Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; 58(9): 793-805, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29995319

RESUMO

In previous studies with Pseudomonas chlororaphis G05, two operons (phzABCDEFG and prnABCD) were confirmed to respectively encode enzymes for biosynthesis of phenazine-1-carboxylic acid and pyrrolnitrin that mainly contributed to suppression of some fungal phytopathogens. Although some regulators were identified to govern their expression, it is not known how two operons coordinately interact. By constructing the phz- or/and prn- deletion mutants, we found that in comparison with the wild-type strain G05, phenazine-1-carboxylic acid production in the mutant G05Δprn obviously decreased in GA broth in the absence of prn, and pyrrolnitrin production in the mutant G05Δphz remarkably declined in the absence of phz. By generating the phzA and prnA transcriptional and translational fusions with a truncated lacZ on shuttle vector or on the chromosome, we found that expression of the phz or prn operon was correspondingly increased in the presence of the prn or phz operon at the post-transcriptional level, not at the transcriptional level. These results indicated that the presence of one operon would promote the expression of the other one operon between the phz and prn. This reciprocal enhancement would keep the strain G05 producing more different antifungal compounds coordinately and living better with growth suppression of other microorganisms.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Pseudomonas chlororaphis/genética , Antifúngicos/análise , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Mutação , Fenazinas/análise , Fenazinas/metabolismo , Pseudomonas chlororaphis/enzimologia , Pseudomonas chlororaphis/metabolismo , Pirrolnitrina/análise , Pirrolnitrina/metabolismo
2.
Environ Microbiol ; 11(6): 1422-37, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19220396

RESUMO

Members of the genus Burkholderia are known for their ability to suppress soil-borne fungal pathogens by the production of various antibiotic compounds. In this study we investigated the role of N-acylhomoserine lactone (AHL)-dependent quorum sensing (QS) in the expression of antifungal traits. Using a quorum quenching approach, that is, by heterologous expression of the Bacillus sp. AiiA lactonase, we show that expression of antifungal activities is AHL-dependent in the large majority of the investigated strains belonging to various Burkholderia species. We demonstrate that in certain strains of Burkholderia ambifaria, Burkholderia pyrrocinia and Burkholderia lata, one of the QS-regulated antifungal agents is pyrrolnitrin (prn), a common broad-spectrum antibiotic that is also produced by some Pseudomonas and Serratia species. To investigate the underlying molecular mechanisms of AHL-dependent prn production in better detail, we inactivated the AHL synthase cepI as well as cepR, which encodes the cognate AHL receptor protein, in B. lata 383. Both QS mutants no longer produced prn as assessed by gas chromatography-mass spectrometry analysis and as a consequence were unable to inhibit growth of Rhizoctonia solani. Using fusions of the lacZ gene to the promoter of the prnABCD operon, which directs the synthesis of prn, we demonstrate that expression of prn is positively regulated by CepR at the level of transcription.


Assuntos
Antifúngicos/biossíntese , Complexo Burkholderia cepacia/metabolismo , Pirrolnitrina/biossíntese , Percepção de Quorum , Antifúngicos/análise , Antifúngicos/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Complexo Burkholderia cepacia/classificação , Complexo Burkholderia cepacia/genética , Ligases/metabolismo , Óperon , Fenótipo , Pirrolnitrina/análise
3.
Can J Microbiol ; 52(5): 476-81, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16699573

RESUMO

Pseudomonas chlororaphis PA23, Pseudomonas spp. strain DF41, and Bacillus amyloliquefaciens BS6 consistently inhibit infection of canola petals by Sclerotinia sclerotiorum in both greenhouse and field experiments. Bacillus thuringiensis BS8, Bacillus cereus L, and Bacillus mycoides S have shown significant inhibition against S. sclerotiorum on plate assays. The presence of antibiotic biosynthetic or self-resistance genes in these strains was investigated with polymerase chain reaction and, in one case, Southern blotting. Thirty primers were used to amplify (i) antibiotic biosythetic genes encoding phenazine-1-carboxylic acid, 2,4-diacetylphloroglucinol, pyoluteorin, and pyrrolnitrin, and (ii) the zwittermicin A self-resistance gene. Our findings revealed that the fungal antagonist P. chlororaphis PA23 contains biosynthetic genes for phenazine-1-carboxylic acid and pyrrolnitrin. Moreover, production of these compounds was confirmed by high performance liquid chromatography. Pseudomonas spp. DF41 and B. amyloliquefaciens BS6 do not appear to harbour genes for any of the antibiotics tested. Bacillus thuringiensis BS8, B. cereus L, and B. mycoides S contain the zwittermicin A self-resistance gene. This is the first report of zmaR in B. mycoides.


Assuntos
Bacillus/genética , Genes Bacterianos/genética , Reação em Cadeia da Polimerase , Pseudomonas/genética , Antibiose , Antifúngicos/análise , Antifúngicos/metabolismo , Ascomicetos/fisiologia , Bacillus/fisiologia , Brassica napus/microbiologia , Primers do DNA , Flores/microbiologia , Peptídeos/genética , Peptídeos/metabolismo , Fenazinas/análise , Fenazinas/metabolismo , Doenças das Plantas , Pseudomonas/fisiologia , Pirrolnitrina/análise , Pirrolnitrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA