Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.005
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(13): 3338-3356.e30, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810644

RESUMO

Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown. To understand diapause evolution, we performed integrative multi-omics (gene expression, chromatin accessibility, and lipidomics) in the embryos of multiple killifish species. We find that diapause evolved by a recent remodeling of regulatory elements at very ancient gene duplicates (paralogs) present in all vertebrates. CRISPR-Cas9-based perturbations identify the transcription factors REST/NRSF and FOXOs as critical for the diapause gene expression program, including genes involved in lipid metabolism. Indeed, diapause shows a distinct lipid profile, with an increase in triglycerides with very-long-chain fatty acids. Our work suggests a mechanism for the evolution of complex adaptations and offers strategies to promote long-term survival by activating suspended animation programs in other species.


Assuntos
Diapausa , Animais , Evolução Biológica , Diapausa/genética , Embrião não Mamífero/metabolismo , Fundulidae/genética , Fundulidae/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peixes Listrados/genética , Peixes Listrados/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas de Peixes/genética , Masculino , Feminino
2.
Cell ; 172(4): 667-682.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425489

RESUMO

Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.


Assuntos
Proteínas Aviárias , Galinhas/fisiologia , Evolução Molecular , Proteínas de Peixes , Proteínas de Homeodomínio , Rede Nervosa/fisiologia , Rajidae/fisiologia , Fatores de Transcrição , Caminhada/fisiologia , Peixe-Zebra/fisiologia , Nadadeiras de Animais/fisiologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/fisiologia , Natação/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell ; 170(3): 470-482.e11, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28735751

RESUMO

Voltage-gated sodium (Nav) channels initiate and propagate action potentials. Here, we present the cryo-EM structure of EeNav1.4, the Nav channel from electric eel, in complex with the ß1 subunit at 4.0 Å resolution. The immunoglobulin domain of ß1 docks onto the extracellular L5I and L6IV loops of EeNav1.4 via extensive polar interactions, and the single transmembrane helix interacts with the third voltage-sensing domain (VSDIII). The VSDs exhibit "up" conformations, while the intracellular gate of the pore domain is kept open by a digitonin-like molecule. Structural comparison with closed NavPaS shows that the outward transfer of gating charges is coupled to the iris-like pore domain dilation through intricate force transmissions involving multiple channel segments. The IFM fast inactivation motif on the III-IV linker is plugged into the corner enclosed by the outer S4-S5 and inner S6 segments in repeats III and IV, suggesting a potential allosteric blocking mechanism for fast inactivation.


Assuntos
Electrophorus/metabolismo , Proteínas de Peixes/química , Canais de Sódio Disparados por Voltagem/química , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Proteínas de Peixes/metabolismo , Proteínas de Peixes/ultraestrutura , Modelos Moleculares , Domínios Proteicos , Alinhamento de Sequência , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/ultraestrutura
4.
Cell ; 164(1-2): 45-56, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26774823

RESUMO

Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form.


Assuntos
Evolução Biológica , Evolução Molecular , Fator 6 de Diferenciação de Crescimento/genética , Esqueleto/fisiologia , Vertebrados/genética , Adaptação Fisiológica , Animais , Elementos Facilitadores Genéticos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Água Doce , Fator 6 de Diferenciação de Crescimento/metabolismo , Humanos , Locos de Características Quantitativas , Água do Mar , Esqueleto/anatomia & histologia , Smegmamorpha/genética , Smegmamorpha/fisiologia , Especificidade da Espécie , Vertebrados/classificação , Vertebrados/crescimento & desenvolvimento , Vertebrados/metabolismo
5.
Cell ; 153(7): 1602-11, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23768684

RESUMO

The fluorescent protein toolbox has revolutionized experimental biology. Despite this advance, no fluorescent proteins have been identified from vertebrates, nor has chromogenic ligand-inducible activation or clinical utility been demonstrated. Here, we report the cloning and characterization of UnaG, a fluorescent protein from Japanese eel. UnaG belongs to the fatty-acid-binding protein (FABP) family, and expression in eel is restricted to small-diameter muscle fibers. On heterologous expression in cell lines or mouse brain, UnaG produces oxygen-independent green fluorescence. Remarkably, UnaG fluorescence is triggered by an endogenous ligand, bilirubin, a membrane-permeable heme metabolite and clinical health biomarker. The holoUnaG structure at 1.2 Å revealed a biplanar coordination of bilirubin by reversible π-conjugation, and we used this high-affinity and high-specificity interaction to establish a fluorescence-based human bilirubin assay with promising clinical utility. UnaG will be the prototype for a versatile class of ligand-activated fluorescent proteins, with applications in research, medicine, and bioengineering.


Assuntos
Enguias/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/isolamento & purificação , Proteínas de Fluorescência Verde/isolamento & purificação , Sequência de Aminoácidos , Animais , Bilirrubina/metabolismo , Clonagem Molecular , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Músculos/metabolismo , Alinhamento de Sequência
6.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572957

RESUMO

The ovarian microenvironment plays a crucial role in ensuring the reproductive success of viviparous teleosts. However, the molecular mechanism underlying the interaction between spermatozoa and the ovarian microenvironment has remained elusive. This study aimed to contribute to a better understanding of this process in black rockfish (Sebastes schlegelii) using integrated multi-omics approaches. The results demonstrated significant upregulation of ovarian complement-related proteins and pattern recognition receptors, along with remodeling of glycans on the surface of spermatozoa at the early spermatozoa-storage stage (1 month after mating). As spermatozoa were stored over time, ovarian complement proteins were progressively repressed by tryptophan and hippurate, indicating a remarkable adaptation of spermatozoa to the ovarian microenvironment. Before fertilization, a notable upregulation of cellular junction proteins was observed. The study revealed that spermatozoa bind to ZPB2a protein through GSTM3 and that ZPB2a promotes spermatozoa survival and movement in a GSTM3-dependent manner. These findings shed light on a key mechanism that influences the dynamics of spermatozoa in the female reproductive tract, providing valuable insights into the molecular networks regulating spermatozoa adaptation and survival in species with internal fertilization.


Assuntos
Ovário , Espermatozoides , Animais , Masculino , Feminino , Espermatozoides/metabolismo , Ovário/metabolismo , Fertilização , Viviparidade não Mamífera , Proteômica , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Peixes/metabolismo , Microambiente Celular , Multiômica
7.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007346

RESUMO

Developmental evolution and diversification of morphology can arise through changes in the regulation of gene expression or protein-coding sequence. To unravel mechanisms underlying early developmental evolution in cavefish of the species Astyanax mexicanus, we compared transcriptomes of surface-dwelling and blind cave-adapted morphs at the end of gastrulation. Twenty percent of the transcriptome was differentially expressed. Allelic expression ratios in cave X surface hybrids showed that cis-regulatory changes are the quasi-exclusive contributors to inter-morph variations in gene expression. Among a list of 108 genes with change at the cis-regulatory level, we explored the control of expression of rx3, which is a master eye gene. We discovered that cellular rx3 levels are cis-regulated in a cell-autonomous manner, whereas rx3 domain size depends on non-autonomous Wnt and Bmp signalling. These results highlight how uncoupled mechanisms and regulatory modules control developmental gene expression and shape morphological changes. Finally, a transcriptome-wide search for fixed coding mutations and differential exon use suggested that variations in coding sequence have a minor contribution. Thus, during early embryogenesis, changes in gene expression regulation are the main drivers of cavefish developmental evolution.


Assuntos
Characidae , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Characidae/genética , Characidae/embriologia , Transcriptoma/genética , Evolução Biológica , Cavernas , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Gastrulação/genética , Evolução Molecular
8.
Proc Natl Acad Sci U S A ; 121(25): e2403809121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861596

RESUMO

The dorsal and anal fins can vary widely in position and length along the anterior-posterior axis in teleost fishes. However, the molecular mechanisms underlying the diversification of these fins remain unknown. Here, we used genetic approaches in zebrafish and medaka, in which the relative positions of the dorsal and anal fins are opposite, to demonstrate the crucial role of hox genes in the patterning of the teleost posterior body, including the dorsal and anal fins. By the CRISPR-Cas9-induced frameshift mutations and positional cloning of spontaneous dorsalfinless medaka, we show that various hox mutants exhibit the absence of dorsal or anal fins, or a stepwise posterior extension of these fins, with vertebral abnormalities. Our results indicate that multiple hox genes, primarily from hoxc-related clusters, encompass the regions responsible for the dorsal and anal fin formation along the anterior-posterior axis. These results further suggest that shifts in the anterior boundaries of hox expression which vary among fish species, lead to diversification in the position and size of the dorsal and anal fins, similar to how modulations in Hox expression can alter the number of anatomically distinct vertebrae in tetrapods. Furthermore, we show that hox genes responsible for dorsal fin formation are different between zebrafish and medaka. Our results suggest that a novel mechanism has occurred during teleost evolution, in which the gene network responsible for fin formation might have switched to the regulation downstream of other hox genes, leading to the remarkable diversity in the dorsal fin position.


Assuntos
Nadadeiras de Animais , Genes Homeobox , Proteínas de Homeodomínio , Oryzias , Peixe-Zebra , Animais , Oryzias/genética , Peixe-Zebra/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Padronização Corporal/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
9.
J Immunol ; 212(11): 1791-1806, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629918

RESUMO

RIG-I-like receptors and NOD-like receptors play pivotal roles in recognizing microbe-associated molecular patterns and initiating immune responses. The LGP2 and NOD2 proteins are important members of the RIG-I-like receptor and NOD-like receptor families, recognizing viral RNA and bacterial peptidoglycan (PGN), respectively. However, in some instances bacterial infections can induce LPG2 expression via a mechanism that remains largely unknown. In the current study, we found that LGP2 can compete with NOD2 for PGN binding and inhibit antibacterial immunity by suppressing the NOD2-RIP2 axis. Recombinant CiLGP2 (Ctenopharyngodon idella LGP2) produced using either prokaryotic or eukaryotic expression platform can bind PGN and bacteria in pull-down and ELISA assays. Comparative protein structure models and intermolecular interaction prediction calculations as well as pull-down and colocalization experiments indicated that CiLGP2 binds PGN via its EEK motif with species and structural specificity. EEK deletion abolished PGN binding of CiLGP2, but insertion of the CiLGP2 EEK motif into zebrafish and mouse LGP2 did not confer PGN binding activity. CiLGP2 also facilitates bacterial replication by interacting with CiNOD2 to suppress expression of NOD2-RIP2 pathway genes. Sequence analysis and experimental verification demonstrated that LGP2 having EEK motif that can negatively regulate antibacterial immune function is present in Cyprinidae and Xenocyprididae families. These results show that LGP2 containing EEK motif competes with NOD2 for PGN binding and suppresses antibacterial immunity by inhibiting the NOD2-RIP2 axis, indicating that LGP2 plays a crucial negative role in antibacterial response beyond its classical regulatory function in antiviral immunity.


Assuntos
Proteína Adaptadora de Sinalização NOD2 , Peptidoglicano , Animais , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteína Adaptadora de Sinalização NOD2/genética , Peptidoglicano/metabolismo , Peptidoglicano/imunologia , Proteínas de Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Carpas/imunologia , Camundongos , Ligação Proteica , Transdução de Sinais/imunologia , Humanos , Motivos de Aminoácidos , Peixe-Zebra/imunologia
10.
J Immunol ; 212(2): 317-334, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38054894

RESUMO

The ancestors of chemokines originate in the most primitive of vertebrates, which has recently attracted great interest in the immune functions and the underlying mechanisms of fish chemokines. In the current study, we identified an evolutionarily conserved chemokine, CiCXCL13, from a teleost fish, grass carp. CiCXCL13 was characterized by a typical SCY (small cytokine CXC) domain and four cysteine residues (C34, C36, C61, C77), with the first two cysteines separated by a random amino acid residue, although it shared 24.2-54.8% identity with the counterparts from other vertebrates. CiCXCL13 was an inducible chemokine, whose expression was significantly upregulated in the immune tissues of grass carps after grass carp reovirus infection. CiCXCL13 could bind to the membrane of grass carp head kidney leukocytes and promote cell migration, NO release, and the expression of >15 inflammatory cytokines, including IL-1ß, TNF-α, IL-10 and TGF-ß1, thus regulating the inflammatory response. Mechanistically, CiCXCL13 interacted with its evolutionarily conserved receptor CiCXCR5 and activated the Akt-NF-κB and p38-AP-1 pathways, as well as a previously unrevealed p38-NF-κB pathway, to efficiently induce inflammatory cytokine expression, which was distinct from that reported in mammals. Zebrafish CXCL13 induced inflammatory cytokine expression through Akt, p38, NF-κB, and AP-1 as CiCXCL13. Meanwhile, the CiCXCL13-CiCXCR5 axis-mediated inflammatory activity was negatively shaped by grass carp atypical chemokine receptor 2 (CiACKR2). The present study is, to our knowledge, the first to comprehensively define the immune function of CXCL13 in inflammatory regulation and the underlying mechanism in teleosts, and it provides a valuable perspective on the evolution and biology of fish chemokines.


Assuntos
Carpas , Doenças dos Peixes , Animais , NF-kappa B/metabolismo , Citocinas , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição AP-1/metabolismo , Peixe-Zebra/metabolismo , Quimiocinas , Carpas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Mamíferos/metabolismo
11.
J Immunol ; 212(4): 645-662, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180157

RESUMO

Collectin is a crucial component of the innate immune system and plays a vital role in the initial line of defense against pathogen infection. In mammals, collectin kidney 1 (CL-K1) is a soluble collectin that has recently been identified to have significant functions in host defense. However, the evolutionary origins of immune defense of CL-K1 and its mechanism in clearance of pathogenic microorganisms remain unclear, especially in early vertebrates. In this study, the Oreochromis niloticus CL-K1 (OnCL-K1) protein was purified and identified, which was capable of binding to two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila. Interestingly, OnCL-K1 exhibited direct bactericidal activity by binding to lipoteichoic acid or LPS on cell walls, disrupting the permeability and integrity of the bacterial membrane in vitro. Upon bacterial challenge, OnCL-K1 significantly inhibited the proliferation of pathogenic bacteria, reduced the inflammatory response, and improved the survival of tilapia. Further research revealed that OnCL-K1 could associate with OnMASPs to initiate and regulate the lectin complement pathway. Additionally, OnCD93 reduced the complement-mediated hemolysis by competing with OnMASPs for binding to OnCL-K1. More importantly, OnCL-K1 could facilitate phagocytosis by collaborating with cell surface CD93 in a lectin pathway-independent manner. Moreover, OnCL-K1 also promoted the formation of phagolysosomes, which degraded and killed ingested bacteria. Therefore, this study reveals the antibacterial response mechanism of CL-K1 in primitive vertebrates, including promoting complement activation, enhancing opsonophagocytosis, and killing of macrophages, as well as its internal links, all of which provide (to our knowledge) new insights into the understanding of the evolutionary origins and regulatory roles of the collectins in innate immunity.


Assuntos
Macrófagos , Opsonização , Animais , Macrófagos/metabolismo , Ativação do Complemento , Rim/metabolismo , Vertebrados , Colectinas/metabolismo , Proteínas de Peixes/metabolismo , Mamíferos/metabolismo
12.
J Immunol ; 212(7): 1207-1220, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345351

RESUMO

Teleost fish type I IFNs and the associated receptors from the cytokine receptor family B (CRFB) are characterized by remarkable diversity and complexity. How the fish type I IFNs bind to their receptors is still not fully understood. In this study, we demonstrate that CRFB1 and CRFB5 constitute the receptor pair through which type I subgroup d IFN (IFNd) from large yellow croaker, Larimichthys crocea, activates the conserved JAK-STAT signaling pathway as a part of the antiviral response. Our data suggest that L. crocea IFNd (LcIFNd) has a higher binding affinity with L. crocea CRFB5 (LcCRFB5) than with LcCRFB1. Furthermore, we report the crystal structure of LcIFNd at a 1.49-Å resolution and construct structural models of LcIFNd in binary complexes with predicted structures of extracellular regions of LcCRFB1 and LcCRFB5, respectively. Despite striking similarities in overall architectures of LcIFNd and its ortholog human IFN-ω, the receptor binding patterns between LcIFNd and its receptors show that teleost and mammalian type I IFNs may have differentially selected helices that bind to their homologous receptors. Correspondingly, key residues mediating binding of LcIFNd to LcCRFB1 and LcCRFB5 are largely distinct from the receptor-interacting residues in other fish and mammalian type I IFNs. Our findings reveal a ligand/receptor complex binding mechanism of IFNd in teleost fish, thus providing new insights into the function and evolution of type I IFNs.


Assuntos
Interferon Tipo I , Perciformes , Animais , Humanos , Filogenia , Peixes/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Peixes/genética , Mamíferos/metabolismo
13.
J Virol ; 98(7): e0068624, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38888343

RESUMO

Nervous necrosis virus (NNV), an aquatic RNA virus belonging to Betanodavirus, infects a variety of marine and freshwater fishes, leading to massive mortality of cultured larvae and juveniles and substantial economic losses. The enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is widely recognized as a central component in the innate immune response to cytosolic DNA derived from different pathogens. However, little is known about the response of cGAS to aquatic RNA viruses. This study found that Epinephelus coioides cGAS (EccGAS) overexpression inhibited NNV replication, whereas EccGAS silencing promoted NNV replication. The anti-NNV activity of EccGAS was involved in interferon (IFN) signaling activation including tumor necrosis factor receptor-associated factor family member-associated NF-kappa-B activator-binding kinase 1 (TBK1) phosphorylation, interferon regulatory factor 3 (IRF3) nuclear translocation, and the subsequent induction of IFNc and ISGs. Interestingly, NNV employed its capsid protein (CP) or Protein A (ProA) to negatively or positively modulate EccGAS-mediated IFN signaling by simultaneously targeting EccGAS. CP interacted with EccGAS via the arm-P, S-P, and SD structural domains and promoted its polyubiquitination with K48 and K63 linkages in an EcUBE3C (the ubiquitin ligase)-dependent manner, ultimately leading to EccGAS degradation. Conversely, ProA bound to EccGAS and inhibited its ubiquitination and degradation. In regulating EccGAS protein content, CP's inhibitory action was more pronounced than ProA's protective effect, allowing successful NNV replication. These novel findings suggest that NNV CP and ProA dynamically modulate the EccGAS-mediated IFN signaling pathway to facilitate the immune escape of NNV. Our findings shed light on a novel mechanism of virus-host interaction and provide a theoretical basis for the prevention and control of NNV.IMPORTANCEAs a well-known DNA sensor, cGAS is a pivotal component in innate anti-viral immunity to anti-DNA viruses. Although there is growing evidence regarding the function of cGAS in the resistance to RNA viruses, the mechanisms by which cGAS participates in RNA virus-induced immune responses in fish and how aquatic viruses evade cGAS-mediated immune surveillance remain elusive. Here, we investigated the detailed mechanism by which EccGAS positively regulates the anti-NNV response. Furthermore, NNV CP and ProA interacted with EccGAS, regulating its protein levels through ubiquitin-proteasome pathways, to dynamically modulate the EccGAS-mediated IFN signaling pathway and facilitate viral evasion. Notably, NNV CP was identified to promote the ubiquitination of EccGAS via ubiquitin ligase EcUBE3C. These findings unveil a novel strategy for aquatic RNA viruses to evade cGAS-mediated innate immunity, enhancing our understanding of virus-host interactions.


Assuntos
Proteínas do Capsídeo , Doenças dos Peixes , Evasão da Resposta Imune , Imunidade Inata , Nodaviridae , Nucleotidiltransferases , Infecções por Vírus de RNA , Transdução de Sinais , Replicação Viral , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Interferons/metabolismo , Interferons/imunologia , Bass/imunologia , Bass/virologia , Bass/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia
14.
FASEB J ; 38(14): e23837, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031536

RESUMO

Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17ß plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.


Assuntos
Proteína Morfogenética Óssea 15 , Ovulação , Salmo salar , Animais , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Feminino , Salmo salar/metabolismo , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Ovário/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Masculino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Estações do Ano
15.
FASEB J ; 38(13): e23722, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934365

RESUMO

Hypoxia has become one of the most critical factors limiting the development of aquaculture. Crucian carp (Carassius auratus) is widely consumed fish in China, with excellent tolerance to hypoxic environment. However, the molecular mechanisms underlying hypoxia adaptation and tolerance in crucian carp remain unclear. Compared with the control, increased T-SOD, CAT, GSH-Px, T-AOC, ALT, and AST activities and MDA, TCHO, and TG contents, and decreased TP and ATP contents were observed after hypoxia stress. Based on RNA-seq, 2479 differentially expressed (DE) mRNAs and 60 DE miRNAs were identified, and numerous DE mRNAs involved in HIF signaling pathway (hif-1α, epo, vegfa, and ho), anaerobic metabolism (hk1/hk2, pfk, gapdh, pk, and ldh) and immune response (nlrp12, cxcr1, cxcr4, ccr9, and cxcl12) were significantly upregulated after hypoxia exposure. Integrated analysis found that ho, igfbp1, hsp70, and hk2 were predicted to be regulated by novel_867, dre-miR-125c-3p/novel_173, dre-miR-181b-5p, and dre-miR-338-5p/dre-miR-17a-3p, respectively, and targets of DE miRNAs were significantly enriched in MAPK signaling pathway, FoxO signaling pathway, and glycolysis/gluconeogenesis. Expression analysis showed that the mRNA levels of vegfa, epo, ho, hsp70, hsp90aa.1, igfbp1, ldh, hk1, pfk, pk, and gapdh exhibited a remarkable increase, whereas sdh and mdh were downregulated in the H3h, H12h, and H24h groups compared with the control. Furthermore, research found that hk2 is a target of dre-miR-17a-3p, overexpression of dre-miR-17a-3p significantly decreased the expression level of hk2, while the opposite results were obtained after dre-miR-17a-3p silencing. These results contribute to our understanding of the molecular mechanisms of hypoxia tolerance in crucian carp.


Assuntos
MicroRNAs , RNA Mensageiro , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carpas/genética , Carpas/metabolismo , Hipóxia/metabolismo , Hipóxia/genética , Estresse Fisiológico , Transdução de Sinais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Carpa Dourada/genética , Carpa Dourada/metabolismo
16.
J Immunol ; 211(6): 964-980, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37578390

RESUMO

Teleost B cells are primitive lymphocytes with both innate and adaptive immune functions. However, the heterogeneity and differentiation trajectory of teleost B cells remain largely unknown. In this study, the landscape of grass carp IgM+ (gcIgM+) B cells was revealed by single-cell RNA sequencing. The results showed that gcIgM+ B cells mainly comprise six populations: (im)mature B cells, innate B cells, proliferating B cells, plasma cells, CD22+ cells, and CD34+ cells, among which innate B cells and proliferating B cells were uncommon B cell subsets with, to our knowledge, new characteristics. Remarkably, three functional IgMs were discovered in grass carp, and a significant percentage of gcIgM+ B cells, especially plasma cells, expressed multiple Igµ genes (Igµ1, Igµ2, and/or Igµ3). More importantly, through single-cell sorting combined with Sanger sequencing, we found that distinct VHDJH recombination patterns of Igµ genes were present in single IgM+ B cells, indicating that individual teleost B cells might produce multiple Abs by coexpressing rearranged IgM subclass genes. Moreover, the percentage of IgM1highIgM2highIgM3high plasma cells increased significantly after bacterial infection, suggesting that individual plasma cells might tend to produce multiple IgMs to resist the infection in teleost fish. In summary, to our knowledge, this study not only helps to uncover the unique heterogeneity of B cells in early vertebrates but also provided significant new evidence supporting the recently proposed "one cell-multiple Abs" paradigm, challenging the classical rule of "one cell-one Ab."


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Animais , Imunidade Inata/genética , Proteínas de Peixes/genética , Imunoglobulina M , Homeostase
17.
J Immunol ; 210(3): 229-244, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548476

RESUMO

The braking mechanisms to protect the host from tissue damage and inflammatory disease caused by an overexuberant immune response are common in many T cell subsets. However, the negative regulation of T cell responses and detailed mechanisms are not well understood in early vertebrates. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell immunity by IL-10. Tilapia encodes an evolutionarily conserved IL-10, whose expression in lymphocytes is markedly induced during the primary adaptive immune response against Aeromonas hydrophila infection. Activated T cells of tilapia produce IL-10, which in turn inhibits proinflammatory cytokine expression and suppresses PHA-induced T cell activation. Moreover, administration of IL-10 impairs the proliferation of tilapia T cells, reduces their potential to differentiate into Th subsets, and cripples the cytotoxic function, rendering the animals more vulnerable to pathogen attack. After binding to its receptor IL-10Ra, IL-10 activates the JAK1/STAT3 axis by phosphorylation and enhances the expression of the suppressor of cytokine signaling 3 (SOCS3), which in turn attenuates the activation of the NF-κB and MAPK/ERK signaling pathways, thus suppressing the T cell response of tilapia. Our findings elucidate a negative regulatory mechanism of T cell immunity in a fish species and support the notion that the braking mechanism of T cells executed through IL-10 existed prior to the divergence of the tetrapod lineage from teleosts. Therefore, this study, to our knowledge, provides a novel perspective on the evolution of the adaptive immune system.


Assuntos
Ciclídeos , Doenças dos Peixes , Tilápia , Animais , NF-kappa B/metabolismo , Tilápia/metabolismo , Interleucina-10/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas de Peixes/metabolismo
18.
J Immunol ; 210(8): 1043-1058, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36883974

RESUMO

Type I IFNs with strong positive charges exhibit robust bactericidal activity and a protective effect against bacterial infections. However, the antibacterial mechanism in vivo remains unknown. In this study, Ab blockade of IFN1, a member of type I IFNs in grass carp (Ctenopharyngodon idella), resulted in high mortality, tissue bacterial loads, and low expression of immune factors after bacterial challenge, which indicates that the antibacterial activity of IFN1 has physiological significance. Meanwhile, we injected grass carp with the recombinant and purified intact IFN1 protein after bacterial injection, and the result demonstrated a remarkable therapeutic effect. Furthermore, we found that IFN1 expression was remarkably induced in blood cells after bacterial challenge, and prophagocytosis via IFN1 mostly increased in thrombocytes. Then, we isolated peripheral blood thrombocytes by polyclonal Ab of CD41 and stimulated thrombocytes with recombinant IFN1, and the results indicated that immune factors and complement components (especially C3.3) were induced. Unexpectedly, complements demonstrated not only bacteriolysis but also bacterial aggregation. Furthermore, Ab blockades of the three subunits (CRFB1/CRFB2/CRFB5) of the IFN1 receptor or inhibition of STAT1 almost abolished the prophagocytosis via IFN1 and reduced C3.3 and immune factor expression in thrombocytes. Meanwhile, Ab blockade of the complement receptor CR1 greatly attenuated the prophagocytosis of IFN1. In contrast, mouse IFN-ß did not show the promotion of antibacterial activity. These results clarify the prophagocytosis and immune regulation pathways of IFN1 in antibacterial immunity in teleosts. This study reveals the antibacterial mechanisms of type I IFNs in vivo and inspires functional studies of IFN in bacterial infections.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Animais , Camundongos , Transdução de Sinais , Plaquetas/metabolismo , Complemento C3 , Interferon Tipo I/metabolismo , Fagocitose , Antibacterianos , Carpas/metabolismo , Proteínas de Peixes/metabolismo , Imunidade Inata
19.
J Immunol ; 211(6): 1006-1019, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37548504

RESUMO

Liver X receptors (LXRs) are nuclear receptors involved in metabolism and the immune response. Different from mammalian LXRs, which include two isoforms, LXRα and LXRß, only a single LXRα gene exists in the piscine genomes. Although a study has suggested that piscine LXR inhibits intracellular bacterial survival, the functions of piscine LXRα in viral infection are unknown. In this study, we show that overexpression of LXRα from grass carp (Ctenopharyngodon idellus), which is named as gcLXRα, increases host susceptibility to grass carp reovirus (GCRV) infection, whereas gcLXRα knockdown in CIK (C. idellus kidney) cells inhibits GCRV infection. Consistent with these functional studies, gcLXRα knockdown promotes the transcription of antiviral genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway, including IFN regulatory factor (IRF3) and the type I IFN IFN1. Further results show that gcLXRα knockdown induces the expression of CREB-binding protein (CBP), a transcriptional coactivator. In the knockdown of CBP, the inhibitory effect of gcLXRα knockdown in limiting GCRV infection is completely abolished. gcLXRα also interacts with IRF3 and CBP, which impairs the formation of the IRF3/CBP transcription complex. Moreover, gcLXRα heterodimerizes with RXRg, which cooperatively impair the transcription of the RLR antiviral signaling pathway and promote GCRV infection. Taken together, to our knowledge, our findings provide new insight into the functional correlation between nuclear receptor LXRα and the RLR antiviral signaling pathway, and they demonstrate that gcLXRα can impair the RLR antiviral signaling pathway and the production of type I IFN via forming gcLXRα/RXRg complexes and attenuating IRF3/CBP complexes.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Infecções por Reoviridae , Reoviridae , Animais , Humanos , Antivirais/farmacologia , Receptores X do Fígado/metabolismo , Carpas/metabolismo , Proteína de Ligação a CREB/metabolismo , Transdução de Sinais , Interferon Tipo I/metabolismo , Proteínas de Peixes/genética , Mamíferos/metabolismo , Fator Regulador 3 de Interferon/metabolismo
20.
PLoS Genet ; 18(1): e1009914, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085234

RESUMO

Hybridization between species is widespread across the tree of life. As a result, many species, including our own, harbor regions of their genome derived from hybridization. Despite the recognition that this process is widespread, we understand little about how the genome stabilizes following hybridization, and whether the mechanisms driving this stabilization tend to be shared across species. Here, we dissect the drivers of variation in local ancestry across the genome in replicated hybridization events between two species pairs of swordtail fish: Xiphophorus birchmanni × X. cortezi and X. birchmanni × X. malinche. We find unexpectedly high levels of repeatability in local ancestry across the two types of hybrid populations. This repeatability is attributable in part to the fact that the recombination landscape and locations of functionally important elements play a major role in driving variation in local ancestry in both types of hybrid populations. Beyond these broad scale patterns, we identify dozens of regions of the genome where minor parent ancestry is unusually low or high across species pairs. Analysis of these regions points to shared sites under selection across species pairs, and in some cases, shared mechanisms of selection. We show that one such region is a previously unknown hybrid incompatibility that is shared across X. birchmanni × X. cortezi and X. birchmanni × X. malinche hybrid populations.


Assuntos
Ciprinodontiformes/genética , Proteínas de Peixes/genética , Animais , Cruzamentos Genéticos , Evolução Molecular , Genoma , Hibridização Genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA