pirazinamida/uso terapêutico , Pirazinamida/administração & dosagem , Pirazinamida/efeitos adversos , Etambutol/uso terapêutico , Etambutol/administração & dosagem , Etambutol/efeitos adversos , Esquema de Medicação , AdolescenteRESUMO
In this report, a library consisting of three sets of indole-piperazine derivatives was designed through the molecular hybridization approach. In total, fifty new hybrid compounds (T1-T50) were synthesized and screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain (ATCC-27294). Five (T36, T43, T44, T48 and T49) among fifty compounds exhibited significant inhibitory potency with the MIC of 1.6 µg/mL, which is twofold more potent than the standard first-line TB drug Pyrazinamide and equipotent with Isoniazid. N-1,2,3-triazolyl indole-piperazine derivatives displayed improved inhibition activity as compared to the simple and N-benzyl indole-piperazine derivatives. In addition, the observed activity profile of indole-piperazines was similar to standard anti-TB drugs (isoniazid and pyrazinamide) against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains, demonstrating the compounds' selectivity towards the Mycobacterium tuberculosis H37Rv strain. All the active anti-TB compounds are proved to be non-toxic (with IC50 > 300 µg/mL) as verified through the toxicity evaluation against VERO cell lines. Additionally, molecular docking studies against two target enzymes (Inh A and CYP121) were performed to validate the activity profile of indole-piperazine derivatives. Further, in silico-ADME prediction and pharmacokinetic parameters indicated that these compounds have good oral bioavailability.
Assuntos
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Simulação de Acoplamento Molecular , Isoniazida/farmacologia , Pirazinamida , Piperazinas/farmacologia , Triazóis/farmacologia , Triazóis/metabolismo , Piperazina , Relação Estrutura-Atividade , Mycobacterium tuberculosis/metabolismo , Indóis/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: Tuberculosis (TB) is a common infection in chronic kidney disease. The prolonged therapy of TB can delay kidney transplantation in patients on antitubercular therapy (ATT). METHODS: This was a retrospective single-center study to analyze the safety of kidney transplantation and its outcomes in patients undergoing transplantation while on the continuation phase of ATT. RESULTS: Between 2013 and 2022, 30 patients underwent kidney transplantation while on ATT. Median age was 38 years and 70% were males. Majority of the patients (86.7%) had extrapulmonary tuberculosis, most common site of involvement being tubercular lymphadenitis. 14/30 patients had microbiological/histopathological diagnosis of TB and the rest were diagnosed by ancillary tests. Patients were treated with 4 drug ATT (isoniazid, rifampicin, pyrazinamide, ethambutol) before transplantation for aminimum of 2 months. Post-transplantation fluoroquinolone-based non-rifamycin ATT was used (median duration 11 months). All patients completed therapy. At 2 years, there was 100% patient survival and 96.7% graft survival. Median eGFR at 6, 12, and 24 months post-transplantation was 71.9, 64.7, and 67 mL/min/1.73m2, respectively. The percentage of patients suffering a biopsy proven acute rejection at 6, 12, and 24 months was 3.3%, 6.7%, and 6.7%. CONCLUSION: Kidney transplantation can be done in patients with TB who have a satisfactory response to the intensive phase of the ATT. The decision for transplantation while on the continuation phase of ATT should be individualized. In our experience, there is excellent patient and graft survival in these patients with a low risk of failure of ATT or relapse of TB.
Assuntos
Antituberculosos , Rejeição de Enxerto , Transplante de Rim , Tuberculose , Humanos , Transplante de Rim/efeitos adversos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Antituberculosos/uso terapêutico , Pessoa de Meia-Idade , Tuberculose/tratamento farmacológico , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Resultado do Tratamento , Pirazinamida/uso terapêutico , Etambutol/uso terapêutico , Adulto Jovem , Falência Renal Crônica/cirurgia , Falência Renal Crônica/complicações , Rifampina/uso terapêuticoRESUMO
Rationale: Pretomanid is a new nitroimidazole with proven treatment-shortening efficacy in drug-resistant tuberculosis. Pretomanid-rifamycin-pyrazinamide combinations are potent in mice but have not been tested clinically. Rifampicin, but not rifabutin, reduces pretomanid exposures. Objectives: To evaluate the safety and efficacy of regimens containing pretomanid-rifamycin-pyrazinamide among participants with drug-sensitive pulmonary tuberculosis. Methods: A phase 2, 12-week, open-label randomized trial was conducted of isoniazid and pyrazinamide plus 1) pretomanid and rifampicin (arm 1), 2) pretomanid and rifabutin (arm 2), or 3) rifampicin and ethambutol (standard of care; arm 3). Laboratory values of safety and sputum cultures were collected at Weeks 1, 2, 3, 4, 6, 8, 10, and 12. Time to culture conversion on liquid medium was the primary outcome. Measurements and Main Results: Among 157 participants, 125 (80%) had cavitary disease. Median time to liquid culture negativity in the modified intention-to-treat population (n = 150) was 42 (arm 1), 28 (arm 2), and 56 (arm 3) days (P = 0.01) (adjusted hazard ratio for arm 1 vs. arm 3, 1.41 [95% confidence interval (CI), 0.93-2.12; P = 0.10]; adjusted hazard ratio for arm 2 vs. arm 3, 1.89 [95% CI, 1.24-2.87; P = 0.003]). Eight-week liquid culture conversion was 79%, 89%, and 69%, respectively. Grade ≥3 adverse events occurred in 3 of 56 (5%), 5 of 53 (9%), and 2 of 56 (4%) participants. Six participants were withdrawn because of elevated transaminase concentrations (five in arm 2, one in arm 1). There were three serious adverse events (arm 2) and no deaths. Conclusions: Pretomanid enhanced the microbiologic activity of regimens containing a rifamycin and pyrazinamide. Efficacy and hepatic adverse events appeared highest with the pretomanid and rifabutin-containing regimen. Whether this is due to higher pretomanid concentrations merits exploration. Clinical trial registered with www.clinicaltrials.gov (NCT02256696).
Assuntos
Nitroimidazóis , Tuberculose Pulmonar , Animais , Camundongos , Antituberculosos/efeitos adversos , Pirazinamida/uso terapêutico , Rifampina/uso terapêutico , Quimioterapia Combinada , Isoniazida/uso terapêutico , Nitroimidazóis/efeitos adversos , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologiaRESUMO
Here, we describe a clinical case of pyrazinamide-resistant (PZA-R) tuberculosis (TB) reported as PZA-susceptible (PZA-S) by common molecular diagnostics. Phenotypic susceptibility testing (pDST) indicated PZA-R TB. Targeted Sanger sequencing reported wild-type PncA, indicating PZA-S TB. Whole Genome Sequencing (WGS) by PacBio and IonTorrent both detected deletion of a large portion of pncA, indicating PZA-R. Importantly, both WGS methods showed deletion of part of the primer region targeted by Sanger sequencing. Repeating Sanger sequencing from a culture in presence of PZA returned no result, revealing that 1) two minority susceptible subpopulations had vanished, 2) the PZA-R majority subpopulation harboring the pncA deletion could not be amplified by Sanger primers, and was thus obscured by amplification process. This case demonstrates how a small susceptible subpopulation can entirely obscure majority resistant populations from targeted molecular diagnostics and falsely imply homogenous susceptibility, leading to incorrect diagnosis. To our knowledge, this is the first report of a minority susceptible subpopulation masking a majority resistant population, causing targeted molecular diagnostics to call false susceptibility. The consequence of such genomic events is not limited to PZA. This phenomenon can impact molecular diagnostics' sensitivity whenever the resistance-conferring mutation is not fully within primer-targeted regions. This can be caused by structural changes of genomic context with phenotypic consequence as we report here, or by uncommon mechanisms of resistance. Such false susceptibility calls promote suboptimal treatment and spread of strains that challenge targeted molecular diagnostics. This motivates development of molecular diagnostics unreliant on primer conservation, and impels frequent WGS surveillance for variants that evade prevailing molecular diagnostics.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Patologia Molecular , Amidoidrolases/genética , Amidoidrolases/uso terapêutico , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , MutaçãoRESUMO
Phenotypic susceptibility testing of the Mycobacterium tuberculosis complex (MTBC) isolate requires culture growth, which can delay rapid detection of resistant cases. Whole genome sequencing (WGS) and data analysis pipelines can assist in predicting resistance to antimicrobials used in the treatment of tuberculosis (TB). This study compared phenotypic susceptibility testing results and WGS-based predictions of antimicrobial resistance (AMR) to four first-line antimicrobials-isoniazid, rifampin, ethambutol, and pyrazinamide-for MTBC isolates tested between the years 2018-2022. For this 5-year retrospective analysis, the WGS sensitivity for predicting resistance for isoniazid, rifampin, ethambutol, and pyrazinamide using Mykrobe was 86.7%, 100.0%, 100.0%, and 47.8%, respectively, and the specificity was 99.4%, 99.5%, 98.7%, and 99.9%, respectively. The predictive values improved slightly using Mykrobe corrections applied using TB Profiler, i.e., the WGS sensitivity for isoniazid, rifampin, ethambutol, and pyrazinamide was 92.31%, 100%, 100%, and 57.78%, respectively, and the specificity was 99.63%. 99.45%, 98.93%, and 99.93%, respectively. The utilization of WGS-based testing addresses concerns regarding test turnaround time and enables analysis for MTBC member identification, antimicrobial resistance prediction, detection of mixed cultures, and strain genotyping, all through a single laboratory test. WGS enables rapid resistance detection compared to traditional phenotypic susceptibility testing methods using the WHO TB mutation catalog, providing an insight into lesser-known mutations, which should be added to prediction databases as high-confidence mutations are recognized. The WGS-based methods can support TB elimination efforts in Canada and globally by ensuring the early start of appropriate treatment, rapidly limiting the spread of TB outbreaks.
Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Sequenciamento Completo do Genoma , Sequenciamento Completo do Genoma/métodos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Estudos Retrospectivos , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Etambutol/farmacologia , Isoniazida/farmacologia , Pirazinamida/farmacologia , Tuberculose/microbiologia , Tuberculose/tratamento farmacológico , Rifampina/farmacologiaRESUMO
BACKGROUND: Rifampin-resistant and/or multidrug-resistant tuberculosis (RR/MDR-TB) treatment requires multiple drugs, and outcomes remain suboptimal. Some drugs are associated with improved outcome. It is unknown whether particular pharmacokinetic-pharmacodynamic relationships predict outcome. METHODS: Adults with pulmonary RR/MDR-TB in Tanzania, Bangladesh, and the Russian Federation receiving local regimens were enrolled from June 2016 to July 2018. Serum was collected after 2, 4, and 8 weeks for each drug's area under the concentration-time curve over 24 hours (AUC0-24). Quantitative susceptibility of the M. tuberculosis isolate was measured by minimum inhibitory concentrations (MICs). Individual drug AUC0-24/MIC targets were assessed by adjusted odds ratios (ORs) for favorable treatment outcome, and hazard ratios (HRs) for time to sputum culture conversion. K-means clustering algorithm separated the cohort of the most common multidrug regimen into 4 clusters by AUC0-24/MIC exposures. RESULTS: Among 290 patients, 62 (21%) experienced treatment failure, including 30 deaths. Moxifloxacin AUC0-24/MIC target of 58 was associated with favorable treatment outcome (OR, 3.75; 95% confidence interval, 1.21-11.56; P = .022); levofloxacin AUC0-24/MIC of 118.3, clofazimine AUC0-24/MIC of 50.5, and pyrazinamide AUC0-24 of 379 mg × h/L were associated with faster culture conversion (HR >1.0, P < .05). Other individual drug exposures were not predictive. Clustering by AUC0-24/MIC revealed that those with the lowest multidrug exposures had the slowest culture conversion. CONCLUSIONS: Amidst multidrug regimens for RR/MDR-TB, serum pharmacokinetics and M. tuberculosis MICs were variable, yet defined parameters to certain drugs-fluoroquinolones, pyrazinamide, clofazimine-were predictive and should be optimized to improve clinical outcome. CLINICAL TRIALS REGISTRATION: NCT03559582.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Adulto , Humanos , Antituberculosos/uso terapêutico , Antituberculosos/farmacocinética , Rifampina/farmacologia , Rifampina/uso terapêutico , Pirazinamida/uso terapêutico , Pirazinamida/farmacocinética , Estudos Prospectivos , Clofazimina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: Optimal doses of first-line drugs for treatment of drug-susceptible tuberculosis in children and young adolescents remain uncertain. We aimed to determine whether children treated using World Health Organization-recommended or higher doses of first-line drugs achieve successful outcomes and sufficient pharmacokinetic (PK) exposures. METHODS: Titles, abstracts, and full-text articles were screened. We searched PubMed, EMBASE, CENTRAL, and trial registries from 2010 to 2021. We included studies in children aged <18 years being treated for drug-susceptible tuberculosis with rifampicin (RIF), pyrazinamide, isoniazid, and ethambutol. Outcomes were treatment success rates and drug exposures. The protocol for the systematic review was preregistered in PROSPERO (no. CRD42021274222). RESULTS: Of 304 studies identified, 46 were eligible for full-text review, and 12 and 18 articles were included for the efficacy and PK analyses, respectively. Of 1830 children included in the efficacy analysis, 82% had favorable outcomes (range, 25%-95%). At World Health Organization-recommended doses, exposures to RIF, pyrazinamide, and ethambutol were lower in children than in adults. Children ≤6 years old have 35% lower areas under the concentration-time curve (AUCs) than older children (mean of 14.4 [95% CI 9.9-18.8] vs 22.0 [13.8-30.1] µg·h/mL) and children with human immunodeficiency virus (HIV) had 35% lower RIF AUCs than HIV-negative children (17.3 [11.4-23.2] vs 26.5 [21.3-31.7] µg·h/mL). Heterogeneity and small sample sizes were major limitations. CONCLUSIONS: There is large variability in outcomes, with an average of 82% favorable outcomes. Drug exposures are lower in children than in adults. Younger children and/or those with HIV are underexposed to RIF. Standardization of PK pediatric studies and individual patient data analysis with safety assessment are needed to inform optimal dosing.
Assuntos
Infecções por HIV , Tuberculose , Adulto , Adolescente , Criança , Humanos , Antituberculosos , Pirazinamida/farmacocinética , Etambutol/uso terapêutico , Tuberculose/tratamento farmacológico , Rifampina , Isoniazida/uso terapêutico , HIV , Infecções por HIV/tratamento farmacológicoRESUMO
BACKGROUND: The current World Health Organization (WHO) pediatric tuberculosis dosing guidelines lead to suboptimal drug exposures. Identifying factors altering the exposure of these drugs in children is essential for dose optimization. Pediatric pharmacokinetic studies are usually small, leading to high variability and uncertainty in pharmacokinetic results between studies. We pooled data from large pharmacokinetic studies to identify key covariates influencing drug exposure to optimize tuberculosis dosing in children. METHODS AND FINDINGS: We used nonlinear mixed-effects modeling to characterize the pharmacokinetics of rifampicin, isoniazid, and pyrazinamide, and investigated the association of human immunodeficiency virus (HIV), antiretroviral therapy (ART), drug formulation, age, and body size with their pharmacokinetics. Data from 387 children from South Africa, Zambia, Malawi, and India were available for analysis; 47% were female and 39% living with HIV (95% on ART). Median (range) age was 2.2 (0.2 to 15.0) years and weight 10.9 (3.2 to 59.3) kg. Body size (allometry) was used to scale clearance and volume of distribution of all 3 drugs. Age affected the bioavailability of rifampicin and isoniazid; at birth, children had 48.9% (95% confidence interval (CI) [36.0%, 61.8%]; p < 0.001) and 64.5% (95% CI [52.1%, 78.9%]; p < 0.001) of adult rifampicin and isoniazid bioavailability, respectively, and reached full adult bioavailability after 2 years of age for both drugs. Age also affected the clearance of all drugs (maturation), children reached 50% adult drug clearing capacity at around 3 months after birth and neared full maturation around 3 years of age. While HIV per se did not affect the pharmacokinetics of first-line tuberculosis drugs, rifampicin clearance was 22% lower (95% CI [13%, 28%]; p < 0.001) and pyrazinamide clearance was 49% higher (95% CI [39%, 57%]; p < 0.001) in children on lopinavir/ritonavir; isoniazid bioavailability was reduced by 39% (95% CI [32%, 45%]; p < 0.001) when simultaneously coadministered with lopinavir/ritonavir and was 37% lower (95% CI [22%, 52%]; p < 0.001) in children on efavirenz. Simulations of 2010 WHO-recommended pediatric tuberculosis doses revealed that, compared to adult values, rifampicin exposures are lower in most children, except those younger than 3 months, who experience relatively higher exposure for all drugs, due to immature clearance. Increasing the rifampicin doses in children older than 3 months by 75 mg for children weighing <25 kg and 150 mg for children weighing >25 kg could improve rifampicin exposures. Our analysis was limited by the differences in availability of covariates among the pooled studies. CONCLUSIONS: Children older than 3 months have lower rifampicin exposures than adults and increasing their dose by 75 or 150 mg could improve therapy. Altered exposures in children with HIV is most likely caused by concomitant ART and not HIV per se. The importance of the drug-drug interactions with lopinavir/ritonavir and efavirenz should be evaluated further and considered in future dosing guidance. TRIAL REGISTRATION: ClinicalTrials.gov registration numbers; NCT02348177, NCT01637558, ISRCTN63579542.