RESUMO
The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.
Assuntos
Doenças Neuroinflamatórias , Neuroproteção , Humanos , Animais , Encéfalo , Proteínas do Sistema Complemento , Plasticidade Neuronal/fisiologia , Microglia/fisiologiaRESUMO
Metabolic changes are essential for neurodevelopmental processes. However, little is known about how and when neuronal metabolic remodeling occurs to promote functional circuits. In this issue of Cell, Knaus et al. demonstrate that a temporary perinatal shift in metabolites and lipids is crucial for cortical neurons' survival and wiring.
Assuntos
Neurônios , Sobrevivência Celular , Plasticidade Neuronal/fisiologia , Neurônios/fisiologiaRESUMO
Learning has been associated with modifications of synaptic and circuit properties, but the precise changes storing information in mammals have remained largely unclear. We combined genetically targeted voltage imaging with targeted optogenetic activation and silencing of pre- and post-synaptic neurons to study the mechanisms underlying hippocampal behavioral timescale plasticity. In mice navigating a virtual-reality environment, targeted optogenetic activation of individual CA1 cells at specific places induced stable representations of these places in the targeted cells. Optical elicitation, recording, and modulation of synaptic transmission in behaving mice revealed that activity in presynaptic CA2/3 cells was required for the induction of plasticity in CA1 and, furthermore, that during induction of these place fields in single CA1 cells, synaptic input from CA2/3 onto these same cells was potentiated. These results reveal synaptic implementation of hippocampal behavioral timescale plasticity and define a methodology to resolve synaptic plasticity during learning and memory in behaving mammals.
Assuntos
Região CA1 Hipocampal , Hipocampo , Camundongos , Animais , Região CA1 Hipocampal/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Aprendizagem/fisiologia , Neurônios , Transmissão Sináptica/fisiologia , MamíferosRESUMO
Dendrites endow neurons with multiple compartments within their elaborate morphologies. In a recent study published in the journal Science, O'Hare et al. (2022) used elegant techniques to show that augmenting the intracellular calcium released by the endoplasmic reticulum caused behaviorally relevant plasticity to occur in spatially distinct dendritic compartments.
Assuntos
Cálcio , Dendritos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Dendritos/metabolismo , Retículo Endoplasmático/metabolismo , Plasticidade Neuronal , Neurônios/metabolismoRESUMO
Brain-derived neurotrophic factor (BDNF) is a neuropeptide that plays numerous important roles in synaptic development and plasticity. While its importance in fundamental physiology is well established, studies of BDNF often produce conflicting and unclear results, and the scope of existing research makes the prospect of setting future directions daunting. In this review, we examine the importance of spatial and temporal factors on BDNF activity, particularly in processes such as synaptogenesis, Hebbian plasticity, homeostatic plasticity, and the treatment of psychiatric disorders. Understanding the fundamental physiology of when, where, and how BDNF acts and new approaches to control BDNF signaling in time and space can contribute to improved therapeutics and patient outcomes.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Transtornos Mentais/metabolismo , Plasticidade Neuronal/fisiologia , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Homeostase/fisiologia , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética , Neurogênese/fisiologia , Neuropeptídeos/genética , Psicotrópicos/farmacologia , Psicotrópicos/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Resultado do TratamentoRESUMO
Memory formation is thought to occur in the brain through dynamic remodeling of the synaptic architecture between neurons. The cellular mechanisms underlying these dynamics remain unclear. In this issue, Nguyen et al. demonstrate a novel role for microglia in regulating synaptic formation by clearing extracellular matrix proteins that embed neurons.
Assuntos
Microglia , Plasticidade Neuronal , Matriz Extracelular , Neurônios , SinapsesRESUMO
Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation.
Assuntos
Matriz Extracelular/metabolismo , Microglia/fisiologia , Plasticidade Neuronal/fisiologia , Envelhecimento , Animais , Medo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Transdução de SinaisRESUMO
Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca2+-permeable AMPA receptor upregulation, L-type Ca2+ channel activation, enhanced spine Ca2+ transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed â¼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.
Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Potenciais de Ação/fisiologia , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Feminino , Células HEK293 , Homeostase/fisiologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Antígeno Neuro-Oncológico Ventral , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sinapses/metabolismo , Transmissão Sináptica/fisiologiaRESUMO
Decision making is often driven by the subjective value of available options, a value which is formed through experience. To support this fundamental behavior, the brain must encode and maintain the subjective value. To investigate the area specificity and plasticity of value coding, we trained mice in a value-based decision task and imaged neural activity in 6 cortical areas with cellular resolution. History- and value-related signals were widespread across areas, but their strength and temporal patterns differed. In expert mice, the retrosplenial cortex (RSC) uniquely encoded history- and value-related signals with persistent population activity patterns across trials. This unique encoding of RSC emerged during task learning with a strong increase in more distant history signals. Acute inactivation of RSC selectively impaired the reward-history-based behavioral strategy. Our results indicate that RSC flexibly changes its history coding and persistently encodes value-related signals to support adaptive behaviors.
Assuntos
Comportamento Animal/fisiologia , Tomada de Decisões/fisiologia , Giro do Cíngulo/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Camundongos , Camundongos TransgênicosRESUMO
Distributing learning across multiple layers has proven extremely powerful in artificial neural networks. However, little is known about how multi-layer learning is implemented in the brain. Here, we provide an account of learning across multiple processing layers in the electrosensory lobe (ELL) of mormyrid fish and report how it solves problems well known from machine learning. Because the ELL operates and learns continuously, it must reconcile learning and signaling functions without switching its mode of operation. We show that this is accomplished through a functional compartmentalization within intermediate layer neurons in which inputs driving learning differentially affect dendritic and axonal spikes. We also find that connectivity based on learning rather than sensory response selectivity assures that plasticity at synapses onto intermediate-layer neurons is matched to the requirements of output neurons. The mechanisms we uncover have relevance to learning in the cerebellum, hippocampus, and cerebral cortex, as well as in artificial systems.
Assuntos
Peixe Elétrico/fisiologia , Aprendizagem , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Estruturas Animais/citologia , Estruturas Animais/fisiologia , Animais , Axônios/metabolismo , Fenômenos Biofísicos , Peixe Elétrico/anatomia & histologia , Feminino , Masculino , Modelos Neurológicos , Plasticidade Neuronal , Comportamento Predatório , Sensação , Fatores de TempoRESUMO
The specific patterns and functional properties of electrical synapses of a nervous system are defined by the neuron-specific complement of electrical synapse constituents. We systematically examined the molecular composition of the electrical connectome of the nematode C. elegans through a genome- and nervous-system-wide analysis of the expression patterns of the invertebrate electrical synapse constituents, the innexins. We observe highly complex combinatorial expression patterns throughout the nervous system and found that these patterns change in a strikingly neuron-type-specific manner throughout the nervous system when animals enter an insulin-controlled diapause arrest stage under harsh environmental conditions, the dauer stage. By analyzing several individual synapses, we demonstrate that dauer-specific electrical synapse remodeling is responsible for specific aspects of the altered locomotory and chemosensory behavior of dauers. We describe an intersectional gene regulatory mechanism involving terminal selector and FoxO transcription factors mediating dynamic innexin expression plasticity in a neuron-type- and environment-specific manner.
Assuntos
Caenorhabditis elegans/fisiologia , Sinapses Elétricas/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Conectoma/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.
Assuntos
Aprendizagem por Associação/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores Dopaminérgicos/metabolismo , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Plasticidade Neuronal , Odorantes , Recompensa , Olfato/fisiologia , Potenciais Sinápticos/fisiologia , Fatores de TempoRESUMO
Local translation meets protein turnover and plasticity demands at synapses, however, the location of its energy supply is unknown. We found that local translation in neurons is powered by mitochondria and not by glycolysis. Super-resolution microscopy revealed that dendritic mitochondria exist as stable compartments of single or multiple filaments. To test if these mitochondrial compartments can serve as local energy supply for synaptic translation, we stimulated individual synapses to induce morphological plasticity and visualized newly synthesized proteins. Depletion of local mitochondrial compartments abolished both the plasticity and the stimulus-induced synaptic translation. These mitochondrial compartments serve as spatially confined energy reserves, as local depletion of a mitochondrial compartment did not affect synaptic translation at remote spines. The length and stability of dendritic mitochondrial compartments and the spatial functional domain were altered by cytoskeletal disruption. These results indicate that cytoskeletally tethered local energy compartments exist in dendrites to fuel local translation during synaptic plasticity.
Assuntos
Mitocôndrias/metabolismo , Neurônios/metabolismo , Biossíntese de Proteínas/fisiologia , Animais , Citoesqueleto/metabolismo , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Feminino , Masculino , Mitocôndrias/fisiologia , Plasticidade Neuronal/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismoRESUMO
We tested a newly described molecular memory system, CCR5 signaling, for its role in recovery after stroke and traumatic brain injury (TBI). CCR5 is uniquely expressed in cortical neurons after stroke. Post-stroke neuronal knockdown of CCR5 in pre-motor cortex leads to early recovery of motor control. Recovery is associated with preservation of dendritic spines, new patterns of cortical projections to contralateral pre-motor cortex, and upregulation of CREB and DLK signaling. Administration of a clinically utilized FDA-approved CCR5 antagonist, devised for HIV treatment, produces similar effects on motor recovery post stroke and cognitive decline post TBI. Finally, in a large clinical cohort of stroke patients, carriers for a naturally occurring loss-of-function mutation in CCR5 (CCR5-Δ32) exhibited greater recovery of neurological impairments and cognitive function. In summary, CCR5 is a translational target for neural repair in stroke and TBI and the first reported gene associated with enhanced recovery in human stroke.
Assuntos
Lesões Encefálicas Traumáticas/terapia , Receptores CCR5/metabolismo , Acidente Vascular Cerebral/terapia , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores CCR5/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodosRESUMO
Although sensitizing processes occur earlier, schizophrenia is diagnosed in young adulthood, which suggests that it might involve a pathological transition during late brain development in predisposed individuals. Parvalbumin (PV) interneuron alterations have been noticed, but their role in the disease is unclear. Here we demonstrate that adult LgDel+/- mice, a genetic model of schizophrenia, exhibit PV neuron hypo-recruitment and associated chronic PV neuron plasticity together with network and cognitive deficits. All these deficits can be permanently rescued by chemogenetic activation of PV neurons or D2R antagonist treatments, specifically in the ventral hippocampus (vH) or medial-prefrontal cortex during a late-adolescence-sensitive time window. PV neuron alterations were initially restricted to the hippocampal CA1/subiculum, where they became responsive to treatment in late adolescence. Therefore, progression to disease in schizophrenia-model mice can be prevented by treatments supporting vH-mPFC PV network function during a sensitive time window late in adolescence, suggesting therapeutic strategies to prevent the outbreak of schizophrenia.
Assuntos
Disfunção Cognitiva/terapia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Esquizofrenia/terapia , Adolescente , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Córtex Pré-Frontal/patologiaRESUMO
Behaviors are inextricably linked to internal state. We have identified a neural mechanism that links female sexual behavior with the estrus, the ovulatory phase of the estrous cycle. We find that progesterone-receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) are active and required during this behavior. Activating these neurons, however, does not elicit sexual behavior in non-estrus females. We show that projections of PR+ VMH neurons to the anteroventral periventricular (AVPV) nucleus change across the 5-day mouse estrous cycle, with â¼3-fold more termini and functional connections during estrus. This cyclic increase in connectivity is found in adult females, but not males, and regulated by estrogen signaling in PR+ VMH neurons. We further show that these connections are essential for sexual behavior in receptive females. Thus, estrogen-regulated structural plasticity of behaviorally salient connections in the adult female brain links sexual behavior to the estrus phase of the estrous cycle.
Assuntos
Rede Nervosa/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Estrogênios/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Hormônios Esteroides Gonadais/farmacologia , Hipotálamo Anterior/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ovário/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Receptores de Progesterona/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de TempoRESUMO
In Drosophila, well-delineated circuits control circadian rhythms, but the electrophysiological patterns that occur within these circuits are not well understood. In this issue, Tabuchi et al. clarify the temporal coding within a circuit, linking patterns of neural activity to sleep behavior.
Assuntos
Proteínas de Drosophila , Animais , Ritmo Circadiano , Drosophila , Plasticidade Neuronal , SonoRESUMO
Arc, a master regulator of synaptic plasticity, contains sequence elements that are evolutionarily related to retrotransposon Gag genes. Two related papers in this issue of Cell show that Arc retains retroviral-like capsid-forming ability and can transmit mRNA between cells in the nervous system, a process that may be important for synaptic function.
Assuntos
Produtos do Gene gag , Terminações Pré-Sinápticas , Animais , Proteínas do Citoesqueleto , Proteínas do Tecido Nervoso , Plasticidade Neuronal , RNA , RetroviridaeRESUMO
Accurately predicting an outcome requires that animals learn supporting and conflicting evidence from sequential experience. In mammals and invertebrates, learned fear responses can be suppressed by experiencing predictive cues without punishment, a process called memory extinction. Here, we show that extinction of aversive memories in Drosophila requires specific dopaminergic neurons, which indicate that omission of punishment is remembered as a positive experience. Functional imaging revealed co-existence of intracellular calcium traces in different places in the mushroom body output neuron network for both the original aversive memory and a new appetitive extinction memory. Light and ultrastructural anatomy are consistent with parallel competing memories being combined within mushroom body output neurons that direct avoidance. Indeed, extinction-evoked plasticity in a pair of these neurons neutralizes the potentiated odor response imposed in the network by aversive learning. Therefore, flies track the accuracy of learned expectations by accumulating and integrating memories of conflicting events.
Assuntos
Extinção Psicológica , Memória , Animais , Comportamento Apetitivo , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Drosophila melanogaster , Feminino , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Plasticidade NeuronalRESUMO
Synapses are semi-membraneless, protein-dense, sub-micron chemical reaction compartments responsible for signal processing in each and every neuron. Proper formation and dynamic responses to stimulations of synapses, both during development and in adult, are fundamental to functions of mammalian brains, although the molecular basis governing formation and modulation of compartmentalized synaptic assemblies is unclear. Here, we used a biochemical reconstitution approach to show that, both in solution and on supported membrane bilayers, multivalent interaction networks formed by major excitatory postsynaptic density (PSD) scaffold proteins led to formation of PSD-like assemblies via phase separation. The reconstituted PSD-like assemblies can cluster receptors, selectively concentrate enzymes, promote actin bundle formation, and expel inhibitory postsynaptic proteins. Additionally, the condensed phase PSD assemblies have features that are distinct from those in homogeneous solutions and fit for synaptic functions. Thus, we have built a molecular platform for understanding how neuronal synapses are formed and dynamically regulated.