Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 579(7797): 146-151, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32076272

RESUMO

Photosynthetic organisms have developed various light-harvesting systems to adapt to their environments1. Phycobilisomes are large light-harvesting protein complexes found in cyanobacteria and red algae2-4, although how the energies of the chromophores within these complexes are modulated by their environment is unclear. Here we report the cryo-electron microscopy structure of a 14.7-megadalton phycobilisome with a hemiellipsoidal shape from the red alga Porphyridium purpureum. Within this complex we determine the structures of 706 protein subunits, including 528 phycoerythrin, 72 phycocyanin, 46 allophycocyanin and 60 linker proteins. In addition, 1,598 chromophores are resolved comprising 1,430 phycoerythrobilin, 48 phycourobilin and 120 phycocyanobilin molecules. The markedly improved resolution of our structure compared with that of the phycobilisome of Griffithsia pacifica5 enabled us to build an accurate atomic model of the P. purpureum phycobilisome system. The model reveals how the linker proteins affect the microenvironment of the chromophores, and suggests that interactions of the aromatic amino acids of the linker proteins with the chromophores may be a key factor in fine-tuning the energy states of the chromophores to ensure the efficient unidirectional transfer of energy.


Assuntos
Microscopia Crioeletrônica , Transferência de Energia , Ficobilissomas/química , Ficobilissomas/ultraestrutura , Porphyridium/química , Porphyridium/ultraestrutura , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Algas/ultraestrutura , Modelos Moleculares , Fotossíntese , Ficobilinas/química , Ficobilinas/metabolismo , Ficobilissomas/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rodófitas/química , Rodófitas/ultraestrutura
2.
Nature ; 551(7678): 57-63, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29045394

RESUMO

Life on Earth depends on photosynthesis for its conversion of solar energy to chemical energy. Photosynthetic organisms have developed a variety of light-harvesting systems to capture sunlight. The largest light-harvesting complex is the phycobilisome (PBS), the main light-harvesting antenna in cyanobacteria and red algae. It is composed of phycobiliproteins and linker proteins but the assembly mechanisms and energy transfer pathways of the PBS are not well understood. Here we report the structure of a 16.8-megadalton PBS from a red alga at 3.5 Å resolution obtained by single-particle cryo-electron microscopy. We modelled 862 protein subunits, including 4 linkers in the core, 16 rod-core linkers and 52 rod linkers, and located a total of 2,048 chromophores. This structure reveals the mechanisms underlying specific interactions between linkers and phycobiliproteins, and the formation of linker skeletons. These results provide a firm structural basis for our understanding of complex assembly and the mechanisms of energy transfer within the PBS.


Assuntos
Microscopia Crioeletrônica , Ficobilissomas/química , Ficobilissomas/ultraestrutura , Rodófitas/química , Rodófitas/ultraestrutura , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Algas/ultraestrutura , Transferência de Energia , Modelos Moleculares , Ficobilissomas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(36): 11264-9, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26311849

RESUMO

We acquired molecular-resolution structures of the Golgi within its native cellular environment. Vitreous Chlamydomonas cells were thinned by cryo-focused ion beam milling and then visualized by cryo-electron tomography. These tomograms revealed structures within the Golgi cisternae that have not been seen before. Narrow trans-Golgi lumina were spanned by asymmetric membrane-associated protein arrays that had ∼6-nm lateral periodicity. Subtomogram averaging showed that the arrays may determine the narrow central spacing of the trans-Golgi cisternae through zipper-like interactions, thereby forcing cargo to the trans-Golgi periphery. Additionally, we observed dense granular aggregates within cisternae and intracisternal filament bundles associated with trans-Golgi buds. These native in situ structures provide new molecular insights into Golgi architecture and function.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Algas/ultraestrutura , Chlamydomonas reinhardtii/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Complexo de Golgi/ultraestrutura , Proteínas de Membrana/ultraestrutura , Modelos Anatômicos , Modelos Biológicos , Transporte Proteico , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
4.
Nat Commun ; 12(1): 1100, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597543

RESUMO

Photosystem I (PSI) and II (PSII) balance their light energy distribution absorbed by their light-harvesting complexes (LHCs) through state transition to maintain the maximum photosynthetic performance and to avoid photodamage. In state 2, a part of LHCII moves to PSI, forming a PSI-LHCI-LHCII supercomplex. The green alga Chlamydomonas reinhardtii exhibits state transition to a far larger extent than higher plants. Here we report the cryo-electron microscopy structure of a PSI-LHCI-LHCII supercomplex in state 2 from C. reinhardtii at 3.42 Å resolution. The result reveals that the PSI-LHCI-LHCII of C. reinhardtii binds two LHCII trimers in addition to ten LHCI subunits. The PSI core subunits PsaO and PsaH, which were missed or not well-resolved in previous Cr-PSI-LHCI structures, are observed. The present results reveal the organization and assembly of PSI core subunits, LHCI and LHCII, pigment arrangement, and possible pathways of energy transfer from peripheral antennae to the PSI core.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Algas/química , Proteínas de Algas/ultraestrutura , Clorofila/metabolismo , Microscopia Crioeletrônica , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Modelos Moleculares , Fotossíntese , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/ultraestrutura , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/ultraestrutura , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Tilacoides/metabolismo , Tilacoides/ultraestrutura
5.
Biochim Biophys Acta Bioenerg ; 1861(5-6): 148183, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32173384

RESUMO

Photosynthetic organisms are frequently exposed to excess light conditions and hence to photo-oxidative stress. To counteract photo-oxidative damage, land plants and most algae make use of non- photochemical quenching (NPQ) of excess light energy, in particular the rapidly inducible and relaxing qE-mechanism. In vascular plants, the constitutively active PsbS protein is the key regulator of qE. In the green algae C. reinhardtii, however, qE activation is only possible after initial high-light (HL) acclimation for several hours and requires the synthesis of LHCSR proteins which act as qE regulators. The precise function of PsbS, which is transiently expressed during HL acclimation in C. reinhardtii, is still unclear. Here, we investigated the impact of different PsbS amounts on HL acclimation characteristics of C. reinhardtii cells. We demonstrate that lower PsbS amounts negatively affect HL acclimation at different levels, including NPQ capacity, electron transport characteristics, antenna organization and morphological changes, resulting in an overall increased HL sensitivity and lower vitality of cells. Contrarily, higher PsbS amounts do not result in a higher NPQ capacity, but nevertheless provide higher fitness and tolerance towards HL stress. Strikingly, constitutively expressed PsbS protein was found to be degraded during HL acclimation. We propose that PsbS is transiently required during HL acclimation for the reorganization of thylakoid membranes and/or antenna proteins along with the activation of NPQ and adjustment of electron transfer characteristics, and that degradation of PsbS is essential in the fully HL acclimated state.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efeitos da radiação , Transferência de Energia , Luz , Substâncias Protetoras/metabolismo , Proteínas de Algas/ultraestrutura , Chlamydomonas reinhardtii/ultraestrutura , Processos Fotoquímicos , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tilacoides/metabolismo
6.
Cell Motil Cytoskeleton ; 65(7): 553-62, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18412254

RESUMO

Cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone), a root releasing host-specific plant signal triggers chemotaxis and subsequent morphological changes in pathogenic Aphanomyces cochlioides zoospores before host penetration. The present study illustrates time-course changing patterns of cytoskeletal filamentous actin (F-actin) organization in the zoospores of A. cochlioides during rapid morphological changes (encystment and germination) after exposure to cochliophilin A. Confocal laser scanning microscopic analysis revealed that F-actin microfilaments remained concentrated at ventral groove and diffusely distributed in peripheral cytoplasm of the zoospore. These microfilaments dramatically rearranged and changed into granular F-actin plaques interconnected with fine arrays during encystment. A large patch of actin arrays accumulated at one pole of the cystospores just before germination. Then the actin plaques moved to the emerging germ tube where a distinct cap of microfilaments was seen at the tip of the emerging hypha. Zoospores treated with an inhibitor of F-actin polymerization, latrunculin B or motility halting and regeneration inducing compound nicotinamide, displayed different patterns of F-actin in both zoospores and cystospores than those obtained by the induction of cochliophilin A. Collectively, these results indicate that the host-specific plant signal cochliophilin A triggers a dynamic polymerization/depolymerization of F-actin in pathogenic A. cochlioides zoospores during early events of plant-peronosporomycete interactions.


Assuntos
Actinas , Proteínas de Algas , Aphanomyces , Plantas , Transdução de Sinais/fisiologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Actinas/ultraestrutura , Proteínas de Algas/metabolismo , Proteínas de Algas/ultraestrutura , Aphanomyces/fisiologia , Aphanomyces/ultraestrutura , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Citoesqueleto/metabolismo , Flavonas/metabolismo , Morfogênese , Plantas/metabolismo , Plantas/microbiologia , Tiazolidinas/metabolismo
7.
Biochem Biophys Res Commun ; 375(3): 471-6, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18722349

RESUMO

This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor.


Assuntos
Proteínas de Algas/ultraestrutura , Euglena gracilis/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Animais , Euglena gracilis/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência
8.
Nat Commun ; 8: 14813, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332496

RESUMO

How cellular organelles assemble is a fundamental question in biology. The centriole organelle organizes around a nine-fold symmetrical cartwheel structure typically ∼100 nm high comprising a stack of rings that each accommodates nine homodimers of SAS-6 proteins. Whether nine-fold symmetrical ring-like assemblies of SAS-6 proteins harbour more peripheral cartwheel elements is unclear. Furthermore, the mechanisms governing ring stacking are not known. Here we develop a cell-free reconstitution system for core cartwheel assembly. Using cryo-electron tomography, we uncover that the Chlamydomonas reinhardtii proteins CrSAS-6 and Bld10p together drive assembly of the core cartwheel. Moreover, we discover that CrSAS-6 possesses autonomous properties that ensure self-organized ring stacking. Mathematical fitting of reconstituted cartwheel height distribution suggests a mechanism whereby preferential addition of pairs of SAS-6 rings governs cartwheel growth. In conclusion, we have developed a cell-free reconstitution system that reveals fundamental assembly principles at the root of centriole biogenesis.


Assuntos
Proteínas de Algas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Organelas/metabolismo , Proteínas de Algas/ultraestrutura , Proteínas de Ciclo Celular/ultraestrutura , Centríolos/ultraestrutura , Chlamydomonas reinhardtii/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Modelos Biológicos , Organelas/ultraestrutura
9.
Nat Struct Mol Biol ; 17(6): 761-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20453857

RESUMO

Outer and inner dynein arms generate force for the flagellar/ciliary bending motion. Although nucleotide-induced structural change of dynein heavy chains (the ATP-driven motor) was proven in vitro, our lack of knowledge in situ has precluded an understanding of the bending mechanism. Here we reveal nucleotide-induced global structural changes of the outer and inner dynein arms of Chlamydomonas reinhardtii flagella in situ using electron cryotomography. The ATPase domains of the dynein heavy chains move toward the distal end, and the N-terminal tail bends sharply during product release. This motion could drive the adjacent microtubule to cause a sliding motion. In contrast to in vitro results, in the presence of nucleotides, outer dynein arms coexist as clusters of apo or nucleotide-bound forms in situ. This implies a cooperative switching, which may be related to the mechanism of bending.


Assuntos
Dineínas/química , Flagelos/química , Proteínas Motores Moleculares/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Algas/ultraestrutura , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Microscopia Crioeletrônica , Dineínas/metabolismo , Dineínas/ultraestrutura , Tomografia com Microscopia Eletrônica , Flagelos/metabolismo , Flagelos/ultraestrutura , Imageamento Tridimensional , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/ultraestrutura , Conformação Proteica
10.
Photochem Photobiol Sci ; 6(11): 1177-83, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17973050

RESUMO

We describe a genetically engineered strain of Chlamydomonas reinhardtii where the PsbH subunit of Photosystem II (PSII) has been modified to include a C-terminal polyhistidine tag. The strain was generated by the rescue to photoautotrophic growth of a psbH insertional mutant following chloroplast transformation with the modified gene. This selection strategy confirms that the addition of the tag to PsbH does not prevent the assembly of functional PSII, and results in an engineered strain with tagged PSII but no antibiotic-resistance markers in the chloroplast genome. Consequently, the strain is suitable for subsequent genetic manipulation of chloroplast PSII genes. We also describe a rapid PSII isolation procedure that gives a preparation capable of high rates of oxygen evolution. This preparation is suitable for spectroscopic analysis as shown by EPR analysis of the S2 state of the water oxidation cycle. Furthermore, electron microscopy, coupled to single particle analysis, has revealed the isolated PSII to be structurally homogeneous core dimers that are ideally suited for higher resolution structural studies.


Assuntos
Chlamydomonas reinhardtii/química , Complexo de Proteína do Fotossistema II/química , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/isolamento & purificação , Proteínas de Algas/ultraestrutura , Animais , Fenômenos Biofísicos , Biofísica , Chlamydomonas reinhardtii/genética , Espectroscopia de Ressonância de Spin Eletrônica , Histidina/química , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/isolamento & purificação , Fosfoproteínas/ultraestrutura , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/isolamento & purificação , Complexo de Proteína do Fotossistema II/ultraestrutura , Engenharia de Proteínas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/ultraestrutura , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura
11.
Biophys J ; 89(6): 4252-60, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16169972

RESUMO

The adhesive and mechanical properties of a cell-substratum adhesive secreted by live diatom cells were examined in situ using atomic force microscopy. The resulting force curves have a regular saw-tooth pattern, the characteristic fingerprint of modular proteins, and when bridged between tip and surface can repeatedly be stretched and relaxed resulting in precisely overlaying saw-tooth curves (up to approximately 600 successive cycles). The average rupture force of the peaks is 0.794 +/- 0.007 (mean +/- SE) nN at a loading rate of 0.8 microm/s and the average persistence length is 0.026 +/- <0.001 (mean +/- SE) nm (fit using the worm-like chain model). We propose that we are pulling on single adhesive nanofibers, each a cohesive unit composed of a set number of modular proteins aligned in register. Furthermore, we can observe and differentiate when up to three adhesive nanofibers are pulled based upon multimodal distributions of force and persistence length. The high force required for bond rupture, high extensibility (approximately 1.2 microm), and the accurate and rapid refolding upon relaxation, together provide strong and flexible properties ideally suited for the cell-substratum adhesion of this fouling diatom and allow us to understand the mechanism responsible for the strength of adhesion.


Assuntos
Proteínas de Algas/química , Proteínas de Algas/ultraestrutura , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/ultraestrutura , Diatomáceas/enzimologia , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Adesividade , Células Cultivadas , Simulação por Computador , Elasticidade , Ativação Enzimática , Modelos Químicos , Modelos Moleculares , Tamanho da Partícula , Mapeamento de Peptídeos , Conformação Proteica , Resistência à Tração
12.
Eur J Biochem ; 271(14): 2967-75, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15233792

RESUMO

The structure of photosystem II (PSII) complex isolated from thylakoid membranes of the red alga Porphyridium cruentum was investigated using electron microscopy followed by single particle image analysis. The dimeric complexes observed contain all major PSII subunits (CP47, CP43, D1 and D2 proteins) as well as the extrinsic proteins (33 kDa, 12 kDa and the cytochrome c(550)) of the oxygen-evolving complex (OEC) of PSII, encoded by the psbO, psbU and psbV genes, respectively. The single particle analysis of the top-view projections revealed the PSII complex to have maximal dimensions of 22 x 15 nm. The analysis of the side-view projections shows a maximal thickness of the PSII complex of about 9 nm including the densities on the lumenal surface that has been attributed to the proteins of the OEC complex. These results clearly demonstrate that the red algal PSII complex is structurally very similar to that of cyanobacteria and to the PSII core complex of higher plants. In addition, the arrangement of the OEC proteins on the lumenal surface of the PSII complex is consistent to that obtained by X-ray crystallography of cyanobacterial PSII.


Assuntos
Proteínas de Algas/química , Complexo de Proteína do Fotossistema II/química , Porphyridium/química , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Proteínas de Algas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/ultraestrutura , Porphyridium/citologia , Porphyridium/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Tilacoides/química , Tilacoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA