Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(10): 274, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558775

RESUMO

The lead is poisonous metal and because of its chemical nature it acts as an environmental contaminant through the water or soil and it becomes toxic to humans. The toxicity of Pb occurs as a change in the conformation of nucleic acid and protein, inhibition of enzyme activity, disruption of membrane function and oxidative phosphorylation. For protoplast preparation, the removal of the cell wall and protoplast formation obtained by specific lytic enzyme. In cytoplasmic membrane, the envelope of bacteria consists of overlying cell wall. From hypertonic environment, the complete cell wall removal occurs due to which it maintains the osmotic integrity of the cell and produces the protoplast. In current work, protoplasts were produced by specific lytic enzyme (lysozyme and macerozyme), chemo fused (with the help of Polyethylene Glycol) and regenerated from strains Staphylococcus sp. and Bacillus sp. The fused protoplast was spherical in shape observed under microscopy. Colonies were screened on specific medium supplemented with Pb (Concentration at the rate of 1.5mM). One resistant colony (MICBT-1) was selected and further examined and applied for the transformation of Pb in the broth medium. The strain removed 98% of Pb at 1mM concentration. Next, sucrose containing medium was best which gives maximum protoplast regeneration. From various organisms, fusion technique has been used to combine the genes to create the strains having desired properties. This is a significant technique for engineering of bacterial strains for advantageous applied properties. Further MICBT-1 applied in artificially contaminated soil and removed maximally in exchangeable fraction (remains up to 0.05 mM). An efficient bioremediating agent for lead transformation from soil and water is expected to ease the ever-increasing problem. Further, it is needful to obtain new strain with the help of protoplast technology which can reduce the pollutant. This lead tolerant strain can be applied for bioremediation purposes in the Pb contaminated soil and water environment.


Assuntos
Chumbo , Protoplastos , Humanos , Protoplastos/fisiologia , Chumbo/toxicidade , Tecnologia , Solo , Água
2.
Plant J ; 104(3): 828-838, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32786122

RESUMO

In recent years, Setaria viridis has been developed as a model plant to better understand the C4 photosynthetic pathway in major crops. With the increasing availability of genomic resources for S. viridis research, highly efficient genome editing technologies are needed to create genetic variation resources for functional genomics. Here, we developed a protoplast assay to rapidly optimize the multiplexed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system in S. viridis. Targeted mutagenesis efficiency was further improved by an average of 1.4-fold with the exonuclease, Trex2. Distinctive mutation profiles were found in the Cas9_Trex2 samples, with 94% of deletions larger than 10 bp, and essentially no insertions at all tested target sites. Further analyses indicated that 52.2% of deletions induced by Cas9_Trex2, as opposed to 3.5% by Cas9 alone, were repaired through microhomology-mediated end joining (MMEJ) rather than the canonical non-homologous end joining DNA repair pathway. Combined with a robust Agrobacterium-mediated transformation method with more than 90% efficiency, the multiplex CRISPR/Cas9_Trex2 system was demonstrated to induce targeted mutations in two tightly linked genes, svDrm1a and svDrm1b, at a frequency ranging from 73% to 100% in T0 plants. These mutations were transmitted to at least 60% of the transgene-free T1 plants, with 33% of them containing bi-allelic or homozygous mutations in both genes. This highly efficient multiplex CRISPR/Cas9_Trex2 system makes it possible to create a large mutant resource for S. viridis in a rapid and high throughput manner, and has the potential to be widely applicable in achieving more predictable and deletion-only MMEJ-mediated mutations in many plant species.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Setaria (Planta)/genética , Exodesoxirribonucleases/genética , Técnicas de Inativação de Genes , Genoma de Planta , Mutagênese , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Protoplastos/fisiologia
3.
Plant Cell Physiol ; 62(8): 1239-1250, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34027549

RESUMO

Many plant processes occur in the context of and in interaction with a surrounding matrix such as soil (e.g. root growth and root-microbe interactions) or surrounding tissues (e.g. pollen tube growth through the pistil), making it difficult to study them with high-resolution optical microscopy. Over the past decade, microfabrication techniques have been developed to produce experimental systems that allow researchers to examine cell behavior in microstructured environments that mimic geometrical, physical and/or chemical aspects of the natural growth matrices and that cannot be generated using traditional agar plate assays. These microfabricated environments offer considerable design flexibility as well as the transparency required for high-resolution, light-based microscopy. In addition, microfluidic platforms have been used for various types of bioassays, including cellular force assays, chemoattraction assays and electrotropism assays. Here, we review the recent use of microfluidic devices to study plant cells and organs, including plant roots, root hairs, moss protonemata and pollen tubes. The increasing adoption of microfabrication techniques by the plant science community may transform our approaches to investigating how individual plant cells sense and respond to changes in the physical and chemical environment.


Assuntos
Briófitas/anatomia & histologia , Imageamento Tridimensional/métodos , Células Vegetais/fisiologia , Raízes de Plantas/anatomia & histologia , Tubo Polínico/anatomia & histologia , Protoplastos/fisiologia , Bioensaio/métodos , Técnicas Analíticas Microfluídicas/métodos
4.
Plant Cell Rep ; 40(6): 1037-1045, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32959126

RESUMO

KEY MESSAGE: We obtained a complete mutant line of Petunia having mutations in both F3H genes via Cas9-ribonucleoproteins delivery, which exhibited a pale purplish pink flower color. The CRISPR-Cas system is now revolutionizing agriculture by allowing researchers to generate various desired mutations in plants at will. In particular, DNA-free genome editing via Cas9-ribonucleoproteins (RNPs) delivery has many advantages in plants; it does not require codon optimization or specific promoters for expression in plant cells; furthermore, it can bypass GMO regulations in some countries. Here, we have performed site-specific mutagenesis in Petunia to engineer flower color modifications. We determined that the commercial Petunia cultivar 'Madness Midnight' has two F3H coding genes and designed one guide RNA that targets both F3H genes at once. Among 67 T0 plants regenerated from Cas9-RNP transfected protoplasts, we obtained seven mutant lines that contain mutations in either F3HA or F3HB gene and one complete mutant line having mutations in both F3H genes without any selectable markers. It is noteworthy that only the f3ha f3hb exhibited a clearly modified, pale purplish pink flower color (RHS 69D), whereas the others, including the single copy gene knock-out plants, displayed purple violet (RHS 93A) flowers similar to the wild-type Petunia. To the best of our knowledge, we demonstrated a precedent of ornamental crop engineering by DNA-free CRISPR method for the first time, which will greatly accelerate a transition from a laboratory to a farmer's field.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes/métodos , Genes Duplicados , Petunia/genética , Pigmentação/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/isolamento & purificação , Edição de Genes/métodos , Genes de Plantas , Mutagênese Sítio-Dirigida , Petunia/fisiologia , Plantas Geneticamente Modificadas/genética , Protoplastos/citologia , Protoplastos/fisiologia , RNA Guia de Cinetoplastídeos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
5.
World J Microbiol Biotechnol ; 37(7): 114, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115218

RESUMO

Interspecific hybridization between Ganoderma lingzhi and G. applanatum was attempted through polyethylene glycol (PEG) induced fusion technique. The protoplast isolation procedure was simplified, and we obtained a significant number of protoplasts from both Ganoderma species. The number of protoplasts obtained was 5.27 ± 0.31 × 107/mL in G. lingzhi and 5.57 ± 0.49 × 106/mL in G. applanatum. Osmotic stabilizer NaCl (0.4 M) at pH 5.8 and enzymolysis time 3.5 h have supported high frequency of protoplast regeneration. G. lingzhi and G. applanatum regeneration frequency was 1.73 ± 0.04% and 0.23 ± 0.02%, respectively. 40% of PEG induced high number of protoplast fusion the regeneration frequency was 0.09% on a minimal medium. Two hundred fifty-two fusant colonies were isolated from the following four individual experiments. Among them, ten fusants showed the mycelial morphological difference compared to their parents and other fusant isolates. The fruiting body could be generated on oak sawdust and wheat bran substrate, and a few of them showed recombined morphology of the parental strains. The highest yield and biological efficacy (BE) were recorded in GF248, while least in GF244. The hybridity of the fusant was established based on mycelia, fruiting morphology, and PCR fingerprinting. ISSR and RAPD profile analysis of ten fusants and parents depicted that fusants contained polymorphic bands, which specified the rearrangement and deletion of DNA in the fusants. A Dendrogram was constructed based on the RAPD profile, and the clustering data exhibited two major clusters: cluster I included the G. lingzhi and Cluster II, including the G. applanatum and fusant lines. Total polysaccharide (α, ß and total glucan) content was compared with fusants and parental strains. The present study highlighted the efficient methods for protoplast isolation from Ganoderma species. PEG-induced fusants showed high polymorphic frequency index, while the phenotypic characters showed high similarity to G. applanatum. A significant difference was observed in the mushroom yield and its total polysaccharide between the fusants and parental strains.


Assuntos
Ganoderma/fisiologia , Glucanos/análise , Protoplastos/fisiologia , Meios de Cultura/química , Impressões Digitais de DNA , Fibras na Dieta/microbiologia , Ganoderma/química , Hibridização Genética , Polietilenoglicóis/química , Protoplastos/química , Quercus/microbiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico
6.
Plant Physiol ; 180(1): 78-86, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30792232

RESUMO

Nontransgenic genome editing in regenerable protoplasts, plant cells free of their cell wall, could revolutionize crop improvement because it reduces regulatory and technical complexity. However, plant tissue culture is known to engender frequent unwanted variation, termed somaclonal variation. To evaluate the contribution of large-scale genome instability to this phenomenon, we analyzed potatoes (Solanum tuberosum) regenerated from either protoplasts or stem explants for copy number changes by comparison of Illumina read depth. Whereas a control set of eight plants that had been propagated by cuttings displayed no changes, all 15 protoplast regenerants tested were affected by aneuploidy or structural chromosomal changes. Certain chromosomes displayed segmental deletions and duplications ranging from one to many. Resampling different leaves of the same plant found differences in three regenerants, indicating frequent persistence of instability. By comparison, 33 regenerants from stem explants used for Agrobacterium-mediated transformation displayed less frequent but still considerable (18%) large-scale copy number changes. Repetition of certain instability patterns suggested greater susceptibility in specific genomic sites. These results indicate that tissue culture, depending on the protocol used, can induce genomic instability resulting in large-scale changes likely to compromise final plant phenotype.


Assuntos
Instabilidade Genômica , Protoplastos/fisiologia , Solanum tuberosum/genética , Edição de Genes , Regeneração , Solanum tuberosum/fisiologia , Transformação Genética
7.
Biotechnol Lett ; 42(11): 2357-2366, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32638189

RESUMO

OBJECTIVE: To explore the optimal methods for the protoplast preparation and regeneration of Hirsutella sinensis by optimizing the limiting factors. RESULTS: During the treatment of enzymatic protoplast preparation, mycelium cultured for 7 days was the optimal start material. The maximum protoplast preparation rate of 4.3 × 107 protoplasts/g fresh weight (FW) was obtained after 0.5 h treatment of 1 mg/ml mixed lytic enzymes in KH2PO4-K2HPO4 buffer (pH 5.5) with 0.6 M KCl at 18 °C. As for the protoplast regeneration, the maximum protoplast regeneration rate reached 12.32% through 5 × 103 protoplasts mL-1 cultivated for 20 days in the regeneration medium with 0.6 M mannitol and 1.5% agar. CONCLUSIONS: The preparation and regeneration of H. sinensis protoplasts was firstly established based on process optimization and it provided a foundation for the study of H. sinensis mutagenesis.


Assuntos
Protoplastos/fisiologia , Saccharomycetales/crescimento & desenvolvimento , Meios de Cultura , Micélio/crescimento & desenvolvimento , Regeneração , Saccharomycetales/citologia
8.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992574

RESUMO

Cell enlargement is essential for the microinjection of various substances into bacterial cells. The cell wall (peptidoglycan) inhibits cell enlargement. Thus, bacterial protoplasts/spheroplasts are used for enlargement because they lack cell wall. Though bacterial species that are capable of gene manipulation are limited, procedure for bacterial cell enlargement does not involve any gene manipulation technique. In order to prevent cell wall resynthesis during enlargement of protoplasts/spheroplasts, incubation media are supplemented with inhibitors of peptidoglycan biosynthesis such as penicillin. Moreover, metal ion composition in the incubation medium affects the properties of the plasma membrane. Therefore, in order to generate enlarged cells that are suitable for microinjection, metal ion composition in the medium should be considered. Experiment of bacterial protoplast or spheroplast enlargement is useful for studies on bacterial plasma membrane biosynthesis. In this paper, we have summarized the factors that influence bacterial cell enlargement.


Assuntos
Bactérias/citologia , Crescimento Celular , Meios de Cultura/química , Protoplastos/fisiologia , Esferoplastos/crescimento & desenvolvimento , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Íons/química , Metais/química , Pressão Osmótica , Penicilinas/farmacologia , Peptidoglicano/biossíntese , Biossíntese de Proteínas/efeitos dos fármacos
9.
World J Microbiol Biotechnol ; 36(4): 58, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32236741

RESUMO

The commercial production of Morchella mushrooms calls for urgent breeding of excellent varieties or strains with appropriate tools, such as protoplast fusion. However, the protoplast fusion in morels has not been studied. In this paper, interspecific hybridization between cultivated morels of M. importuna and M. sextelata by PEG-induced protoplast fusion was conducted. Apart from functional complementation of double inactivated protoplasts, the fusants were characterized by cultural and cultivated characters and molecular markers of random amplified polymorphic DNA (RAPD). The results suggested that the hybrids and their parents showed significant difference in their inoculum recovery time, mycelial growth rate, yield of cultivation and total amino acid content of ascocarps. Moreover, positive barrage reactions were observed between parental strains as well as between each parent and a hybrid line. A dendrogram created on the basis of RAPD fingerprints exhibited three major clusters, in which morel hybrids showed intra-cluster variations, M. sextelata #6 formed an out group, while M. importuna #4 was phylogenetically closer to morel hybrids. All the results demonstrated that real fusants were obtained in our study. Protoplast fusion may provide an ideal alternative for new strain selection, and thus will promote the healthy development of morel industry.


Assuntos
Agaricales/crescimento & desenvolvimento , Polietilenoglicóis/farmacologia , Protoplastos/fisiologia , Agaricales/classificação , Agaricales/genética , Quimera , DNA Fúngico/genética , Filogenia , Melhoramento Vegetal , Técnica de Amplificação ao Acaso de DNA Polimórfico
10.
EMBO J ; 33(17): 1941-59, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25024433

RESUMO

Plant resistance proteins of the class of nucleotide-binding and leucine-rich repeat domain proteins (NB-LRRs) are immune sensors which recognize pathogen-derived molecules termed avirulence (AVR) proteins. We show that RGA4 and RGA5, two NB-LRRs from rice, interact functionally and physically to mediate resistance to the fungal pathogen Magnaporthe oryzae and accomplish different functions in AVR recognition. RGA4 triggers an AVR-independent cell death that is repressed in the presence of RGA5 in both rice protoplasts and Nicotiana benthamiana. Upon recognition of the pathogen effector AVR-Pia by direct binding to RGA5, repression is relieved and cell death occurs. RGA4 and RGA5 form homo- and hetero-complexes and interact through their coiled-coil domains. Localization studies in rice protoplast suggest that RGA4 and RGA5 localize to the cytosol. Upon recognition of AVR-Pia, neither RGA4 nor RGA5 is re-localized to the nucleus. These results establish a model for the interaction of hetero-pairs of NB-LRRs in plants: RGA4 mediates cell death activation, while RGA5 acts as a repressor of RGA4 and as an AVR receptor.


Assuntos
Resistência à Doença , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/imunologia , Oryza/imunologia , Oryza/microbiologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Morte Celular , Modelos Biológicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Protoplastos/fisiologia , Nicotiana/imunologia , Nicotiana/microbiologia
11.
Plant Physiol ; 175(2): 982-994, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28860155

RESUMO

Members of the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX PROTEIN (TIR1/AFB) family are known auxin receptors. To analyze the possible receptor function of AUXIN BINDING PROTEIN1 (ABP1), an auxin receptor currently under debate, we performed different approaches. We performed a pharmacological approach using α-(2,4-dimethylphenylethyl-2-oxo)-indole-3-acetic acid (auxinole), α-(phenylethyl-2-oxo)-indole-3-acetic acid (PEO-IAA), and 5-fluoroindole-3-acetic acid (5-F-IAA) to discriminate between ABP1- and TIR1/AFB-mediated processes in Arabidopsis (Arabidopsis thaliana). We used a peptide of the carboxyl-terminal region of AtABP1 as a tool. We performed mutant analysis with the null alleles of ABP1, abp1-c1 and abp1-TD1, and the TILLING mutant abp1-5 We employed Coimbra, an accession that exhibits an amino acid exchange in the auxin-binding domain of ABP1. We measured either volume changes of single hypocotyl protoplasts or hypocotyl growth, both at high temporal resolution. 5-F-IAA selectively activated the TIR1/AFB pathway but did not induce protoplast swelling; instead, it showed auxin activity in the hypocotyl growth test. In contrast, PEO-IAA induced an auxin-like swelling response but no hypocotyl growth. The carboxyl-terminal peptide of AtABP1 induced an auxin-like swelling response. In the ABP1-related mutants and Coimbra, no auxin-induced protoplast swelling occurred. ABP1 seems to be involved in mediating rapid auxin-induced protoplast swelling, but it is not involved in the control of rapid auxin-induced growth.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/genética , Hipocótilo/genética , Hipocótilo/fisiologia , Mutação , Proteínas de Plantas/genética , Protoplastos/fisiologia , Receptores de Superfície Celular/genética
12.
Appl Microbiol Biotechnol ; 102(19): 8229-8259, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30054703

RESUMO

Date palm (Phoenix dactylifera L.) is one of the most important fruit trees that contribute a major part to the economy of Middle East and North African countries. It is quintessentially called "tree of life" owing to its resilience to adverse climatic conditions, along with manifold nutritional-cum-medicinal attributes that comes from its fruits and other plant parts. Being a tree with such immense utility, it has gained substantial attention of tree breeders for its genetic advancement via in vitro biotechnological interventions. Herein, an extensive review of biotechnological research advances in date palm has been consolidated as one of the major research achievements during the past two decades. This article compares the different biotechnological techniques used in this species such as: tissue and organ culture, bioreactor-mediated large-scale propagation, cell suspension culture, embryogenic culture, protoplast culture, conservation (for short- and long-term) of germplasms, in vitro mutagenesis, in vitro selection against biotic and abiotic stresses, secondary metabolite production in vitro, and genetic transformation. This review provides an insight on crop improvement and breeding programs for improved yield and quality fruits; besides, it would undeniably facilitate the tissue culture-based research on date palm for accelerated propagation and enhanced production of quality planting materials, along with conservation and exchange of germplasms, and genetic engineering. In addition, the unexplored research methodologies and major bottlenecks identified in this review should be contemplated on in near future.


Assuntos
Phoeniceae/genética , Phoeniceae/fisiologia , Animais , Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Humanos , Protoplastos/fisiologia
13.
Planta ; 245(4): 779-792, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28025674

RESUMO

MAIN CONCLUSION: Localization of the RNase RNS2 to the vacuole via a C-terminal targeting signal is essential for its function in rRNA degradation and homeostasis. RNase T2 ribonucleases are highly conserved enzymes present in the genomes of nearly all eukaryotes and many microorganisms. Their constitutive expression in different tissues and cell types of many organisms suggests a housekeeping role in RNA homeostasis. The Arabidopsis thaliana class II RNase T2, RNS2, is encoded by a single gene and functions in rRNA degradation. Loss of RNS2 results in RNA accumulation and constitutive activation of autophagy, possibly as a compensatory mechanism. While the majority of RNase T2 enzymes is secreted, RNS2 is located within the vacuole and in the endoplasmic reticulum (ER), possibly within ER bodies. As RNS2 has a neutral pH optimum, and the endomembrane organelles are connected by vesicle transport, the site within the endomembrane system at which RNS2 functions is unclear. Here we demonstrate that localization to the vacuole is essential for the physiological function of RNS2. A mutant allele of RNS2, rns2-1, results in production of an active RNS2 RNase but with a mutation that removes a putative C-terminal vacuolar targeting signal. The mutant protein is, therefore, secreted from the cell. This results in a constitutive autophagy phenotype similar to that observed in rns2 null mutants. These findings illustrate that the intracellular retention of RNS2 and localization within the vacuole are critical for its cellular function.


Assuntos
Proteínas de Arabidopsis/fisiologia , Ribonucleases/fisiologia , Vacúolos/enzimologia , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Autofagia/fisiologia , Clonagem Molecular , Homeostase/fisiologia , Protoplastos/fisiologia , RNA Ribossômico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacúolos/fisiologia
14.
J Exp Bot ; 68(15): 4075-4087, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922772

RESUMO

Plasmolysis of hypocotyl cells of transgenic Arabidopsis thaliana and Nicotiana benthamiana diminishes the dynamics of the remodeling of the endoplasmic reticulum (ER) in the central protoplast, namely that withdrawn from the cell wall, and more persistent cisternae are formed, yet little change in the actin network in the protoplast occurs. Also, protein flow within the ER network in the protoplast, as detected with fluorescence recovery after photobleaching (FRAP), is not affected by plasmolysis. After plasmolysis, another network of strictly tubular ER remains attached to the plasma membrane-wall interface and is contained within the Hechtian strands and reticulum. FRAP studies indicate that protein flow within these ER tubules diminishes. Actin is largely absent from the Hechtian reticulum and the ER becomes primarily associated with altered, branched microtubules. The smaller volume of the central protoplast is accompanied by decreased movement rates of tubules, cisternae, and spheroid organelles, but this reduced movement is not readily reversed by the increase in volume that accompanies deplasmolysis.


Assuntos
Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Nicotiana/citologia , Protoplastos/fisiologia , Arabidopsis/citologia , Arabidopsis/metabolismo , Nicotiana/metabolismo
15.
BMC Biotechnol ; 16(1): 53, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342637

RESUMO

BACKGROUND: Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. RESULTS: Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. CONCLUSIONS: We present simple and efficient methodologies for protoplast isolation from multiple P. vulgaris tissues. We also provide a high-efficiency and amenable method for leaf mesophyll transformation for rapid gene functional characterization studies. Furthermore, a modified SAAT leaf disc infiltration approach aids in validating genes and their functions. Together, these methods help to rapidly unravel novel gene functions and are promising tools for P. vulgaris research.


Assuntos
Agrobacterium/genética , Perfilação da Expressão Gênica/métodos , Phaseolus/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Protoplastos/fisiologia , Células do Mesofilo/fisiologia , Phaseolus/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Protoplastos/citologia , Transformação Bacteriana/genética
16.
Biotechnol Appl Biochem ; 63(5): 605-615, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26234394

RESUMO

Volvariella volvacea is difficult to store fresh because of the lack of low-temperature resistance. Many traditional mutagenic strategies have been applied in order to select out strains resistant to low temperature, but few commercially efficient strains have been produced. In order to break through the bottleneck of traditional breeding and significantly improve low-temperature resistance of the edible fungus V. volvacea, strains resistant to low temperature were constructed by genome shuffling. The optimum conditions of V. volvacea strain mutation, protoplast regeneration, and fusion were determined. After protoplasts were treated with 1% (v/v) ethylmethylsulfonate (EMS), 40 Sec of ultraviolet (UV) irradiation, 600 Gy electron beam implantation, and 750 Gy60 Co-γ irradiation, separately, the lethality was within 70%-80%, which favored generating protoplasts being used in following forward mutation. Under these conditions, 16 strains of V. volvacea mutated by EMS, electron beam, UV irradiation, and 60 Co-γ irradiation were obtained. The 16 mutated protoplasts were selected to serve as the shuffling pool based on their excellent low-temperature resistance. After four rounds of genome shuffling and low-temperature resistance testing, three strains (VF1 , VF2 , and VF3 ) with high genetic stability were screened. VF1 , VF2 , and VF3 significantly enhanced fruit body shelf life to 20, 28, and 28 H at 10 °C, respectively, which exceeded 25%, 75%, and 75%, respectively, compared with the storage time of V23, the most low-temperature-resistant strain. Genome shuffling greatly improved the low-temperature resistance of V. volvacea, and shortened the course of screening required to generate desirable strains. To our knowledge, this is the first paper to apply genome shuffling to breeding new varieties of mushroom, and offers a new approach for breeding edible fungi with optimized phenotype.


Assuntos
Embaralhamento de DNA/métodos , Genômica , Temperatura , Volvariella/genética , Volvariella/fisiologia , Temperatura Alta/efeitos adversos , Mutagênese , Mutação , Protoplastos/metabolismo , Protoplastos/fisiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Raios Ultravioleta/efeitos adversos , Volvariella/efeitos da radiação
17.
Pol J Microbiol ; 65(3): 383-388, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-29334072

RESUMO

Ganoderma boninense, a phytopathogenic white rot fungus had sought minimal genetic characterizations despite huge biotechnological potentials. Thus, efficient collection of fruiting body, basidiospore and protoplast of G. boninense is described. Matured basidiocarp raised under the glasshouse conditions yielded a total of 8.3 × 104 basidiospores/ml using the low speed centrifugation technique. Mycelium aged 3-day-old treated under an incubation period of 3 h in lysing enzyme from Trichoderma harzianum (10 mg/ml) suspended in osmotic stabilizer (0.6 M potassium chloride and 20 mM dipotassium phosphate buffer) yielded the highest number of viable protoplasts (8.9 × 106 single colonies) among all possible combinations tested (regeneration media, age of mycelium, osmotic stabilizer, digestive enzyme and incubation period).


Assuntos
Carpóforos/crescimento & desenvolvimento , Ganoderma/crescimento & desenvolvimento , Ganoderma/fisiologia , Micélio/crescimento & desenvolvimento , Micélio/fisiologia , Doenças das Plantas/microbiologia , Protoplastos/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia
18.
J Integr Plant Biol ; 58(9): 799-812, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26898230

RESUMO

Nuclear migration and positioning are crucial for the morphogenesis of plant cells. We addressed the potential role of nuclear positioning for polarity induction using an experimental system based on regenerating protoplasts, where the induction of a cell axis de novo can be followed by quantification of specific regeneration stages. Using overexpression of fluorescently tagged extranuclear (perinuclear actin basket, kinesins with a calponin homology domain (KCH)) as well as intranuclear (histone H2B) factors of nuclear positioning and time-lapse series of the early stages of regeneration, we found that nuclear position is no prerequisite for polarity formation. However, polarity formation and nuclear migration were both modulated in the transgenic lines, indicating that both phenomena depend on factors affecting cytoskeletal tensegrity and chromatin structure. We integrated these findings into a model where retrograde signals are required for polarity induction. These signals travel via the cytoskeleton from the nucleus toward targets at the plasma membrane.


Assuntos
Núcleo Celular/metabolismo , Nicotiana/fisiologia , Protoplastos/citologia , Protoplastos/fisiologia , Regeneração , Actinas/metabolismo , Padronização Corporal , Polaridade Celular , Proliferação de Células , Cromatina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Cinesinas/metabolismo , Modelos Biológicos , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Imagem com Lapso de Tempo
19.
Nature ; 462(7273): 660-4, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19924127

RESUMO

The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway.


Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Estresse Fisiológico/fisiologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Fenótipo , Fosforilação , Protoplastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA