Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.640
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(5): 973-986.e7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697117

RESUMO

The ubiquitin-binding endoribonuclease N4BP1 potently suppresses cytokine production by Toll-like receptors (TLRs) that signal through the adaptor MyD88 but is inactivated via caspase-8-mediated cleavage downstream of death receptors, TLR3, or TLR4. Here, we examined the mechanism whereby N4BP1 limits inflammatory responses. In macrophages, deletion of N4BP1 prolonged activation of inflammatory gene transcription at late time points after TRIF-independent TLR activation. Optimal suppression of inflammatory cytokines by N4BP1 depended on its ability to bind polyubiquitin chains, as macrophages and mice-bearing inactivating mutations in a ubiquitin-binding motif in N4BP1 displayed increased TLR-induced cytokine production. Deletion of the noncanonical IκB kinases (ncIKKs), Tbk1 and Ikke, or their adaptor Tank phenocopied N4bp1 deficiency and enhanced macrophage responses to TLR1/2, TLR7, or TLR9 stimulation. Mechanistically, N4BP1 acted in concert with the ncIKKs to limit the duration of canonical IκB kinase (IKKα/ß) signaling. Thus, N4BP1 and the ncIKKs serve as an important checkpoint against over-exuberant innate immune responses.


Assuntos
Endorribonucleases , Quinase I-kappa B , Inflamação , Macrófagos , Proteínas Serina-Treonina Quinases , Receptores Toll-Like , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Citocinas/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Ubiquitina/metabolismo
2.
Mol Cell ; 84(13): 2436-2454.e10, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38925114

RESUMO

Signal transduction proteins containing a pLxIS motif induce interferon (IFN) responses central to antiviral immunity. Apart from their established roles in activating the IFN regulator factor (IRF) transcription factors, the existence of additional pathways and functions associated with the pLxIS motif is unknown. Using a synthetic biology-based platform, we identified two orphan pLxIS-containing proteins that stimulate IFN responses independent of all known pattern-recognition receptor pathways. We further uncovered a diversity of pLxIS signaling mechanisms, where the pLxIS motif represents one component of a multi-motif signaling entity, which has variable functions in activating IRF3, the TRAF6 ubiquitin ligase, IκB kinases, mitogen-activated protein kinases, and metabolic activities. The most diverse pLxIS signaling mechanisms were associated with the highest antiviral activities in human cells. The flexibility of domains that regulate IFN signaling may explain their prevalence in nature.


Assuntos
Fator Regulador 3 de Interferon , Interferons , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Humanos , Interferons/metabolismo , Células HEK293 , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Domínios Proteicos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Motivos de Aminoácidos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
3.
Mol Cell ; 83(17): 3188-3204.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37683611

RESUMO

Failure to clear damaged mitochondria via mitophagy disrupts physiological function and may initiate damage signaling via inflammatory cascades, although how these pathways intersect remains unclear. We discovered that nuclear factor kappa B (NF-κB) essential regulator NF-κB effector molecule (NEMO) is recruited to damaged mitochondria in a Parkin-dependent manner in a time course similar to recruitment of the structurally related mitophagy adaptor, optineurin (OPTN). Upon recruitment, NEMO partitions into phase-separated condensates distinct from OPTN but colocalizing with p62/SQSTM1. NEMO recruitment, in turn, recruits the active catalytic inhibitor of kappa B kinase (IKK) component phospho-IKKß, initiating NF-κB signaling and the upregulation of inflammatory cytokines. Consistent with a potential neuroinflammatory role, NEMO is recruited to mitochondria in primary astrocytes upon oxidative stress. These findings suggest that damaged, ubiquitinated mitochondria serve as an intracellular platform to initiate innate immune signaling, promoting the formation of activated IKK complexes sufficient to activate NF-κB signaling. We propose that mitophagy and NF-κB signaling are initiated as parallel pathways in response to mitochondrial stress.


Assuntos
NF-kappa B , Transdução de Sinais , NF-kappa B/genética , Quinase I-kappa B/genética , Proteínas Serina-Treonina Quinases/genética , Mitocôndrias/genética
4.
Mol Cell ; 82(13): 2415-2426.e5, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35477005

RESUMO

The NF-κB essential modulator (NEMO) is a regulatory subunit of the IκB kinase (IKK) complex that phosphorylates the NF-κB inhibitors IκBs. NEMO mediates IKK activation by binding to polyubiquitin chains (polyUb). Here, we show that Lys63(K63)-linked or linear polyUb binding to NEMO robustly induced the formation of liquid-like droplets in which IKK was activated. This liquid phase separation of NEMO was driven by multivalent interactions between NEMO and polyUb. Both the NEMO ubiquitin-binding (NUB) domain and the zinc-finger (ZF) domain of NEMO mediated binding to polyUb and contributed to NEMO phase separation and IKK activation in cells. Moreover, NEMO mutations associated with human immunodeficiency impaired its phase separation. These results demonstrate that polyUb activates IKK and NF-κB signaling by promoting the phase separation of NEMO.


Assuntos
NF-kappa B , Poliubiquitina , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Poliubiquitina/genética , Transdução de Sinais , Ubiquitina/metabolismo
5.
EMBO J ; 43(19): 4248-4273, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39152265

RESUMO

While immune checkpoint blockade (ICB) has shown promise for clinical cancer therapy, its efficacy has only been observed in a limited subset of patients and the underlying mechanisms regulating innate and acquired resistance to ICB of tumor cells remain poorly understood. Here, we identified ependymin-related protein 1 (EPDR1) as an important tumor-intrinsic regulator of PD-L1 expression and tumor immune evasion. Aberrant expression of EPDR1 in hepatocellular carcinoma is associated with immunosuppression. Mechanistically, EPDR1 binds to E3 ligase TRIM21 and disrupts its interaction with IkappaB kinase-b, suppressing its ubiquitylation and autophagosomal degradation and enhancing NF-κB-mediated transcriptional activation of PD-L1. Further, we validated through a mouse liver cancer model that EPDR1 mediates exhaustion of CD8+ T cells and promotes tumor progression. In addition, we observed a positive correlation between EPDR1 and PD-L1 expression in both human and mouse liver cancer samples. Collectively, our study reveals a previously unappreciated role of EPDR1 in orchestrating tumor immune evasion and cancer progression.


Assuntos
Antígeno B7-H1 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Evasão Tumoral , Ubiquitinação , Animais , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Camundongos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas com Domínio MARVEL/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Ribonucleoproteínas
6.
Immunity ; 50(2): 348-361.e4, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30737145

RESUMO

NF-κB (nuclear factor κB) signaling is considered critical for single positive (SP) thymocyte development because loss of upstream activators of NF-κB, such as the IKK complex, arrests their development. We found that the compound ablation of RelA, cRel, and p50, required for canonical NF-κB transcription, had no impact upon thymocyte development. While IKK-deficient thymocytes were acutely sensitive to tumor necrosis factor (TNF)-induced cell death, Rel-deficient cells remained resistant, calling into question the importance of NF-κB as the IKK target required for thymocyte survival. Instead, we found that IKK controlled thymocyte survival by repressing cell-death-inducing activity of the serine/threonine kinase RIPK1. We observed that RIPK1 expression was induced during development of SP thymocytes and that IKK was required to prevent RIPK1-kinase-dependent death of SPs in vivo. Finally, we showed that IKK was required to protect Rel-deficient thymocytes from RIPK1-dependent cell death, underscoring the NF-κB-independent function of IKK during thymic development.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Timócitos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase I-kappa B/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Timócitos/citologia , Timócitos/efeitos dos fármacos , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
7.
Cell ; 152(1-2): 304-15, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332762

RESUMO

The IκB kinase complex (IKK) is a key regulator of immune responses, inflammation, cell survival, and tumorigenesis. The prosurvival function of IKK centers on activation of the transcription factor NF-κB, whose target gene products inhibit caspases and prevent prolonged JNK activation. Here, we report that inactivation of the BH3-only protein BAD by IKK independently of NF-κB activation suppresses TNFα-induced apoptosis. TNFα-treated Ikkß(-/-) mouse embryonic fibroblasts (MEFs) undergo apoptosis significantly faster than MEFs deficient in both RelA and cRel due to lack of inhibition of BAD by IKK. IKK phosphorylates BAD at serine-26 (Ser26) and primes it for inactivation. Elimination of Ser26 phosphorylation promotes BAD proapoptotic activity, thereby accelerating TNFα-induced apoptosis in cultured cells and increasing mortality in animals. Our results reveal that IKK inhibits TNFα-induced apoptosis through two distinct but cooperative mechanisms: activation of the survival factor NF-κB and inactivation of the proapoptotic BH3-only BAD protein.


Assuntos
Apoptose , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Animais , Fibroblastos/citologia , Quinase I-kappa B/genética , Camundongos , Camundongos Knockout , Fosforilação , Serina/metabolismo , Proteína de Morte Celular Associada a bcl/química , Proteína de Morte Celular Associada a bcl/genética , Proteína bcl-X/metabolismo
8.
Nat Immunol ; 16(12): 1235-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26502405

RESUMO

Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency. The egress of progenitor cells and tumor formation were associated with the autocrine production of cytokines previously provided by the niche. ELSs developed via cooperation between the innate immune system and adaptive immune system, an event facilitated by activation of the transcription factor NF-κB and abolished by depletion of T cells. Such aberrant immunological foci might represent new targets for cancer therapy.


Assuntos
Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Tecido Linfoide/imunologia , Células-Tronco Neoplásicas/imunologia , Nicho de Células-Tronco/imunologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hibridização Genômica Comparativa , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Imunidade Inata/genética , Imunidade Inata/imunologia , Immunoblotting , Hibridização In Situ , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicho de Células-Tronco/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia
9.
Immunity ; 49(2): 225-234.e4, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30119996

RESUMO

Antiviral immunity in Drosophila involves RNA interference and poorly characterized inducible responses. Here, we showed that two components of the IMD pathway, the kinase dIKKß and the transcription factor Relish, were required to control infection by two picorna-like viruses. We identified a set of genes induced by viral infection and regulated by dIKKß and Relish, which included an ortholog of STING. We showed that dSTING participated in the control of infection by picorna-like viruses, acting upstream of dIKKß to regulate expression of Nazo, an antiviral factor. Our data reveal an antiviral function for STING in an animal model devoid of interferons and suggest an evolutionarily ancient role for this molecule in antiviral immunity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/virologia , Quinase I-kappa B/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Infecções por Picornaviridae/imunologia , Animais , Linhagem Celular , Dicistroviridae/imunologia , Proteínas de Drosophila/genética , Quinase I-kappa B/genética , Proteínas de Membrana/genética , Fatores de Iniciação de Peptídeos/genética , Interferência de RNA , Fatores de Transcrição/metabolismo
10.
Mol Cell ; 73(6): 1138-1149.e6, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901564

RESUMO

The nuclear factor (NF)-κB pathway plays a central role in inflammatory and immune responses, with aberrant activation of NF-κB signaling being implicated in various human disorders. Here, we show that mammalian ste20-like kinase 1 (MST1) is a previously unrecognized component of the tumor necrosis factor α (TNFα) receptor 1 signaling complex (TNF-RSC) and attenuates TNFα-induced NF-κB signaling. Genetic ablation of MST1 in mouse embryonic fibroblasts and bone marrow-derived macrophages potentiated the TNFα-induced increase in IκB kinase (IKK) activity, as well as the expression of NF-κB target genes. TNFα induced the recruitment of MST1 to TNF-RSC and its interaction with HOIP, the catalytic component of the E3 ligase linear ubiquitin assembly complex (LUBAC). Furthermore, MST1 activated in response to TNFα stimulation mediates the phosphorylation of HOIP and thereby inhibited LUBAC-dependent linear ubiquitination of NEMO/IKKγ. Together, our findings suggest that MST1 negatively regulates TNFα-induced NF-κB signaling by targeting LUBAC.


Assuntos
Fibroblastos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Fibroblastos/enzimologia , Células HEK293 , Humanos , Quinase I-kappa B/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
Mol Cell ; 75(4): 669-682.e5, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31302002

RESUMO

Phosphorylated IKKα(p45) is a nuclear active form of the IKKα kinase that is induced by the MAP kinases BRAF and TAK1 and promotes tumor growth independent of canonical NF-κB signaling. Insights into the sources of IKKα(p45) activation and its downstream substrates in the nucleus remain to be defined. Here, we discover that IKKα(p45) is rapidly activated by DNA damage independent of ATM-ATR, but dependent on BRAF-TAK1-p38-MAPK, and is required for robust ATM activation and efficient DNA repair. Abolishing BRAF or IKKα activity attenuates ATM, Chk1, MDC1, Kap1, and 53BP1 phosphorylation, compromises 53BP1 and RIF1 co-recruitment to sites of DNA lesions, and inhibits 53BP1-dependent fusion of dysfunctional telomeres. Furthermore, IKKα or BRAF inhibition synergistically enhances the therapeutic potential of 5-FU and irinotecan to eradicate chemotherapy-resistant metastatic human tumors in vivo. Our results implicate BRAF and IKKα kinases in the DDR and reveal a combination strategy for cancer treatment.


Assuntos
Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Quinase I-kappa B/metabolismo , Irinotecano/farmacologia , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias , Neoplasias , Animais , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células HCT116 , Humanos , Quinase I-kappa B/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Células MCF-7 , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Telômero/genética , Telômero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cell ; 76(1): 148-162.e7, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31447391

RESUMO

The rapid proliferation of cancer cells and dysregulated vasculature within the tumor leads to limited nutrient accessibility. Cancer cells often rewire their metabolic pathways for adaption to nutrient stress, and the underlying mechanism remains largely unknown. Glutamate dehydrogenase 1 (GDH1) is a key enzyme in glutaminolysis that converts glutamate to α-ketoglutarate (α-KG). Here, we show that, under low glucose, GDH1 is phosphorylated at serine (S) 384 and interacts with RelA and IKKß. GDH1-produced α-KG directly binds to and activates IKKß and nuclear factor κB (NF-κB) signaling, which promotes glucose uptake and tumor cell survival by upregulating GLUT1, thereby accelerating gliomagenesis. In addition, GDH1 S384 phosphorylation correlates with the malignancy and prognosis of human glioblastoma. Our finding reveals a unique role of α-KG to directly regulate signal pathway, uncovers a distinct mechanism of metabolite-mediated NF-κB activation, and also establishes the critical role of α-KG-activated NF-κB in brain tumor development.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Metabolismo Energético , Glioblastoma/metabolismo , Glucose/metabolismo , Glutamato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , NF-kappa B/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Criança , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glucose/deficiência , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glutamato Desidrogenase/genética , Células HEK293 , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , NF-kappa B/genética , Gradação de Tumores , Fosforilação , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Adulto Jovem
13.
Nat Immunol ; 15(4): 323-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24562310

RESUMO

The ligation of Toll-like receptors (TLRs) leads to rapid activation of dendritic cells (DCs). However, the metabolic requirements that support this process remain poorly defined. We found that DC glycolytic flux increased within minutes of exposure to TLR agonists and that this served an essential role in supporting the de novo synthesis of fatty acids for the expansion of the endoplasmic reticulum and Golgi required for the production and secretion of proteins that are integral to DC activation. Signaling via the kinases TBK1, IKKɛ and Akt was essential for the TLR-induced increase in glycolysis by promoting the association of the glycolytic enzyme HK-II with mitochondria. In summary, we identified the rapid induction of glycolysis as an integral component of TLR signaling that is essential for the anabolic demands of the activation and function of DCs.


Assuntos
Células Dendríticas/imunologia , Glicólise , Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Ácidos Graxos/biossíntese , Glicólise/efeitos dos fármacos , Glicólise/genética , Glicólise/imunologia , Hexoquinase/metabolismo , Quinase I-kappa B/genética , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptores Toll-Like/agonistas
14.
J Immunol ; 213(5): 628-640, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007641

RESUMO

In response to DNA double-strand breaks (DSBs), the ATM kinase activates NF-κB factors to stimulate gene expression changes that promote survival and allow time for cells to repair damage. In cell lines, ATM can activate NF-κB transcription factors via two independent, convergent mechanisms. One is ATM-mediated phosphorylation of nuclear NF-κB essential modulator (Nemo) protein, which leads to monoubiquitylation and export of Nemo to the cytoplasm where it engages the IκB kinase (IKK) complex to activate NF-κB. Another is DSB-triggered migration of ATM into the cytoplasm, where it promotes monoubiquitylation of Nemo and the resulting IKK-mediated activation of NF-κB. ATM has many other functions in the DSB response beyond activation of NF-κB, and Nemo activates NF-κB downstream of diverse stimuli, including developmental or proinflammatory stimuli such as LPSs. To elucidate the in vivo role of DSB-induced, ATM-dependent changes in expression of NF-κB-responsive genes, we generated mice expressing phosphomutant Nemo protein lacking consensus SQ sites for phosphorylation by ATM or related kinases. We demonstrate that these mice are viable/healthy and fertile and exhibit overall normal B and T lymphocyte development. Moreover, treatment of their B lineage cells with LPS induces normal NF-κB-regulated gene expression changes. Furthermore, in marked contrast to results from a pre-B cell line, primary B lineage cells expressing phosphomutant Nemo treated with the genotoxic drug etoposide induce normal ATM- and Nemo-dependent changes in expression of NF-κB-regulated genes. Our data demonstrate that ATM-dependent phosphorylation of Nemo SQ motifs in vivo is dispensable for DSB-signaled changes in expression of NF-κB-regulated genes.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quebras de DNA de Cadeia Dupla , NF-kappa B , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Camundongos , Fosforilação , NF-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Regulação da Expressão Gênica , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Camundongos Knockout , Etoposídeo/farmacologia , Motivos de Aminoácidos
15.
Mol Cell ; 69(4): 566-580.e5, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452637

RESUMO

Tumor necrosis factor (TNF) can drive inflammation, cell survival, and death. While ubiquitylation-, phosphorylation-, and nuclear factor κB (NF-κB)-dependent checkpoints suppress the cytotoxic potential of TNF, it remains unclear whether ubiquitylation can directly repress TNF-induced death. Here, we show that ubiquitylation regulates RIPK1's cytotoxic potential not only via activation of downstream kinases and NF-kB transcriptional responses, but also by directly repressing RIPK1 kinase activity via ubiquitin-dependent inactivation. We find that the ubiquitin-associated (UBA) domain of cellular inhibitor of apoptosis (cIAP)1 is required for optimal ubiquitin-lysine occupancy and K48 ubiquitylation of RIPK1. Independently of IKK and MK2, cIAP1-mediated and UBA-assisted ubiquitylation suppresses RIPK1 kinase auto-activation and, in addition, marks it for proteasomal degradation. In the absence of a functional UBA domain of cIAP1, more active RIPK1 kinase accumulates in response to TNF, causing RIPK1 kinase-mediated cell death and systemic inflammatory response syndrome. These results reveal a direct role for cIAP-mediated ubiquitylation in controlling RIPK1 kinase activity and preventing TNF-mediated cytotoxicity.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/fisiologia , Quinase I-kappa B/metabolismo , Proteínas Inibidoras de Apoptose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose , Células HEK293 , Humanos , Quinase I-kappa B/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitinação
16.
PLoS Pathog ; 19(8): e1011580, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37566637

RESUMO

The multigene family genes (MGFs) in the left variable region (LVR) of the African swine fever virus (ASFV) genome have been reported to be involved in viral replication in primary porcine alveolar macrophages (PAMs) and virulence in pigs. However, the exact functions of key MGFs in the LVR that regulate the replication and virulence of ASFV remain unclear. In this study, we identified the MGF300-2R gene to be critical for viral replication in PAMs by deleting different sets of MGFs in the LVR from the highly virulent strain ASFV HLJ/18 (ASFV-WT). The ASFV mutant lacking the MGF300-2R gene (Del2R) showed a 1-log reduction in viral titer, and induced higher IL-1ß and TNF-α production in PAMs than did ASFV-WT. Mechanistically, the MGF300-2R protein was found to interact with and degrade IKKα and IKKß via the selective autophagy pathway. Furthermore, we showed that MGF300-2R promoted the K27-linked polyubiquitination of IKKα and IKKß, which subsequently served as a recognition signal for the cargo receptor TOLLIP-mediated selective autophagic degradation. Importantly, Del2R exhibited a significant reduction in both replication and virulence compared with ASFV-WT in pigs, likely due to the increased IL-1ß and TNF-α, indicating that MGF300-2R is a virulence determinant. These findings reveal that MGF300-2R suppresses host innate immune responses by mediating the degradation of IKKα and IKKß, which provides clues to paving the way for the rational design of live attenuated vaccines to control ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Virulência , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Macrófagos , Proteínas Serina-Treonina Quinases/metabolismo , Autofagia
17.
Nat Rev Mol Cell Biol ; 14(10): 673-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23989959

RESUMO

Research over the past decade has revealed how NF-κB essential modulator (NEMO; also known as IKKγ) regulates the IKKα-IKKß signalling axis in the innate immune system. The discovery that NEMO is a polyubiquitin-binding protein and that the IKK complex is modulated by other protein kinases that are themselves controlled by polyubiquitin chains has provided a deeper molecular understanding of the non-degradative roles of ubiquitylation. New mechanistic insights of NEMO and related polyubiquitin-binding proteins have become a paradigm for how the interplay between phosphorylation and ubiquitylation controls cell signalling networks in health and disease.


Assuntos
Quinase I-kappa B/genética , Imunidade Inata/genética , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Quinase I-kappa B/imunologia , NF-kappa B/genética , Fosforilação , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ligação Proteica , Transdução de Sinais
18.
Mol Cell ; 67(3): 484-497.e5, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28689659

RESUMO

Unlike prototypical IκB proteins, which are inhibitors of NF-κB RelA, cRel, and RelB dimers, the atypical IκB protein Bcl3 is primarily a transcriptional coregulator of p52 and p50 homodimers. Bcl3 exists as phospho-protein in many cancer cells. Unphosphorylated Bcl3 acts as a classical IκB-like inhibitor and removes p50 and p52 from bound DNA. Neither the phosphorylation site(s) nor the kinase(s) phosphorylating Bcl3 is known. Here we show that Akt, Erk2, and IKK1/2 phosphorylate Bcl3. Phosphorylation of Ser33 by Akt induces switching of K48 ubiquitination to K63 ubiquitination and thus promotes nuclear localization and stabilization of Bcl3. Phosphorylation by Erk2 and IKK1/2 of Ser114 and Ser446 converts Bcl3 into a transcriptional coregulator by facilitating its recruitment to DNA. Cells expressing the S114A/S446A mutant have cellular proliferation and migration defects. This work links Akt and MAPK pathways to NF-κB through Bcl3 and provides mechanistic insight into how Bcl3 functions as an oncoprotein through collaboration with IKK1/2, Akt, and Erk2.


Assuntos
Quinase I-kappa B/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Animais , Proteína 3 do Linfoma de Células B , Movimento Celular , Proliferação de Células , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/genética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Mutação , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Fosforilação , Estabilidade Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células RAW 264.7 , Interferência de RNA , Serina , Transdução de Sinais , Fatores de Transcrição/genética , Transfecção , Ubiquitinação
19.
Mol Cell ; 65(6): 1122-1135.e5, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28306507

RESUMO

Human breast cancers that exhibit high proportions of immune cells and elevated levels of pro-inflammatory cytokines predict poor prognosis. Here, we demonstrate that treatment of human MCF-7 breast cancer cells with pro-inflammatory cytokines results in ERα-dependent activation of gene expression and proliferation, in the absence of ligand or presence of 4OH-tamoxifen (TOT). Cytokine activation of ERα and endocrine resistance is dependent on phosphorylation of ERα at S305 in the hinge domain. Phosphorylation of S305 by IKKß establishes an ERα cistrome that substantially overlaps with the estradiol (E2)-dependent ERα cistrome. Structural analyses suggest that S305-P forms a charge-linked bridge with the C-terminal F domain of ERα that enables inter-domain communication and constitutive activity from the N-terminal coactivator-binding site, revealing the structural basis of endocrine resistance. ERα therefore functions as a transcriptional effector of cytokine-induced IKKß signaling, suggesting a mechanism through which the tumor microenvironment controls tumor progression and endocrine resistance.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/análogos & derivados , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Células Hep G2 , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Interleucina-1beta/metabolismo , Células MCF-7 , Simulação de Dinâmica Molecular , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Fosforilação , Conformação Proteica , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tamoxifeno/farmacologia , Transcrição Gênica , Transfecção , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
20.
Cell Mol Life Sci ; 81(1): 406, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287798

RESUMO

Doxorubicin (DOX) is an effective chemotherapeutic drug, but its use can lead to cardiomyopathy, which is the leading cause of mortality among cancer patients. Macrophages play a role in DOX-induced cardiomyopathy (DCM), but the mechanisms undlerlying this relationship remain unclear. This study aimed to investigate how IKKα regulates macrophage activation and contributes to DCM in a mouse model. Specifically, the role of macrophage IKKα was evaluated in macrophage-specific IKKα knockout mice that received DOX injections. The findings revealed increased expression of IKKα in heart tissues after DOX administration. In mice lacking macrophage IKKα, myocardial injury, ventricular remodeling, inflammation, and proinflammatory macrophage activation worsened in response to DOX administration. Bone marrow transplant studies confirmed that IKKα deficiency exacerbated cardiac dysfunction. Macrophage IKKα knockout also led to mitochondrial damage and metabolic dysfunction in macrophages, thereby resulting in increased cardiomyocyte injury and oxidative stress. Single-cell sequencing analysis revealed that IKKα directly binds to STAT3, leading to the activation of STAT3 phosphorylation at S727. Interestingly, the inhibition of STAT3-S727 phosphorylation suppressed both DCM and cardiomyocyte injury. In conclusion, the IKKα-STAT3-S727 signaling pathway was found to play a crucial role in DOX-induced cardiomyopathy. Targeting this pathway could be a promising therapeutic strategy for treating DOX-related heart failure.


Assuntos
Cardiomiopatias , Doxorrubicina , Quinase I-kappa B , Macrófagos , Camundongos Knockout , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Doxorrubicina/efeitos adversos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/genética , Camundongos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Ativação de Macrófagos/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA