RESUMO
Human mitoribosomes are macromolecular complexes essential for translation of 11 mitochondrial mRNAs. The large and the small mitoribosomal subunits undergo a multistep maturation process that requires the involvement of several factors. Among these factors, GTP-binding proteins (GTPBPs) play an important role as GTP hydrolysis can provide energy throughout the assembly stages. In bacteria, many GTPBPs are needed for the maturation of ribosome subunits and, of particular interest for this study, ObgE has been shown to assist in the 50S subunit assembly. Here, we characterize the role of a related human Obg-family member, GTPBP5. We show that GTPBP5 interacts specifically with the large mitoribosomal subunit (mt-LSU) proteins and several late-stage mitoribosome assembly factors, including MTERF4:NSUN4 complex, MRM2 methyltransferase, MALSU1 and MTG1. Interestingly, we find that interaction of GTPBP5 with the mt-LSU is compromised in the presence of a non-hydrolysable analogue of GTP, implying a different mechanism of action of this protein in contrast to that of other Obg-family GTPBPs. GTPBP5 ablation leads to severe impairment in the oxidative phosphorylation system, concurrent with a decrease in mitochondrial translation and reduced monosome formation. Overall, our data indicate an important role of GTPBP5 in mitochondrial function and suggest its involvement in the late-stage of mt-LSU maturation.
Assuntos
Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Neoplasias Ósseas/patologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Osteossarcoma/patologia , Fosforilação Oxidativa , Mapeamento de Interação de ProteínasRESUMO
Root hairs are protrusions from root epidermal cells with crucial roles in plant soil interactions. Although much is known about patterning, polarity and tip growth of root hairs, contributions of membrane trafficking to hair initiation remain poorly understood. Here, we demonstrate that the trans-Golgi network-localized YPT-INTERACTING PROTEIN 4a and YPT-INTERACTING PROTEIN 4b (YIP4a/b) contribute to activation and plasma membrane accumulation of Rho-of-plant (ROP) small GTPases during hair initiation, identifying YIP4a/b as central trafficking components in ROP-dependent root hair formation.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Genes de Plantas , Proteínas de Membrana/farmacologia , Raízes de Plantas/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacologia , Membrana Celular/fisiologia , Genótipo , Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Mutação , Fenótipo , Transporte Proteico , Sementes , Rede trans-Golgi/fisiologiaRESUMO
Diverse environmental cues converge on and are integrated by the mTOR signaling network to control cellular growth and homeostasis. The mammalian Tsc1-Tsc2 GTPase activating protein (GAP) heterodimer is a critical negative regulator of Rheb and mTOR activation. The RalGAPα-RalGAPß heterodimer shares sequence and structural similarity with Tsc1-Tsc2. Unexpectedly, we observed that C. elegans expresses orthologs for the Rheb and RalA/B GTPases and for RalGAPα/ß, but not Tsc1/2. This prompted our investigation to determine whether RalGAPs additionally modulate mTOR signaling. We determined that C. elegans RalGAP loss decreased lifespan, consistent with a Tsc-like function. Additionally, RalGAP suppression in mammalian cells caused RalB-selective activation and Sec5- and exocyst-dependent engagement of mTORC1 and suppression of autophagy. Unexpectedly, we also found that Tsc1-Tsc2 loss activated RalA/B independently of Rheb-mTOR signaling. Finally, RalGAP suppression caused mTORC1-dependent pancreatic tumor cell invasion. Our findings identify an unexpected crosstalk and integration of the Ral and mTOR signaling networks.
Assuntos
Autofagia/genética , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/citologia , Senescência Celular/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Invasividade Neoplásica/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas ral de Ligação ao GTP/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismoRESUMO
Biogenesis of mammalian mitochondrial ribosomes (mitoribosomes) involves several conserved small GTPases. Here, we report that the Obg family protein GTPBP5 or MTG2 is a mitochondrial protein whose absence in a TALEN-induced HEK293T knockout (KO) cell line leads to severely decreased levels of the 55S monosome and attenuated mitochondrial protein synthesis. We show that a fraction of GTPBP5 co-sediments with the large mitoribosome subunit (mtLSU), and crosslinks specifically with the 16S rRNA, and several mtLSU proteins and assembly factors. Notably, the latter group includes MTERF4, involved in monosome assembly, and MRM2, the methyltransferase that catalyzes the modification of the 16S mt-rRNA A-loop U1369 residue. The GTPBP5 interaction with MRM2 was also detected using the proximity-dependent biotinylation (BioID) assay. In GTPBP5-KO mitochondria, the mtLSU lacks bL36m, accumulates an excess of the assembly factors MTG1, GTPBP10, MALSU1 and MTERF4, and contains hypomethylated 16S rRNA. We propose that GTPBP5 primarily fuels proper mtLSU maturation by securing efficient methylation of two 16S rRNA residues, and ultimately serves to coordinate subunit joining through the release of late-stage mtLSU assembly factors. In this way, GTPBP5 provides an ultimate quality control checkpoint function during mtLSU assembly that minimizes premature subunit joining to ensure the assembly of the mature 55S monosome.
Assuntos
Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/enzimologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , RNA Ribossômico 16S/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/enzimologia , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Metilação , Metiltransferases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Ribossomos Mitocondriais/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Fosforilação Oxidativa , Biossíntese de Proteínas , RNA Ribossômico 16S/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The dendritic arbor of neurons constrains the pool of available synaptic partners and influences the electrical integration of synaptic currents. Despite these critical functions, our knowledge of the dendritic structure of cortical neurons during early postnatal development and how these dendritic structures are modified by visual experience is incomplete. Here, we present a large-scale dataset of 849 3D reconstructions of the basal arbor of pyramidal neurons collected across early postnatal development in visual cortex of mice of either sex. We found that the basal arbor grew substantially between postnatal day 7 (P7) and P30, undergoing a 45% increase in total length. However, the gross number of primary neurites and dendritic segments was largely determined by P7. Growth from P7 to P30 occurred primarily through extension of dendritic segments. Surprisingly, comparisons of dark-reared and typically reared mice revealed that a net gain of only 15% arbor length could be attributed to visual experience; most growth was independent of experience. To examine molecular contributions, we characterized the role of the activity-regulated small GTPase Rem2 in both arbor development and the maintenance of established basal arbors. We showed that Rem2 is an experience-dependent negative regulator of dendritic segment number during the visual critical period. Acute deletion of Rem2 reduced directionality of dendritic arbors. The data presented here establish a highly detailed, quantitative analysis of basal arbor development that we believe has high utility both in understanding circuit development as well as providing a framework for computationalists wishing to generate anatomically accurate neuronal models.SIGNIFICANCE STATEMENT Dendrites are the sites of the synaptic connections among neurons. Despite their importance for neural circuit function, only a little is known about the postnatal development of dendritic arbors of cortical pyramidal neurons and the influence of experience. Here we show that the number of primary basal dendritic arbors is already established before eye opening, and that these arbors primarily grow through lengthening of dendritic segments and not through addition of dendritic segments. Surprisingly, visual experience has a modest net impact on overall arbor length (15%). Experiments in KO animals revealed that the gene Rem2 is positive regulator of dendritic length and a negative regulator of dendritic segments.
Assuntos
Dendritos/fisiologia , Células Piramidais/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neuritos/fisiologia , Células Piramidais/citologia , Córtex Visual/citologiaRESUMO
T cell antigen receptors (TCRs) and B cell antigen receptors (BCRs) transmit low-grade signals necessary for the survival and maintenance of mature cell pools. We show here that TC21, a small GTPase encoded by Rras2, interacted constitutively with both kinds of receptors. Expression of a dominant negative TC21 mutant in T cells produced a rapid decrease in cell viability, and Rras2(-/-) mice were lymphopenic, possibly as a result of diminished homeostatic proliferation and impaired T cell and B cell survival. In contrast, TC21 was overexpressed in several human lymphoid malignancies. Finally, the p110delta catalytic subunit of phosphatidylinositol-3-OH kinase (PI(3)K) was recruited to the TCR and BCR in a TC21-dependent way. Consequently, we propose TC21 directly links antigen receptors to PI(3)K-mediated survival pathways.
Assuntos
Linfócitos B/imunologia , Proteínas de Membrana/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Receptores de Antígenos de Linfócitos B/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T/imunologia , Animais , Sobrevivência Celular , Homeostase , Humanos , Linfonodos/citologia , Linfonodos/imunologia , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Linfoma de Células T/imunologia , Linfoma de Células T/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Proteínas Monoméricas de Ligação ao GTP/imunologia , Fosfatidilinositol 3-Quinases/fisiologia , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de SinaisRESUMO
A de novo missense variant in Rag GTPase protein C (RagCS75Y) was recently identified in a syndromic dilated cardiomyopathy (DCM) patient. However, its pathogenicity and the related therapeutic strategy remain unclear. We generated a zebrafish RragcS56Y (corresponding to human RagCS75Y) knock-in (KI) line via TALEN technology. The KI fish manifested cardiomyopathy-like phenotypes and poor survival. Overexpression of RagCS75Y via adenovirus infection also led to increased cell size and fetal gene reprogramming in neonatal rat ventricle cardiomyocytes (NRVCMs), indicating a conserved mechanism. Further characterization identified aberrant mammalian target of rapamycin complex 1 (mTORC1) and transcription factor EB (TFEB) signaling, as well as metabolic abnormalities including dysregulated autophagy. However, mTOR inhibition failed to ameliorate cardiac phenotypes in the RagCS75Y cardiomyopathy models, concomitant with a failure to promote TFEB nuclear translocation. This observation was at least partially explained by increased and mTOR-independent physical interaction between RagCS75Y and TFEB in the cytosol. Importantly, TFEB overexpression resulted in more nuclear TFEB and rescued cardiomyopathy phenotypes. These findings suggest that S75Y is a pathogenic gain-of-function mutation in RagC that leads to cardiomyopathy. A primary pathological step of RagCS75Y cardiomyopathy is defective mTOR-TFEB signaling, which can be corrected by TFEB overexpression, but not mTOR inhibition.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Cardiomiopatia Dilatada/genética , Mutação com Ganho de Função , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação de Sentido Incorreto , Mutação Puntual , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transporte Ativo do Núcleo Celular , Substituição de Aminoácidos , Animais , Autofagia , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cardiomiopatia Dilatada/terapia , Células Cultivadas , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Ventrículos do Coração/citologia , Humanos , Camundongos , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Miócitos Cardíacos/metabolismo , Fenótipo , Ratos Wistar , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologiaRESUMO
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Assuntos
Doenças Cardiovasculares/fisiopatologia , Fenômenos Fisiológicos Cardiovasculares , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Animais , Humanos , Modelos Animais , Proteínas Monoméricas de Ligação ao GTP/química , Transdução de Sinais/fisiologia , Proteínas ras/fisiologiaRESUMO
Voltage-gated calcium-channels (VGCCs) are heteromers consisting of several subunits. Mutations in the genes coding for VGCC subunits have been reported to be associated with autism spectrum disorder (ASD). In a previous study, we identified electrophysiologically relevant missense mutations of CaVß2 subunits of VGCCs. From this, we derived the hypothesis that several CaVß2-mutations associated with ASD show common features sensitizing LTCCs and/or enhancing currents. Using a CaVß2d backbone, we performed extensive whole-cell and single-channel patch-clamp analyses of Ba2+ currents carried by Cav1.2 pore subunits co-transfected with the previously described CaVß2 mutations (G167S, S197F) as well as a recently identified point mutation (V2D). Furthermore, the interaction of the mutated CaVß2d subunits with the RGK protein Gem was analyzed by co-immunoprecipitation assays and electrophysiological studies. Patch-clamp analyses revealed that all mutations increase Ba2+ currents, e.g. by decreasing inactivation or increasing fraction of active sweeps. All CaVß2 mutations interact with Gem, but differ in the extent and characteristics of modulation by this RGK protein (e.g. decrease of fraction of active sweeps: CaVß2d_G167S > CaVß2d_V2D > CaVß2d_S197F). In conclusion, patch-clamp recordings of ASD-associated CaVß2d mutations revealed differential modulation of Ba2+ currents carried by CaV1.2 suggesting kind of an "electrophysiological fingerprint" each. The increase in current finally observed with all CaVß2d mutations analyzed might contribute to the complex pathophysiology of ASD and by this indicate a possible underlying molecular mechanism.
Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Canais de Cálcio Tipo L/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Mutação de Sentido Incorreto/fisiologia , Cálcio/fisiologia , Células HEK293 , Humanos , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodosRESUMO
Most steps on the biogenesis of the mitochondrial ribosome (mitoribosome) occur near the mitochondrial DNA nucleoid, in RNA granules, which contain dedicated RNA metabolism and mitoribosome assembly factors. Here, analysis of the RNA granule proteome identified the presence of a set of small GTPases that belong to conserved families of ribosome assembly factors. We show that GTPBP10, a member of the conserved Obg family of P-loop small G proteins, is a mitochondrial protein and have used gene-editing technologies to create a HEK293T cell line KO for GTPBP10. The absence of GTPBP10 leads to attenuated mtLSU and mtSSU levels and the virtual absence of the 55S monosome, which entirely prevents mitochondrial protein synthesis. We show that a fraction of GTPBP10 cosediments with the large mitoribosome subunit and the monosome. GTPBP10 physically interacts with the 16S rRNA, but not with the 12S rRNA, and crosslinks with several mtLSU proteins. Additionally, GTPBP10 is indirectly required for efficient processing of the 12S-16S rRNA precursor transcript, which could explain the mtSSU accumulation defect. We propose that GTPBP10 primarily ensures proper mtLSU maturation and ultimately serves to coordinate mtSSU and mtLSU accumulation then providing a quality control check-point function during mtLSU assembly that minimizes premature subunit joining.
Assuntos
Ribossomos Mitocondriais/química , Proteínas Monoméricas de Ligação ao GTP/fisiologia , RNA Helicases DEAD-box/metabolismo , DNA Mitocondrial/genética , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Biossíntese de Proteínas , Proteoma , RNA/química , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , TransgenesRESUMO
Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.
Assuntos
Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Proteínas ras/genética , Proteínas ras/fisiologia , Animais , Axônios/fisiologia , Diferenciação Celular/genética , Sobrevivência Celular/genética , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/genética , Neurogênese , Nervo Óptico/crescimento & desenvolvimento , Nervo Óptico/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Nós Neurofibrosos/fisiologia , Células-Tronco/fisiologiaRESUMO
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a well-characterized, abundant protein kinase that regulates a diverse set of functions in a tissue-specific manner. For example, in heart muscle, CaMKII regulates Ca2+ homeostasis, whereas in neurons, CaMKII regulates activity-dependent dendritic remodeling and long-term potentiation (LTP), a neurobiological correlate of learning and memory. Previously, we identified the GTPase Rem2 as a critical regulator of dendrite branching and homeostatic plasticity in the vertebrate nervous system. Here, we report that Rem2 directly interacts with CaMKII and potently inhibits the activity of the intact holoenzyme, a previously unknown Rem2 function. Our results suggest that Rem2 inhibition involves interaction with both the CaMKII hub domain and substrate recognition domain. Moreover, we found that Rem2-mediated inhibition of CaMKII regulates dendritic branching in cultured hippocampal neurons. Lastly, we report that substitution of two key amino acid residues in the Rem2 N terminus (Arg-79 and Arg-80) completely abolishes its ability to inhibit CaMKII. We propose that our biochemical findings will enable further studies unraveling the functional significance of Rem2 inhibition of CaMKII in cells.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Animais , Cálcio/metabolismo , Células Cultivadas , Células HEK293 , Hipocampo/citologia , Hipocampo/enzimologia , Hipocampo/metabolismo , Homeostase , Humanos , Aprendizagem , Potenciação de Longa Duração , Memória , Camundongos , Proteínas Monoméricas de Ligação ao GTP/química , Plasticidade Neuronal , Neurônios/metabolismo , Fosforilação , Especificidade por SubstratoRESUMO
Protein recycling is an important cellular process required for cell homeostasis. Results from prior studies have shown that vacuolar sorting protein-1 (Vps1), a dynamin homolog in yeast, is implicated in protein recycling from the endosome to the trans-Golgi Network (TGN). However, the function of Vps1 in relation to Ypt6, a master GTPase in the recycling pathway, remains unknown. The present study reveals that Vps1 physically interacts with Ypt6 if at least one of them is full-length. We found that overexpression of full-length Vps1, but not GTP hydrolysis-defective Vps1 mutants, is sufficient to rescue abnormal phenotypes of Snc1 distribution provoked by the loss of Ypt6, and vice versa. This suggests that Vps1 and Ypt6 function in parallel pathways instead of in a sequential pathway and that GTP binding/hydrolysis of Vps1 is required for proper traffic of Snc1 toward the TGN. Additionally, we identified two novel Vps1-binding partners, Vti1 and Snc2, which function for the endosome-derived vesicle fusion at the TGN. Taken together, the present study demonstrates that Vps1 plays a role in later stages of the endosome-to-TGN traffic.
Assuntos
Endossomos/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Complexo de Golgi/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Transporte ProteicoRESUMO
This article focuses on the role of Rho family GTPases, particularly Rac1 and Rac1b in TGF-ß-induced epithelial-mesenchymal transition (EMT) and EMT-associated responses such as cell migration, invasion, and metastasis in cancer. EMT is considered a prerequisite for cells to adopt a motile and invasive phenotype and eventually become metastatic. A major regulator of EMT and metastasis in cancer is TGF-ß, and its specific functions on tumor cells are mediated beside Smad proteins and mitogen-activated protein kinases (MAPKs) by small GTPases of the Rho/Rac1 family. Available data point to extensive signaling crosstalk between TGF-ß and various Rho GTPases, and in particular a synergistic role of Rho and Rac1 during EMT and cell motility in normal and neoplastic epithelial cells. In contrast, the Rac1-related isoform, Rac1b, emerges as an endogenous inhibitor of Rac1 in TGF-ß signaling, at least in pancreatic carcinoma cells. Given the tumor-promoting role of TGF-ß in late-stage carcinomas and the intimate crosstalk of Rho/Rac1/Rac1b and TGF-ß signaling in various tumor cell responses, targeting specific Rho GTPases may allow for selective interference with prooncogenic TGF-ß responses to aid in anticancer treatments. Developmental Dynamics 247:451-461, 2018. © 2017 Wiley Periodicals, Inc.
Assuntos
Transição Epitelial-Mesenquimal , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neoplasias/patologia , Fator de Crescimento Transformador beta/fisiologia , Movimento Celular , Receptor Cross-Talk , Fator de Crescimento Transformador beta/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
This research paper addresses the hypothesis that RagD is a key signalling factor that regulates amino acid (AA) mediated-casein synthesis and cell proliferation in cow mammary epithelial cells (CMECs). The expression of RagD was analysed at different times during pregnancy and lactation in bovine mammary tissue from dairy cows. We showed that expression of RagD at lactation period was higher (P < 0·05) than that at pregnancy period. When CMECs were treated with methionine (Met) or lysine (Lys), expression of RagD, ß-casein (CSN2), mTOR and p-mTOR, and cell proliferation were increased. Further, when CMECs were treated to overexpress RagD, expression of CSN2, mTOR and p-mTOR, and cell proliferation were up-regulated. Furthermore, the increase in expression of CSN2, mTOR and p-mTOR, and cell proliferation in response to Met or Lys supply was inhibited by inhibiting RagD, and those effects were reversed in the overexpression model. When CMECs were treated with RagD overexpression together with mTOR inhibition or conversely with RagD inhibition together with mTOR overexpression, results showed that the increase in expression of CSN2 and cell proliferation in response to RagD overexpression was prevented by inhibiting mTOR, and those effects were reversed by overexpressing mTOR. The interaction of RagD with subunit proteins of mTORC1 was analysed, and the result showed that RagD interacted with Raptor. CMECs were treated with Raptor inhibition, and the result showed that the increase in expression of mTOR and p-mTOR in response to RagD overexpression was inhibited by inhibiting Raptor.In conclusion, our study showed that RagD is an important activation factor of mTORC1 in CMECs, activating AA-mediated casein synthesis and cell proliferation, potentially acting via Raptor.
Assuntos
Caseínas/biossíntese , Bovinos , Glândulas Mamárias Animais/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos/fisiologia , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Células Epiteliais , Feminino , Expressão Gênica/efeitos dos fármacos , Lactação/fisiologia , Lisina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Metionina/farmacologia , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/genética , Gravidez , Proteína Regulatória Associada a mTOR/antagonistas & inibidores , Proteína Regulatória Associada a mTOR/fisiologia , Serina-Treonina Quinases TOR/genéticaRESUMO
Plexins (Plexs) comprise a large family of cell surface receptors for semaphorins (Semas) that function as evolutionarily conserved guidance molecules. GTPase activating protein (GAP) activity for Ras family small GTPases has been implicated in plexin signaling cascades through its RasGAP domain. However, little is known about how Ras family GTPases are controlled in vivo by plexin signaling. Here, we found that Drosophila Rap1, a member of the Ras family of GTPases, plays an important role controlling intersegmental nerve b motor axon guidance during neural development. Gain-of-function studies using dominant-negative and constitutively active forms of Rap1 indicate that Rap1 contributes to axonal growth and guidance. Genetic interaction analyses demonstrate that the Sema-1a/PlexA-mediated repulsive guidance function is regulated positively by Rap1. Furthermore, neuronal expression of mutant PlexA robustly restored defasciculation defects in PlexA null mutants when the catalytic arginine fingers of the PlexA RasGAP domain critical for GAP activity were disrupted. However, deleting the RasGAP domain abolished the ability of PlexA to rescue the PlexA guidance phenotypes. These findings suggest that PlexA-mediated motor axon guidance is dependent on the presence of the PlexA RasGAP domain, but not on its GAP activity toward Ras family small GTPases.
Assuntos
Orientação de Axônios/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/fisiologia , Proteínas de Ligação a Telômeros/fisiologia , Proteínas Ativadoras de ras GTPase/fisiologia , Animais , Animais Geneticamente Modificados , Orientação de Axônios/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos , Proteínas Monoméricas de Ligação ao GTP/deficiência , Proteínas Monoméricas de Ligação ao GTP/genética , Neurônios Motores/fisiologia , Mutagênese , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/deficiência , Proteínas de Ligação a Telômeros/genética , Regulação para Cima , Proteínas Ativadoras de ras GTPase/deficiência , Proteínas Ativadoras de ras GTPase/genéticaRESUMO
BACKGROUND: We previously reported that palmitoyltransferase activity of Akr1 is required for alleviation of methylmercury toxicity in yeast. In this study, we identified a factor that alleviates methylmercury toxicity among the substrate proteins palmitoylated by Akr1, and investigated the role of this factor in methylmercury toxicity. METHODS: Gene disruption and site-directed mutagenesis were used to examine the relationship of methylmercury toxicity and vacuole function. Palmitoylation was investigated using the acyl-biotinyl exchange method. Vacuoles were stained with the fluorescent probe FM4-64. RESULTS: We found that Meh1 (alias Ego1), a substrate protein of Akr1, participates in the alleviation of methylmercury toxicity. Moreover, almost no palmitoylation of Meh1 when Akr1 was knocked out, and mutant Meh1, which is not palmitoylated, did not show alleviation of methylmercury toxicity. The palmitoylated Meh1 was involved in the alleviation of methylmercury toxicity as a constituent of EGO complex which suppresses autophagy. Methylmercury caused vacuole deformation, and this was greater in the yeasts knocking out the EGO complex subunits. 3-Methyladenine, an autophagy inhibitor, suppresses vacuole deformation and cytotoxicity caused by methylmercury. The elevated methylmercury sensitivity by Meh1 knockout almost completely disappeared in the presence of 3-methyladenine. CONCLUSIONS: Akr1 reduces methylmercury toxicity through palmitoylation of Meh1. Furthermore, the EGO complex including Meh1 reduces methylmercury toxicity by suppressing the induction of vacuole deformation caused by methylmercury. GENERAL SIGNIFICANCE: These findings propose that Meh1 palmitoylated by Akr1 may act as a constituent of the EGO complex when contributing to the decreased cytotoxicity by negatively controlling the induction of autophagy by methylmercury.
Assuntos
Aciltransferases/fisiologia , Proteínas de Membrana/fisiologia , Compostos de Metilmercúrio/toxicidade , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Lipoilação , Mutagênese Sítio-Dirigida , Ligação Proteica , Subunidades Proteicas , Fatores de Transcrição/fisiologia , Vacúolos/efeitos dos fármacosRESUMO
The marine bacterium Vibrio alginolyticus has a single polar flagellum, the number of which is regulated positively by FlhF and negatively by FlhG. FlhF is intrinsically localized at the cell pole, whereas FlhG is localized there through putative interactions with the polar landmark protein HubP. Here we focused on the role of HubP in the regulation of flagellar number in V. alginolyticus Deletion of hubP increased the flagellar number and completely disrupted the polar localization of FlhG. It was thought that the flagellar number is determined primarily by the absolute amount of FlhF localized at the cell pole. Here we found that deletion of hubP increased the flagellar number although it did not increase the polar amount of FlhF. We also found that FlhG overproduction did not reduce the polar localization of FlhF. These results show that the absolute amount of FlhF is not always the determinant of flagellar number. We speculate that cytoplasmic FlhG works as a quantitative regulator, controlling the amount of FlhF localized at the pole, and HubP-anchored polar FlhG works as a qualitative regulator, directly inhibiting the activity of polar FlhF. This regulation by FlhF, FlhG, and HubP might contribute to achieving optimal flagellar biogenesis at the cell pole in V. alginolyticus IMPORTANCE: For regulation of the flagellar number in marine Vibrio, two proteins, FlhF and FlhG, work as positive and negative regulators, respectively. In this study, we found that the polar landmark protein HubP is involved in the regulation of flagellar biogenesis. Deletion of hubP increased the number of flagella without increasing the amount of pole-localizing FlhF, indicating that the number of flagella is not determined solely by the absolute amount of pole-localizing FlhF, which is inconsistent with the previous model. We propose that cytoplasmic FlhG and HubP-anchored polar FlhG negatively regulate flagellar formation through two independent schemes.
Assuntos
Proteínas de Bactérias/fisiologia , Flagelos/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Vibrio alginolyticus/genética , Proteínas de Bactérias/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Proteínas Monoméricas de Ligação ao GTP/genética , Vibrio alginolyticus/fisiologiaRESUMO
The dNTP triphosphohydrolase SAMHD1 is a nuclear antiviral host restriction factor limiting HIV-1 infection in macrophages and a major regulator of dNTP concentrations in human cells. In normal human fibroblasts its expression increases during quiescence, contributing to the small dNTP pool sizes of these cells. Down-regulation of SAMHD1 by siRNA expands all four dNTP pools, with dGTP undergoing the largest relative increase. The deoxyguanosine released by SAMHD1 from dGTP can be phosphorylated inside mitochondria by deoxyguanosine kinase (dGK) or degraded in the cytosol by purine nucleoside phosphorylase. Genetic mutations of dGK cause mitochondrial (mt) DNA depletion in noncycling cells and hepato-cerebral mtDNA depletion syndrome in humans. We studied if SAMHD1 and dGK interact in the regulation of the dGTP pool during quiescence employing dGK-mutated skin fibroblasts derived from three unrelated patients. In the presence of SAMHD1 quiescent mutant fibroblasts manifested mt dNTP pool imbalance and mtDNA depletion. When SAMHD1 was silenced by siRNA transfection the composition of the mt dNTP pool approached that of the controls, and mtDNA copy number increased, compensating the depletion to various degrees in the different mutant fibroblasts. Chemical inhibition of purine nucleoside phosphorylase did not improve deoxyguanosine recycling by dGK in WT cells. We conclude that the activity of SAMHD1 contributes to the pathological phenotype of dGK deficiency. Our results prove the importance of SAMHD1 in the regulation of all dNTP pools and suggest that dGK inside mitochondria has the function of recycling the deoxyguanosine derived from endogenous dGTP degraded by SAMHD1 in the nucleus.