Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 740
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2304036120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796987

RESUMO

Highly disordered complexes between oppositely charged intrinsically disordered proteins present a new paradigm of biomolecular interactions. Here, we investigate the driving forces of such interactions for the example of the highly positively charged linker histone H1 and its highly negatively charged chaperone, prothymosin α (ProTα). Temperature-dependent single-molecule Förster resonance energy transfer (FRET) experiments and isothermal titration calorimetry reveal ProTα-H1 binding to be enthalpically unfavorable, and salt-dependent affinity measurements suggest counterion release entropy to be an important thermodynamic driving force. Using single-molecule FRET, we also identify ternary complexes between ProTα and H1 in addition to the heterodimer at equilibrium and show how they contribute to the thermodynamics observed in ensemble experiments. Finally, we explain the observed thermodynamics quantitatively with a mean-field polyelectrolyte theory that treats counterion release explicitly. ProTα-H1 complex formation resembles the interactions between synthetic polyelectrolytes, and the underlying principles are likely to be of broad relevance for interactions between charged biomolecules in general.


Assuntos
Ligação Proteica , Termodinâmica , Entropia , Polieletrólitos/química , Temperatura
2.
Proc Natl Acad Sci U S A ; 119(36): e2209975119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037377

RESUMO

There is notable discrepancy between experiments and coarse-grained model studies regarding the thermodynamic driving force in polyelectrolyte complex coacervation: experiments find the free energy change to be dominated by entropy, while simulations using coarse-grained models with implicit solvent usually report a large, even dominant energetic contribution in systems with weak to intermediate electrostatic strength. Here, using coarse-grained, implicit-solvent molecular dynamics simulation combined with thermodynamic analysis, we study the potential of mean force (PMF) in the two key stages on the coacervation pathway for symmetric polyelectrolyte mixtures: polycation-polyanion complexation and polyion pair-pair condensation. We show that the temperature dependence in the dielectric constant of water gives rise to a substantial entropic contribution in the electrostatic interaction. By accounting for this electrostatic entropy, which is due to solvent reorganization, we find that under common conditions (monovalent ions, room temperature) for aqueous systems, both stages are strongly entropy-driven with negligible or even unfavorable energetic contributions, consistent with experimental results. Furthermore, for weak to intermediate electrostatic strengths, this electrostatic entropy, rather than the counterion-release entropy, is the primary entropy contribution. From the calculated PMF, we find that the supernatant phase consists predominantly of polyion pairs with vanishingly small concentration of bare polyelectrolytes, and we provide an estimate of the spinodal of the supernatant phase. Finally, we show that prior to contact, two neutral polyion pairs weakly attract each other by mutually induced polarization, providing the initial driving force for the fusion of the pairs.


Assuntos
Polieletrólitos , Termodinâmica , Água , Entropia , Íons , Simulação de Dinâmica Molecular , Polieletrólitos/química , Solventes , Eletricidade Estática , Água/química
3.
Small ; 20(3): e2305539, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699754

RESUMO

Artificial enzymes, as alternatives to natural enzymes, have attracted enormous attention in the fields of catalysis, biosensing, diagnostics, and therapeutics because of their high stability and low cost. Polyoxometalates (POMs), a class of inorganic metal oxides, have recently shown great potential in mimicking enzyme activity due to their well-defined structure, tunable composition, high catalytic efficiency, and easy storage properties. This review focuses on the recent advances in POM-based artificial enzymes. Different types of POMs and their derivatives-based mimetic enzyme functions are covered, as well as the corresponding catalytic mechanisms (where available). An overview of the broad applications of representative POM-based artificial enzymes from biosensing to theragnostic is provided. Insight into the current challenges and the future directions for POMs-based artificial enzymes is discussed.


Assuntos
Ânions , Polieletrólitos , Ânions/química , Polieletrólitos/química , Enzimas
4.
Small ; 20(30): e2306877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38415820

RESUMO

Complexation between oppositely charged polyelectrolytes offers a facile single-step strategy for assembling functional micro-nano carriers for efficient drug and vaccine delivery. However, the stability of the delivery system within the physiological environment is compromised due to the swelling of the polyelectrolyte complex, driven by the charge shielding effect, and consequently leads to uncontrollable burst release, thereby limiting its potential applications. In a pioneering approach, cellular pathway-inspired calcium carbonate precipitation pathways are developed that are integrated into polyelectrolyte capsules (MICPC). These innovative capsules are fabricated at the interface of all-aqueous microfluidic droplets, resulting in a precisely controllable and sustained release profile in physiological conditions. Unlike single-step polyelectrolyte assembly capsules which always perform rapid burst release, the MICPC exhibits a sustainable and tunable release pattern, releasing biomolecules at an average rate of 3-10% per day. Remarkably, the degree of control over MICPC's release kinetics can be finely tuned by adjusting the quantity of synthesized calcium carbonate particles within the polyelectrolyte complex. This groundbreaking work not only deepens the insights into polyelectrolyte complexation but also significantly enhances the overall stability of these complexes, opening up new avenues for expanding the range of applications involving polyelectrolyte complex-related materials.


Assuntos
Carbonato de Cálcio , Cápsulas , Polieletrólitos , Carbonato de Cálcio/química , Cápsulas/química , Polieletrólitos/química , Precipitação Química , Eletrólitos/química
5.
Chembiochem ; 25(1): e202300440, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875787

RESUMO

Peptide-based polyelectrolyte complexes are biocompatible materials that can encapsulate molecules with different polarities due to their ability to be precisely designed. Here we use UV-Vis spectroscopy, fluorescence microscopy, and infrared spectroscopy to investigate the encapsulation of model drugs, doxorubicin (DOX) and methylene blue (MB) using a series of rationally designed polypeptides. For both drugs, we find an overall higher encapsulation efficiency with sequences that have higher charge density, highlighting the importance of ionic interactions between the small molecules and the peptides. However, comparing molecules with the same charge density, illustrated that the most hydrophobic sequence pairs had the highest encapsulation of both DOX and MB molecules. The phase behavior and stability of DOX-containing complexes did not change compared to the complexes without drugs. However, MB encapsulation caused changes in the stabilities of the complexes. The sequence pair with the highest charge density and hydrophobicity had the most dramatic increase in stability, which coincided with a phase change from liquid to solid. This study illustrates how multiple types of molecular interactions are required for efficient encapsulation of poorly soluble drugs and provides insights into the molecular design of delivery carriers.


Assuntos
Portadores de Fármacos , Peptídeos , Polieletrólitos/química , Peptídeos/química , Portadores de Fármacos/química , Doxorrubicina/química , Azul de Metileno , Sistemas de Liberação de Medicamentos
6.
Chemistry ; 30(38): e202401249, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38722210

RESUMO

Several organisms are able to polycondensate tetraoxosilicic(IV) acid to form silicon(IV) dioxide using polycationic molecules. According to an earlier mechanistic proposal, these molecules undergo a phase separation and recent experimental evidence appears to confirm this model. At the same time, polycationic proteins like lysozyme can also promote polycondensation of silicon(IV) dioxide, and they do so under conditions that are not compatible with liquid-liquid phase separation. In this manuscript we investigate this conundrum by molecular simulations.


Assuntos
Muramidase , Dióxido de Silício , Muramidase/química , Muramidase/metabolismo , Dióxido de Silício/química , Simulação de Dinâmica Molecular , Polieletrólitos/química
7.
Chemphyschem ; 25(4): e202300758, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38116981

RESUMO

The design of novel polymeric carrier systems with functional coatings is of great interest for delivering various bioactive molecules. Microcapsules coated with polyelectrolyte (PE) films provide additional functionality and fine-tuning advantages essential for controlled drug release. We developed hydrogel microcarriers coated with functional PE films with encapsulated substances of natural origin, resveratrol (RES), curcumin (CUR), and epigallocatechin gallate (EGCG), which have cytotoxic and chemopreventive properties. Alginate (ALG) based microparticles were loaded with phytopharmaceuticals using the emulsification method, and then their surface was modified with PE coatings, such as chitosan (CHIT) or poly(allylamine hydrochloride) (PAH). The morphology and mean diameter of microcarriers were characterised by scanning electron microscopy, encapsulation efficiency was determined by UV-Vis spectroscopy, whereas the physicochemical properties of functional PE layers were studied using quartz crystal microbalance with dissipation monitoring and streaming potential measurements. The release profiles of active compounds from the hydrogel microparticles were described using the Peppas-Sahlin model. The cytotoxic effect of designed delivery systems was studied by evaluating their impact on the proliferation, mitochondrial metabolic function, and lipid peroxidation level of 5637 human bladder cancer cells. The present work demonstrates that the physicochemical and biological features of fabricated microcarriers can be controlled by the type of encapsulated anti-cancer agent and PE coating.


Assuntos
Alginatos , Antineoplásicos , Humanos , Polieletrólitos/química , Alginatos/química , Hidrogéis , Polímeros , Resveratrol
8.
Langmuir ; 40(20): 10648-10662, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712915

RESUMO

This study presents new insights into the potential role of polyelectrolyte interfaces in regulating low friction and interstitial fluid pressurization of cartilage. Polymer brushes composed of hydrophilic 3-sulfopropyl methacrylate potassium salt (SPMK) tethered to a PEEK substrate (SPMK-g-PEEK) are a compelling biomimetic solution for interfacing with cartilage, inspired by the natural lubricating biopolyelectrolyte constituents of synovial fluid. These SPMK-g-PEEK surfaces exhibit a hydrated compliant layer approximately 5 µm thick, demonstrating the ability to maintain low friction coefficients (µ ∼ 0.01) across a wide speed range (0.1-200 mm/s) under physiological loads (0.75-1.2 MPa). A novel polyelectrolyte-enhanced tribological rehydration mechanism is elucidated, capable of recovering up to ∼12% cartilage strain and subsequently facilitating cartilage interstitial fluid recovery, under loads ranging from 0.25 to 2.21 MPa. This is attributed to the combined effects of fluid confinement within the contact gap and the enhanced elastohydrodynamic behavior of polymer brushes. Contrary to conventional theories that emphasize interstitial fluid pressurization in regulating cartilage lubrication, this work demonstrates that SPMK-g-PEEK's frictional behavior with cartilage is independent of these factors and provides unabating aqueous lubrication. Polyelectrolyte-enhanced tribological rehydration can occur within a static contact area and operates independently of known mechanisms of cartilage interstitial fluid recovery established for converging or migrating cartilage contacts. These findings challenge existing paradigms, proposing a novel polyelectrolyte-cartilage tribological mechanism not exclusively reliant on interstitial fluid pressurization or cartilage contact geometry. The implications of this research extend to a broader understanding of synovial joint lubrication, offering insights into the development of joint replacement materials that more accurately replicate the natural functionality of cartilage.


Assuntos
Lubrificação , Polímeros , Polímeros/química , Animais , Polieletrólitos/química , Polietilenoglicóis/química , Cartilagem/química , Cartilagem/efeitos dos fármacos , Propriedades de Superfície , Benzofenonas/química , Cartilagem Articular/química , Cartilagem Articular/fisiologia , Cetonas/química
9.
Biomacromolecules ; 25(3): 1468-1480, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38366971

RESUMO

Polyelectrolyte complexes (PECs) are currently of great interest due to their applications toward developing new adaptive materials and their relevance in membraneless organelles. These complexes emerge during phase separation when oppositely charged polymers are mixed in aqueous media. Peptide-based PECs are particularly useful toward developing new drug delivery methods due to their inherent biocompatibility. The underlying peptide sequence can be tuned to optimize specific material properties of the complex, such as interfacial tension and viscosity. Given their applicability, it would be advantageous to understand the underlying sequence-dependent phase behavior of oppositely charged peptides. Here, we report microsecond molecular dynamic simulations to characterize the effect of hydrophobicity on the sequence-dependent peptide conformation for model polypeptide sequences that were previously reported by Tabandeh et al. These sequences are designed with alternating chirality of the peptide backbone. We present microsecond simulations of six oppositely charged peptide pairs, characterizing the sequence-dependent effect on peptide size, degree of hydrogen bonding, secondary structure, and conformation. This analysis recapitulates sensible trends in peptide conformation and degree of hydrogen bonding, consistent with experimentally reported results. Ramachandran plots reveal that backbone conformation at the single amino acid level is highly influenced by the neighboring sequence in the chain. These results give insight into how subtle changes in hydrophobic side chain size and chirality influence the strength of hydrogen bonding between the chains and, ultimately, the secondary structure. Furthermore, principal component analysis reveals that the minimum energy structures may be subtly modulated by the underlying sequence.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Polieletrólitos/química , Peptídeos/química , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Ligação de Hidrogênio
10.
Biomacromolecules ; 25(8): 4780-4796, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022831

RESUMO

Nucleic acid delivery requires vectorization for protection from nucleases, preventing clearance by the reticuloendothelial system, and targeting to allow cellular uptake. Nanovectors meeting the above specifications should be safe for the patient, simple to manufacture, and display long-term stability. Our nanovectors were obtained via the green process of polyelectrolyte complexation, carried out at 25 °C in water at a low shear rate using chitosan (a polycationic biocompatible polysaccharide of specific molar mass and acetylation degree) and dextran sulfate as a polyanionic biocompatible polysaccharide. These complexes formed nanoassemblies of primary nanoparticles (20-35 nm) and maintained their colloidal stability for over 1 year at 25 °C. They could be steam sterilized, and a model nucleic acid could be either encapsulated or surface adsorbed. A targeting agent was finally bound to their surface. This work serves as a proof of concept of the suitability of chitosan-based polyelectrolyte complexes as nanovectors by sequential multilayered adsorption of various biomacromolecules.


Assuntos
Quitosana , Sulfato de Dextrana , Quitosana/química , Sulfato de Dextrana/química , Nanopartículas/química , Ácidos Nucleicos/química , Polieletrólitos/química , Humanos , Eletrólitos/química
11.
Biomacromolecules ; 25(7): 4118-4138, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857534

RESUMO

Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.


Assuntos
Alginatos , Cápsulas , Poliaminas , Polieletrólitos , Alginatos/química , Polieletrólitos/química , Cápsulas/química , Poliaminas/química , Animais , Camundongos , Humanos , Microesferas
12.
Biomacromolecules ; 25(5): 3112-3121, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38651274

RESUMO

Responsive nanomaterials hold significant promise in the treatment of bacterial infections by recognizing internal or external stimuli to achieve stimuli-responsive behavior. In this study, we present an enzyme-responsive polyelectrolyte complex micelles (PTPMN) with α-helical cationic polypeptide as a coacervate-core for the treatment of Escherichia coli (E. coli) infection. The complex was constructed through electrostatic interaction between cationic poly(glutamic acid) derivatives and phosphorylation-modified poly(ethylene glycol)-b-poly(tyrosine) (PEG-b-PPTyr) by directly dissolving them in aqueous solution. The cationic polypeptide adopted α-helical structure and demonstrated excellent broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with a minimum inhibitory concentration (MIC) as low as 12.5 µg mL-1 against E. coli. By complexing with anionic PEG-b-PPTyr, the obtained complex formed ß-sheet structures and exhibited good biocompatibility and low hemolysis. When incubated in a bacterial environment, the complex cleaved its phosphate groups triggered by phosphatases secreted by bacteria, exposing the highly α-helical conformation and restoring its effective bactericidal ability. In vivo experiments confirmed accelerated healing in E. coli-infected wounds.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Animais , Testes de Sensibilidade Microbiana , Polieletrólitos/química , Polieletrólitos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em alfa-Hélice , Micelas , Infecções por Escherichia coli/tratamento farmacológico , Hemólise/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Camundongos , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/farmacologia , Humanos
13.
Soft Matter ; 20(16): 3499-3507, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38595066

RESUMO

Polymeric vesicles are perspective vehicles for fabricating enzymatic nanoreactors towards diverse biomedical and catalytic applications, yet the design of stable and permeable vesicles remains challenging. Herein, we developed polyion complex (PIC) vesicles featuring high stability and a permeable membrane for adequate enzyme loading and activation. Our design relies on co-assembly of an anionic diblock copolymer (PSS96-b-PEO113) with cationic branched poly(ethylenimine) (PEI). The polymer combination endows strong electrostatic interaction between the PSS and PEI building blocks, so their assembly can be implemented at a high salt concentration (500 mM NaCl), under which the charge interaction of the enzyme-polymer is inhibited. This control realizes the successful and safe loading of enzymes associated with the formation of stable PIC vesicles with an intrinsic permeable membrane that is favourable for enhancing enzymatic activity. The control factors for vesicle formation and enzyme loading were investigated, and the general application of loading different enzymes for cascade reaction was validated as well. Our study reveals that proper design and combination of polyelectrolytes is a facile strategy for fabricating stable and permeable polymeric PIC vesicles, which exhibit clear advantages for loading and activating enzymes, consequently boosting their diverse applications as enzymatic nanoreactors.


Assuntos
Polietilenoimina , Polietilenoimina/química , Permeabilidade , Polímeros/química , Polieletrólitos/química
14.
Mol Biol Rep ; 51(1): 623, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710891

RESUMO

BACKGROUND: An increase in cancer stem cell (CSC) populations and their resistance to common treatments could be a result of c-Myc dysregulations in certain cancer cells. In the current study, we investigated anticancer effects of c-Myc decoy ODNs loaded-poly (methacrylic acid-co-diallyl dimethyl ammonium chloride) (PMA-DDA)-coated silica nanoparticles as carriers on cancer-like stem cells (NTERA-2). METHODS AND RESULTS: The physicochemical characteristics of the synthesized nanocomposites (SiO2@PMA-DDA-DEC) were analyzed using FT-IR, DLS, and SEM techniques. UV-Vis spectrophotometer was applied to analyze the release pattern of decoy ODNs from the nanocomposite. Furthermore, uptake, cell viability, apoptosis, and cell cycle assays were used to investigate the anticancer effects of nanocomposites loaded with c-Myc decoy ODNs on NTERA-2 cancer cells. The results of physicochemical analytics demonstrated that SiO2@PMA-DDA-DEC nanocomposites were successfully synthesized. The prepared nanocomposites were taken up by NTERA-2 cells with high efficiency, and could effectively inhibit cell growth and increase apoptosis rate in the treated cells compared to the control group. Moreover, SiO2@PMA-DDA nanocomposites loaded with c-Myc decoy ODNs induced cell cycle arrest at the G0/G1 phase in the treated cells. CONCLUSIONS: The conclusion drawn from this study is that c-Myc decoy ODN-loaded SiO2@PMA-DDA nanocomposites can effectively inhibit cell growth and induce apoptosis in NTERA-2 cancer cells. Moreover, given that a metal core is incorporated into this synthetic nanocomposite, it could potentially be used in conjunction with irradiation as part of a decoy-radiotherapy combinational therapy in future investigations.


Assuntos
Apoptose , Proliferação de Células , Nanopartículas , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-myc , Humanos , Apoptose/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proliferação de Células/efeitos dos fármacos , Nanopartículas/química , Linhagem Celular Tumoral , Nanocompostos/química , Polieletrólitos/química , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/química , Sobrevivência Celular/efeitos dos fármacos , Dióxido de Silício/química , Poliaminas/química , Poliaminas/farmacologia , Ciclo Celular/efeitos dos fármacos
15.
Sensors (Basel) ; 24(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38794084

RESUMO

Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer-fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Polarização de Fluorescência , Aflatoxina B1/análise , Aflatoxina B1/química , Aptâmeros de Nucleotídeos/química , Polarização de Fluorescência/métodos , Polieletrólitos/química , Técnicas Biossensoriais/métodos , Poliaminas/química , Limite de Detecção , Corantes Fluorescentes/química
16.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125837

RESUMO

In this work, the conformational behaviors of ring polyelectrolyte in tetravalent salt solutions are discussed in detail through molecular dynamics simulation. For simplification, here we have neglected the effect of the twisting interaction, although it has been well known that both bending and twisting interactions play a deterministic in the steric conformation of a semiflexible ring polymer. The salt concentration CS and the bending energy b take a decisive role in the conformation of the ring polyelectrolyte (PE). Throughout our calculations, the b varies from b = 0 (freely joint chain) to b = 120. The salt concentration CS changes in the range of 3.56 × 10-4 M ≤ CS ≤ 2.49 × 10-1 M. Upon the addition of salt, ring PE contracts at first, subsequently re-expands. More abundant conformations are observed for a semiflexible ring PE. For b = 10, the conformation of semiflexible ring PE shifts from the loop to two-racquet-head spindle, then it condenses into toroid, finally arranges into coil with the increase of CS. As b increases further, four phase transitions are observed. The latter two phase transitions are different. The semiflexible ring PE experiences transformation from toroid to two racquet head spindle, finally to loop in the latter two phase transitions. Its conformation is determined by the competition among the bending energy, cation-bridge, and entropy. Combined, our findings indicate that the conformations of semiflexible ring PE can be controlled by changing the salt concentration and chain stiffness.


Assuntos
Conformação Molecular , Simulação de Dinâmica Molecular , Polieletrólitos , Sais , Polieletrólitos/química , Sais/química , Soluções
17.
AAPS PharmSciTech ; 25(6): 182, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138709

RESUMO

Local anesthesia is essential in dental practices, particularly for managing pain in tooth socket wounds, yet improving drug delivery systems remains a significant challenge. This study explored the physicochemical characteristics of lidocaine hydrochloride (LH) incorporated into a polyelectrolyte complex and poloxamer thermosensitivity hydrogel, assessing its local anesthetic efficacy in mouse models and its onset and duration of action as topical anesthetics in clinical trials. The thermoresponsive hydrogel exhibited a rapid phase transition within 1-3 minutes and demonstrated pseudo-plastic flow behavior. Its release kinetics followed Korsmeyer-Peppas, with 50% of biodegradation occurring over 48 h. In mouse models, certain thermogels showed superior anesthetic effects, with rapid onset and prolonged action, as evidenced by heat tolerance in tail-flick and hot plate models. In clinical trials, the LH-loaded thermoresponsive hydrogel provided rapid numbness onset, with anesthesia (Ton) beginning at an average of 46.5 ± 22.5 seconds and lasting effectively (Teff) for 202.5 ± 41.0 seconds, ranging from 120 to 240 seconds, indicating sustained release. These results highlight the promising properties of these formulations: rapid onset, prolonged duration, mucoadhesion, biodegradability, and high anesthesia effectiveness. This study demonstrates the potential for advancing local anesthesia across various medical fields, emphasizing the synergy between material science and clinical applications to improve patient care and safety.


Assuntos
Anestésicos Locais , Sistemas de Liberação de Medicamentos , Hidrogéis , Lidocaína , Poloxâmero , Lidocaína/administração & dosagem , Lidocaína/química , Animais , Hidrogéis/química , Anestésicos Locais/administração & dosagem , Anestésicos Locais/química , Camundongos , Poloxâmero/química , Sistemas de Liberação de Medicamentos/métodos , Polieletrólitos/química , Masculino , Liberação Controlada de Fármacos , Humanos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética
18.
Biomacromolecules ; 24(12): 5759-5768, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37955264

RESUMO

Protein-polyelectrolyte complex coacervation is of particular interest for mimicking intracellular phase separation and organization. Yet, the challenge arises from regulating the coacervation due to the globular structure and anisotropic distributed charges of protein. Herein, we fully investigate the different control factors and reveal their effects on protein-polyelectrolyte coacervation. We prepared mixtures of BSA (bovine serum albumin) with different cationic polymers, which include linear and branched polyelectrolytes covering different spacer and charge groups, chain lengths, and polymer structures. With BSA-PDMAEMA [poly(N,N-dimethylaminomethyl methacrylate)] as the main investigated pair, we find that the moderate pH and ionic strength are essential for the adequate electrostatic interaction and formation of coacervate droplets. For most BSA-polymer mixtures, excess polyelectrolytes are required to achieve the full complexation, as evidenced by the deviated optimal charge mixing ratios from the charge stoichiometry. Polymers with longer chains or primary amine groups and a branched structure endow a strong electrostatic interaction with BSA and cause a bigger charge ratio deviation associated with the formation of solid-like coacervate complexes. Nevertheless, both the liquid- and solid-like coacervates hardly interrupt the BSA structure and activity, indicating the safe encapsulation of proteins by the coacervation with polyelectrolytes. Our study validates the crucial control of the diverse factors in regulating protein-polyelectrolyte coacervation, and the revealed principles shall be instructive for establishing other protein-based coacervations and boosting their potential applications.


Assuntos
Polímeros , Soroalbumina Bovina , Polieletrólitos/química , Soroalbumina Bovina/química , Polímeros/química , Concentração Osmolar
19.
Biomacromolecules ; 24(6): 2532-2540, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37133885

RESUMO

This study presents the preparation and phase behavior of glycan-functionalized polyelectrolytes for capturing carbohydrate-binding proteins and bacteria in liquid condensate droplets. The droplets are formed by complex coacervation of poly(active ester)-derived polyanions and polycations. This approach allows for a straightforward modular introduction of charged motifs and specifically interacting units; mannose and galactose oligomers are used here as first examples. The introduction of carbohydrates has a notable effect on the phase separation and the critical salt concentration, potentially by reducing the charge density. Two mannose binding species, concanavalin A (ConA) and Escherichia coli, are shown to not only specifically bind to mannose-functionalized coacervates but also to some degree to unfunctionalized, carbohydrate-free coacervates. This suggests non-carbohydrate-specific charge-charge interactions between the protein/bacteria and the droplets. However, when mannose interactions are inhibited or when non-binding galactose-functionalized polymers are used, interactions are significantly weakened. This confirms specific mannose-mediated binding functionalization and suggests that introducing carbohydrates reduces non-specific charge-charge interactions by a so far unidentified mechanism. Overall, the presented route toward glycan-presenting polyelectrolytes enables new functional liquid condensate droplets with specific biomolecular interactions.


Assuntos
Lectinas , Manose , Lectinas/metabolismo , Polieletrólitos/química , Manose/química , Galactose/química , Carboidratos/química , Polissacarídeos
20.
Biomacromolecules ; 24(6): 2730-2740, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37261758

RESUMO

Oppositely charged polyelectrolytes often form polyelectrolyte complexes (PECs) due to the association through electrostatic interactions. Obtaining PECs using natural, biocompatible polyelectrolytes is of interest in the food, pharmaceutical, and biomedical industries. In this work, PECs were prepared from two biopolymers, positively charged chitosan and negatively charged alginate. We investigate the changes in the structure and properties of PECs by adding sodium chloride (salt doping) to the system. The shear modulus of PECs can be tuned from ∼10 to 104 Pa by changing the salt concentration. The addition of salt led to a decrease in the water content of the complex phase with increasing shear modulus. However, at a very high salt concentration, the shear modulus of the complex phase decreased but did not lead to the liquid coacervate formation, typical of synthetic polyelectrolytes. This difference in phase behavior has likely been attributed to the hydrophobicity of chitosan and long semiflexible alginate and chitosan chains that restrict the conformational changes. Large amplitude oscillatory shear experiments captured nonlinear responses of PECs. The compositions of the PECs, determined as a function of salt concentration, signify the preferential partitioning of salt into the complex phase. Small-angle X-ray scattering of the salt-doped PECs indicates that the Kuhn length and radius of the alginate-chitosan associated structure qualitatively agree with the captured phase behavior and rheological data. This study provides insights into the structure-property as a function of salt concentration of natural polymer-based PECs necessary for developing functional materials from natural polyelectrolytes.


Assuntos
Quitosana , Polieletrólitos/química , Quitosana/química , Alginatos/química , Cloreto de Sódio , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA