Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.467
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(4): 890-904.e29, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33157037

RESUMO

The Eastern Eurasian Steppe was home to historic empires of nomadic pastoralists, including the Xiongnu and the Mongols. However, little is known about the region's population history. Here, we reveal its dynamic genetic history by analyzing new genome-wide data for 214 ancient individuals spanning 6,000 years. We identify a pastoralist expansion into Mongolia ca. 3000 BCE, and by the Late Bronze Age, Mongolian populations were biogeographically structured into three distinct groups, all practicing dairy pastoralism regardless of ancestry. The Xiongnu emerged from the mixing of these populations and those from surrounding regions. By comparison, the Mongols exhibit much higher eastern Eurasian ancestry, resembling present-day Mongolic-speaking populations. Our results illuminate the complex interplay between genetic, sociopolitical, and cultural changes on the Eastern Steppe.


Assuntos
Genética Populacional , Pradaria , Arqueologia , Europa (Continente) , Feminino , Frequência do Gene/genética , Pool Gênico , Heterogeneidade Genética , Genoma Humano , Geografia , Haplótipos/genética , História Antiga , Humanos , Masculino , Mongólia , Análise de Componente Principal , Fatores de Tempo
2.
Nature ; 625(7994): 321-328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200296

RESUMO

Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment.


Assuntos
Predisposição Genética para Doença , Genoma Humano , Pradaria , Esclerose Múltipla , Humanos , Conjuntos de Dados como Assunto , Dieta/etnologia , Dieta/história , Europa (Continente)/etnologia , Predisposição Genética para Doença/história , Genética Médica , História do Século XV , História Antiga , História Medieval , Migração Humana/história , Estilo de Vida/etnologia , Estilo de Vida/história , Esclerose Múltipla/genética , Esclerose Múltipla/história , Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/história , Doenças Neurodegenerativas/imunologia , Densidade Demográfica
3.
Nature ; 629(8011): 376-383, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658749

RESUMO

From AD 567-568, at the onset of the Avar period, populations from the Eurasian Steppe settled in the Carpathian Basin for approximately 250 years1. Extensive sampling for archaeogenomics (424 individuals) and isotopes, combined with archaeological, anthropological and historical contextualization of four Avar-period cemeteries, allowed for a detailed description of the genomic structure of these communities and their kinship and social practices. We present a set of large pedigrees, reconstructed using ancient DNA, spanning nine generations and comprising around 300 individuals. We uncover a strict patrilineal kinship system, in which patrilocality and female exogamy were the norm and multiple reproductive partnering and levirate unions were common. The absence of consanguinity indicates that this society maintained a detailed memory of ancestry over generations. These kinship practices correspond with previous evidence from historical sources and anthropological research on Eurasian Steppe societies2. Network analyses of identity-by-descent DNA connections suggest that social cohesion between communities was maintained via female exogamy. Finally, despite the absence of major ancestry shifts, the level of resolution of our analyses allowed us to detect genetic discontinuity caused by the replacement of a community at one of the sites. This was paralleled with changes in the archaeological record and was probably a result of local political realignment.


Assuntos
Arqueologia , DNA Antigo , Características da Família , Pradaria , Linhagem , Adulto , Feminino , Humanos , Masculino , Arqueologia/métodos , Ásia/etnologia , Cemitérios/história , Consanguinidade , DNA Antigo/análise , Europa (Continente)/etnologia , Características da Família/etnologia , Características da Família/história , Genômica , História Medieval , Política , Adolescente , Adulto Jovem
4.
Nature ; 620(7973): 358-365, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468624

RESUMO

Archaeogenetic studies have described two main genetic turnover events in prehistoric western Eurasia: one associated with the spread of farming and a sedentary lifestyle starting around 7000-6000 BC (refs. 1-3) and a second with the expansion of pastoralist groups from the Eurasian steppes starting around 3300 BC (refs. 4,5). The period between these events saw new economies emerging on the basis of key innovations, including metallurgy, wheel and wagon and horse domestication6-9. However, what happened between the demise of the Copper Age settlements around 4250 BC and the expansion of pastoralists remains poorly understood. To address this question, we analysed genome-wide data from 135 ancient individuals from the contact zone between southeastern Europe and the northwestern Black Sea region spanning this critical time period. While we observe genetic continuity between Neolithic and Copper Age groups from major sites in the same region, from around 4500 BC on, groups from the northwestern Black Sea region carried varying amounts of mixed ancestries derived from Copper Age groups and those from the forest/steppe zones, indicating genetic and cultural contact over a period of around 1,000 years earlier than anticipated. We propose that the transfer of critical innovations between farmers and transitional foragers/herders from different ecogeographic zones during this early contact was integral to the formation, rise and expansion of pastoralist groups around 3300 BC.


Assuntos
Agricultura , Civilização , Pradaria , Animais , Humanos , Agricultura/economia , Agricultura/história , Ásia , Civilização/história , Domesticação , Europa (Continente) , Fazendeiros/história , História Antiga , Cavalos , Comportamento Sedentário/história , Invenções/economia , Invenções/história
5.
Nature ; 615(7952): 461-467, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36653454

RESUMO

The frequency, duration, and intensity of extreme thermal events are increasing and are projected to further increase by the end of the century1,2. Despite the considerable consequences of temperature extremes on biological systems3-8, we do not know which species and locations are most exposed worldwide. Here we provide a global assessment of land vertebrates' exposures to future extreme thermal events. We use daily maximum temperature data from 1950 to 2099 to quantify future exposure to high frequency, duration, and intensity of extreme thermal events to land vertebrates. Under a high greenhouse gas emission scenario (Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5); 4.4 °C warmer world), 41.0% of all land vertebrates (31.1% mammals, 25.8% birds, 55.5% amphibians and 51.0% reptiles) will be exposed to extreme thermal events beyond their historical levels in at least half their distribution by 2099. Under intermediate-high (SSP3-7.0; 3.6 °C warmer world) and intermediate (SSP2-4.5; 2.7 °C warmer world) emission scenarios, estimates for all vertebrates are 28.8% and 15.1%, respectively. Importantly, a low-emission future (SSP1-2.6, 1.8 °C warmer world) will greatly reduce the overall exposure of vertebrates (6.1% of species) and can fully prevent exposure in many species assemblages. Mid-latitude assemblages (desert, shrubland, and grassland biomes), rather than tropics9,10, will face the most severe exposure to future extreme thermal events. By 2099, under SSP5-8.5, on average 3,773 species of land vertebrates (11.2%) will face extreme thermal events for more than half a year period. Overall, future extreme thermal events will force many species and assemblages into constant severe thermal stress. Deep greenhouse gas emissions cuts are urgently needed to limit species' exposure to thermal extremes.


Assuntos
Ecossistema , Calor Extremo , Mapeamento Geográfico , Aquecimento Global , Temperatura , Vertebrados , Animais , Gases de Efeito Estufa/efeitos adversos , Gases de Efeito Estufa/provisão & distribuição , Mamíferos , Vertebrados/classificação , História do Século XX , História do Século XXI , Fatores de Tempo , Clima Desértico , Pradaria , Clima Tropical , Aves , Anfíbios , Répteis , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Calor Extremo/efeitos adversos
6.
Nature ; 603(7901): 445-449, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296846

RESUMO

Savannas cover a fifth of the land surface and contribute a third of terrestrial net primary production, accounting for three-quarters of global area burned and more than half of global fire-driven carbon emissions1-3. Fire suppression and afforestation have been proposed as tools to increase carbon sequestration in these ecosystems2,4. A robust quantification of whole-ecosystem carbon storage in savannas is lacking however, especially under altered fire regimes. Here we provide one of the first direct estimates of whole-ecosystem carbon response to more than 60 years of fire exclusion in a mesic African savanna. We found that fire suppression increased whole-ecosystem carbon storage by only 35.4 ± 12% (mean ± standard error), even though tree cover increased by 78.9 ± 29.3%, corresponding to total gains of 23.0 ± 6.1 Mg C ha-1 at an average of about 0.35 ± 0.09 Mg C ha-1 year-1, more than an order of magnitude lower than previously assumed4. Frequently burned savannas had substantial belowground carbon, especially in biomass and deep soils. These belowground reservoirs are not fully considered in afforestation or fire-suppression schemes but may mean that the decadal sequestration potential of savannas is negligible, especially weighed against concomitant losses of biodiversity and function.


Assuntos
Ecossistema , Incêndios , Carbono , Pradaria , Árvores
7.
Nature ; 611(7936): 507-511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323782

RESUMO

Although precipitation patterns have long been known to shape plant distributions1, the effect of changing climate on the interactions of species and therefore community composition is far less understood2,3. Here, we explored how changes in precipitation alter competitive dynamics via direct effects on individual species, as well as by the changing strength of competitive interactions between species, using an annual grassland community in California. We grew plants under ambient and reduced precipitation in the field to parameterize a competition model4 with which we quantified the stabilizing niche and fitness differences that determine species coexistence in each rainfall regime. We show that reduced precipitation had little direct effect on species grown alone, but it qualitatively shifted predicted competitive outcomes for 10 of 15 species pairs. In addition, species pairs that were functionally more similar were less likely to experience altered outcomes, indicating that functionally diverse communities may be most threatened by changing interactions. Our results highlight how important it is to account for changes to species interactions when predicting species and community response to global change.


Assuntos
Biota , Mudança Climática , Pradaria , Fenômenos Fisiológicos Vegetais , Plantas , Chuva , Clima , Plantas/classificação , Especificidade da Espécie , California
8.
Nature ; 606(7913): 325-328, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614221

RESUMO

Archaeological remains of agrarian-based, low-density urbananism1-3 have been reported to exist beneath the tropical forests of Southeast Asia, Sri Lanka and Central America4-6. However, beyond some large interconnected settlements in southern Amazonia7-9, there has been no such evidence for pre-Hispanic Amazonia. Here we present lidar data of sites belonging to the Casarabe culture (around AD 500 to AD 1400)10-13 in the Llanos de Mojos savannah-forest mosaic, southwest Amazonia, revealing the presence of two remarkably large sites (147 ha and 315 ha) in a dense four-tiered settlement system. The Casarabe culture area, as far as known today, spans approximately 4,500 km2, with one of the large settlement sites controlling an area of approximately 500 km2. The civic-ceremonial architecture of these large settlement sites includes stepped platforms, on top of which lie U-shaped structures, rectangular platform mounds and conical pyramids (which are up to 22 m tall). The large settlement sites are surrounded by ranked concentric polygonal banks and represent central nodes that are connected to lower-ranked sites by straight, raised causeways that stretch over several kilometres. Massive water-management infrastructure, composed of canals and reservoirs, complete the settlement system in an anthropogenically modified landscape. Our results indicate that the Casarabe-culture settlement pattern represents a type of tropical low-density urbanism that has not previously been described in Amazonia.


Assuntos
Arqueologia , Cultura , Florestas , Densidade Demográfica , Urbanização , Bolívia , Pradaria , Hispânico ou Latino/história , História Medieval , Humanos , Urbanização/história
9.
Nature ; 611(7935): 301-305, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323777

RESUMO

Enrichment of nutrients and loss of herbivores are assumed to cause a loss of plant diversity in grassland ecosystems because they increase plant cover, which leads to a decrease of light in the understory1-3. Empirical tests of the role of competition for light in natural systems are based on indirect evidence, and have been a topic of debate for the last 40 years. Here we show that experimentally restoring light to understory plants in a natural grassland mitigates the loss of plant diversity that is caused by either nutrient enrichment or the absence of mammalian herbivores. The initial effect of light addition on restoring diversity under fertilization was transitory and outweighed by the greater effect of herbivory on light levels, indicating that herbivory is a major factor that controls diversity, partly through light. Our results provide direct experimental evidence, in a natural system, that competition for light is a key mechanism that contributes to the loss of biodiversity after cessation of mammalian herbivory. Our findings also show that the effects of herbivores can outpace the effects of fertilization on competition for light. Management practices that target maintaining grazing by native or domestic herbivores could therefore have applications in protecting biodiversity in grassland ecosystems, because they alleviate competition for light in the understory.


Assuntos
Biodiversidade , Herbivoria , Luz , Plantas , Animais , Pradaria , Mamíferos/fisiologia , Nutrientes/metabolismo , Plantas/classificação , Plantas/metabolismo , Plantas/efeitos da radiação , Fertilizantes
10.
Nature ; 598(7882): 634-640, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671162

RESUMO

Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12.


Assuntos
Domesticação , Genética Populacional , Cavalos , Animais , Arqueologia , Ásia , DNA Antigo , Europa (Continente) , Genoma , Pradaria , Cavalos/genética , Filogenia
11.
Nature ; 591(7851): 599-603, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762765

RESUMO

Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2) experiments4-6, SOC has been observed to increase, remain unchanged or even decline7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO2, SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests (0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised.


Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Plantas/metabolismo , Solo/química , Biomassa , Pradaria , Modelos Biológicos
12.
Nature ; 592(7853): 248-252, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790469

RESUMO

The archaeological record of Africa provides the earliest evidence for the emergence of the complex symbolic and technological behaviours that characterize Homo sapiens1-7. The coastal setting of many archaeological sites of the Late Pleistocene epoch, and the abundant shellfish remains recovered from them, has led to a dominant narrative in which modern human origins in southern Africa are intrinsically tied to the coast and marine resources8-12, and behavioural innovations in the interior lag behind. However, stratified Late Pleistocene sites with good preservation and robust chronologies are rare in the interior of southern Africa, and the coastal hypothesis therefore remains untested. Here we show that early human innovations that are similar to those dated to around 105 thousand years ago (ka) in coastal southern Africa existed at around the same time among humans who lived over 600 km inland. We report evidence for the intentional collection of non-utilitarian objects (calcite crystals) and ostrich eggshell from excavations of a stratified rockshelter deposit in the southern Kalahari Basin, which we date by optically stimulated luminescence to around 105 ka. Uranium-thorium dating of relict tufa deposits indicates sporadic periods of substantial volumes of fresh, flowing water; the oldest of these episodes is dated to between 110 and 100 ka and is coeval with the archaeological deposit. Our results suggest that behavioural innovations among humans in the interior of southern Africa did not lag behind those of populations near the coast, and that these innovations may have developed within a wet savannah environment. Models that tie the emergence of behavioural innovations to the exploitation of coastal resources by our species may therefore require revision.


Assuntos
Arqueologia , Carbonato de Cálcio/análise , Casca de Ovo , Pradaria , Invenções/história , Chuva , Struthioniformes , África Austral , Animais , Carbonato de Cálcio/química , Cavernas , História Antiga , Humanos , Magnésio , Tório , Urânio
13.
Nature ; 598(7882): 629-633, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34526723

RESUMO

During the Early Bronze Age, populations of the western Eurasian steppe expanded across an immense area of northern Eurasia. Combined archaeological and genetic evidence supports widespread Early Bronze Age population movements out of the Pontic-Caspian steppe that resulted in gene flow across vast distances, linking populations of Yamnaya pastoralists in Scandinavia with pastoral populations (known as the Afanasievo) far to the east in the Altai Mountains1,2 and Mongolia3. Although some models hold that this expansion was the outcome of a newly mobile pastoral economy characterized by horse traction, bulk wagon transport4-6 and regular dietary dependence on meat and milk5, hard evidence for these economic features has not been found. Here we draw on proteomic analysis of dental calculus from individuals from the western Eurasian steppe to demonstrate a major transition in dairying at the start of the Bronze Age. The rapid onset of ubiquitous dairying at a point in time when steppe populations are known to have begun dispersing offers critical insight into a key catalyst of steppe mobility. The identification of horse milk proteins also indicates horse domestication by the Early Bronze Age, which provides support for its role in steppe dispersals. Our results point to a potential epicentre for horse domestication in the Pontic-Caspian steppe by the third millennium BC, and offer strong support for the notion that the novel exploitation of secondary animal products was a key driver of the expansions of Eurasian steppe pastoralists by the Early Bronze Age.


Assuntos
Indústria de Laticínios/história , Migração Humana , Proteoma , Animais , Arqueologia , Ásia , Cálculos Dentários/metabolismo , Domesticação , Europa (Continente) , Fluxo Gênico , Pradaria , História Antiga , Cavalos , Humanos , Leite
14.
Nature ; 597(7876): 366-369, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526704

RESUMO

Southeast Australia experienced intensive and geographically extensive wildfires during the 2019-2020 summer season1,2. The fires released substantial amounts of carbon dioxide into the atmosphere3. However, existing emission estimates based on fire inventories are uncertain4, and vary by up to a factor of four for this event. Here we constrain emission estimates with the help of satellite observations of carbon monoxide5, an analytical Bayesian inversion6 and observed ratios between emitted carbon dioxide and carbon monoxide7. We estimate emissions of carbon dioxide to be 715 teragrams (range 517-867) from November 2019 to January 2020. This is more than twice the estimate derived by five different fire inventories8-12, and broadly consistent with estimates based on a bottom-up bootstrap analysis of this fire episode13. Although fires occur regularly in the savannas in northern Australia, the recent episodes were extremely large in scale and intensity, burning unusually large areas of eucalyptus forest in the southeast13. The fires were driven partly by climate change14,15, making better-constrained emission estimates particularly important. This is because the build-up of atmospheric carbon dioxide may become increasingly dependent on fire-driven climate-carbon feedbacks, as highlighted by this event16.


Assuntos
Dióxido de Carbono/análise , Imagens de Satélites , Incêndios Florestais/estatística & dados numéricos , Atmosfera/química , Austrália , Teorema de Bayes , Monóxido de Carbono/análise , Mudança Climática , Eucalyptus , Florestas , Pradaria , Incerteza
15.
Nature ; 599(7884): 256-261, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707286

RESUMO

The identity of the earliest inhabitants of Xinjiang, in the heart of Inner Asia, and the languages that they spoke have long been debated and remain contentious1. Here we present genomic data from 5 individuals dating to around 3000-2800 BC from the Dzungarian Basin and 13 individuals dating to around 2100-1700 BC from the Tarim Basin, representing the earliest yet discovered human remains from North and South Xinjiang, respectively. We find that the Early Bronze Age Dzungarian individuals exhibit a predominantly Afanasievo ancestry with an additional local contribution, and the Early-Middle Bronze Age Tarim individuals contain only a local ancestry. The Tarim individuals from the site of Xiaohe further exhibit strong evidence of milk proteins in their dental calculus, indicating a reliance on dairy pastoralism at the site since its founding. Our results do not support previous hypotheses for the origin of the Tarim mummies, who were argued to be Proto-Tocharian-speaking pastoralists descended from the Afanasievo1,2 or to have originated among the Bactria-Margiana Archaeological Complex3 or Inner Asian Mountain Corridor cultures4. Instead, although Tocharian may have been plausibly introduced to the Dzungarian Basin by Afanasievo migrants during the Early Bronze Age, we find that the earliest Tarim Basin cultures appear to have arisen from a genetically isolated local population that adopted neighbouring pastoralist and agriculturalist practices, which allowed them to settle and thrive along the shifting riverine oases of the Taklamakan Desert.


Assuntos
Arqueologia , Genoma Humano/genética , Genômica , Migração Humana/história , Múmias/história , Filogenia , Agricultura/história , Animais , Bovinos , China , Características Culturais , Cálculos Dentários/química , Clima Desértico , Dieta/história , Europa (Continente) , Feminino , Cabras , Pradaria , História Antiga , Humanos , Masculino , Proteínas do Leite/análise , Filogeografia , Análise de Componente Principal , Proteoma/análise , Proteômica , Ovinos , Sequenciamento Completo do Genoma
16.
Nature ; 600(7887): 86-92, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34671161

RESUMO

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Assuntos
Biota , DNA Antigo/análise , DNA Ambiental/análise , Metagenômica , Animais , Regiões Árticas , Mudança Climática/história , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Extinção Biológica , Sedimentos Geológicos , Pradaria , Groenlândia , Haplótipos/genética , Herbivoria/genética , História Antiga , Humanos , Lagos , Mamutes , Mitocôndrias/genética , Perissodáctilos , Pergelissolo , Filogenia , Plantas/genética , Dinâmica Populacional , Chuva , Sibéria , Análise Espaço-Temporal , Áreas Alagadas
17.
Proc Natl Acad Sci U S A ; 121(4): e2309881120, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190514

RESUMO

Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.


Assuntos
Secas , Ecossistema , Pradaria , Ciclo do Carbono , Mudança Climática , Receptores Proteína Tirosina Quinases
18.
Proc Natl Acad Sci U S A ; 121(25): e2314036121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857391

RESUMO

Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.


Assuntos
Biomassa , Ecossistema , Pergelissolo , Tibet , Áreas Alagadas , Plantas/metabolismo , Mudança Climática , Temperatura , Ciclo do Carbono , Desenvolvimento Vegetal/fisiologia , Solo/química , Pradaria
19.
Nature ; 586(7829): 402-406, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33029012

RESUMO

Southeast Asia has emerged as an important region for understanding hominin and mammalian migrations and extinctions. High-profile discoveries have shown that Southeast Asia has been home to at least five members of the genus Homo1-3. Considerable turnover in Pleistocene megafauna has previously been linked with these hominins or with climate change4, although the region is often left out of discussions of megafauna extinctions. In the traditional hominin evolutionary core of Africa, attempts to establish the environmental context of hominin evolution and its association with faunal changes have long been informed by stable isotope methodologies5,6. However, such studies have largely been neglected in Southeast Asia. Here we present a large-scale dataset of stable isotope data for Southeast Asian mammals that spans the Quaternary period. Our results demonstrate that the forests of the Early Pleistocene had given way to savannahs by the Middle Pleistocene, which led to the spread of grazers and extinction of browsers-although geochronological limitations mean that not all samples can be resolved to glacial or interglacial periods. Savannahs retreated by the Late Pleistocene and had completely disappeared by the Holocene epoch, when they were replaced by highly stratified closed-canopy rainforest. This resulted in the ascendency of rainforest-adapted species as well as Homo sapiens-which has a unique adaptive plasticity among hominins-at the expense of savannah and woodland specialists, including Homo erectus. At present, megafauna are restricted to rainforests and are severely threatened by anthropogenic deforestation.


Assuntos
Extinção Biológica , Pradaria , Hominidae , Mamíferos , Plantas , Floresta Úmida , Animais , Sudeste Asiático , Isótopos de Carbono , Clima , Mapeamento Geográfico , Herbivoria , História Antiga , Humanos , Isótopos de Oxigênio , Fatores de Tempo
20.
Nature ; 581(7807): 190-193, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32404996

RESUMO

The onset of plant cultivation is one of the most important cultural transitions in human history1-4. Southwestern Amazonia has previously been proposed as an early centre of plant domestication, on the basis of molecular markers that show genetic similarities between domesticated plants and wild relatives4-6. However, the nature of the early human occupation of southwestern Amazonia, and the history of plant cultivation in this region, are poorly understood. Here we document the cultivation of squash (Cucurbita sp.) at about 10,250 calibrated years before present (cal. yr BP), manioc (Manihot sp.) at about 10,350 cal. yr BP and maize (Zea mays) at about 6,850 cal. yr BP, in the Llanos de Moxos (Bolivia). We show that, starting at around 10,850 cal. yr BP, inhabitants of this region began to create a landscape that ultimately comprised approximately 4,700 artificial forest islands within a treeless, seasonally flooded savannah. Our results confirm that the Llanos de Moxos is a hotspot for early plant cultivation and demonstrate that-ever since their arrival in Amazonia-humans have markedly altered the landscape, with lasting repercussions for habitat heterogeneity and species conservation.


Assuntos
Produção Agrícola/história , Produtos Agrícolas/história , Florestas , Pradaria , Atividades Humanas , Biodiversidade , Bolívia , Conservação dos Recursos Naturais , Cucurbita/crescimento & desenvolvimento , Mapeamento Geográfico , História Antiga , Manihot/crescimento & desenvolvimento , Manihot/história , Amido , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA