Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.637
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 609(7928): 808-814, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104567

RESUMO

Complex I is the first enzyme in the respiratory chain, which is responsible for energy production in mitochondria and bacteria1. Complex I couples the transfer of two electrons from NADH to quinone and the translocation of four protons across the membrane2, but the coupling mechanism remains contentious. Here we present cryo-electron microscopy structures of Escherichia coli complex I (EcCI) in different redox states, including catalytic turnover. EcCI exists mostly in the open state, in which the quinone cavity is exposed to the cytosol, allowing access for water molecules, which enable quinone movements. Unlike the mammalian paralogues3, EcCI can convert to the closed state only during turnover, showing that closed and open states are genuine turnover intermediates. The open-to-closed transition results in the tightly engulfed quinone cavity being connected to the central axis of the membrane arm, a source of substrate protons. Consistently, the proportion of the closed state increases with increasing pH. We propose a detailed but straightforward and robust mechanism comprising a 'domino effect' series of proton transfers and electrostatic interactions: the forward wave ('dominoes stacking') primes the pump, and the reverse wave ('dominoes falling') results in the ejection of all pumped protons from the distal subunit NuoL. This mechanism explains why protons exit exclusively from the NuoL subunit and is supported by our mutagenesis data. We contend that this is a universal coupling mechanism of complex I and related enzymes.


Assuntos
Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons , Escherichia coli , Animais , Transporte de Elétrons , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli , Mutação , NAD/metabolismo , NADH Desidrogenase , Oxirredução , Subunidades Proteicas , Prótons , Quinonas/química , Quinonas/metabolismo , Eletricidade Estática , Água/química
2.
PLoS Pathog ; 20(2): e1012050, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422159

RESUMO

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , L-Lactato Desidrogenase , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Quinonas/metabolismo , Fosfatos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(12): e2217922120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913593

RESUMO

Cytochrome bc1 complexes are ubiquinol:cytochrome c oxidoreductases, and as such, they are centrally important components of respiratory and photosynthetic electron transfer chains in many species of bacteria and in mitochondria. The minimal complex has three catalytic components, which are cytochrome b, cytochrome c1, and the Rieske iron-sulfur subunit, but the function of mitochondrial cytochrome bc1 complexes is modified by up to eight supernumerary subunits. The cytochrome bc1 complex from the purple phototrophic bacterium Rhodobacter sphaeroides has a single supernumerary subunit called subunit IV, which is absent from current structures of the complex. In this work we use the styrene-maleic acid copolymer to purify the R. sphaeroides cytochrome bc1 complex in native lipid nanodiscs, which retains the labile subunit IV, annular lipids, and natively bound quinones. The catalytic activity of the four-subunit cytochrome bc1 complex is threefold higher than that of the complex lacking subunit IV. To understand the role of subunit IV, we determined the structure of the four-subunit complex at 2.9 Å using single particle cryogenic electron microscopy. The structure shows the position of the transmembrane domain of subunit IV, which lies across the transmembrane helices of the Rieske and cytochrome c1 subunits. We observe a quinone at the Qo quinone-binding site and show that occupancy of this site is linked to conformational changes in the Rieske head domain during catalysis. Twelve lipids were structurally resolved, making contacts with the Rieske and cytochrome b subunits, with some spanning both of the two monomers that make up the dimeric complex.


Assuntos
Rhodobacter sphaeroides , Rhodobacter sphaeroides/química , Citocromos c , Citocromos b , Estireno , Microscopia Crioeletrônica , Quinonas , Lipídeos , Complexo III da Cadeia de Transporte de Elétrons , Oxirredução
4.
Proc Natl Acad Sci U S A ; 120(13): e2214949120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36952383

RESUMO

Oxidative phosphorylation, the combined activity of the electron transport chain (ETC) and adenosine triphosphate synthase, has emerged as a valuable target for the treatment of infection by Mycobacterium tuberculosis and other mycobacteria. The mycobacterial ETC is highly branched with multiple dehydrogenases transferring electrons to a membrane-bound pool of menaquinone and multiple oxidases transferring electrons from the pool. The proton-pumping type I nicotinamide adenine dinucleotide (NADH) dehydrogenase (Complex I) is found in low abundance in the plasma membranes of mycobacteria in typical in vitro culture conditions and is often considered dispensable. We found that growth of Mycobacterium smegmatis in carbon-limited conditions greatly increased the abundance of Complex I and allowed isolation of a rotenone-sensitive preparation of the enzyme. Determination of the structure of the complex by cryoEM revealed the "orphan" two-component response regulator protein MSMEG_2064 as a subunit of the assembly. MSMEG_2064 in the complex occupies a site similar to the proposed redox-sensing subunit NDUFA9 in eukaryotic Complex I. An apparent purine nucleoside triphosphate within the NuoG subunit resembles the GTP-derived molybdenum cofactor in homologous formate dehydrogenase enzymes. The membrane region of the complex binds acyl phosphatidylinositol dimannoside, a characteristic three-tailed lipid from the mycobacterial membrane. The structure also shows menaquinone, which is preferentially used over ubiquinone by gram-positive bacteria, in two different positions along the quinone channel, comparable to ubiquinone in other structures and suggesting a conserved quinone binding mechanism.


Assuntos
Complexo I de Transporte de Elétrons , Ubiquinona , Complexo I de Transporte de Elétrons/metabolismo , Ubiquinona/metabolismo , Vitamina K 2 , Quinonas/metabolismo , Mycobacterium smegmatis/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(52): e2312110120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109539

RESUMO

Natural products that possess antibiotic and antitumor qualities are often suspected of working through oxidative mechanisms. In this study, two quinone-based small molecules were compared. Menadione, a classic redox-cycling compound, was confirmed to generate high levels of reactive oxygen species inside Escherichia coli. It inactivated iron-cofactored enzymes and blocked growth. However, despite the substantial levels of oxidants that it produced, it was unable to generate significant DNA damage and was not lethal. Streptonigrin, in contrast, was poorer at redox cycling and did not inactivate enzymes or block growth; however, even in low doses, it damaged DNA and killed cells. Its activity required iron and oxygen, and in vitro experiments indicated that its quinone moiety transferred electrons through the adjacent iron atom to oxygen. Additionally, in vitro experiments revealed that streptonigrin was able to damage DNA without inhibition by catalase, indicating that hydrogen peroxide was not involved. We infer that streptonigrin can reduce bound oxygen directly to a ferryl species, which then oxidizes the adjacent DNA, without release of superoxide or hydrogen peroxide intermediates. This scheme allows streptonigrin to kill a bacterial cell without interference by scavenging enzymes. Moreover, its minimal redox-cycling behavior avoids alerting either the OxyR or the SoxRS systems, which otherwise would block killing. This example highlights qualities that may be important in the design of oxidative drugs. These results also cast doubt on proposals that bacteria can be killed by stressors that merely stimulate intracellular O2- and H2O2 formation.


Assuntos
Peróxido de Hidrogênio , Oxidantes , Oxidantes/farmacologia , Oxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Estreptonigrina/metabolismo , Estresse Oxidativo , Escherichia coli/genética , Oxigênio/metabolismo , Ferro/metabolismo , DNA/metabolismo , Quinonas/metabolismo
6.
Crit Rev Biochem Mol Biol ; 58(1): 36-49, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098102

RESUMO

Disulfide bond formation is a catalyzed reaction essential for the folding and stability of proteins in the secretory pathway. In prokaryotes, disulfide bonds are generated by DsbB or VKOR homologs that couple the oxidation of a cysteine pair to quinone reduction. Vertebrate VKOR and VKOR-like enzymes have gained the epoxide reductase activity to support blood coagulation. The core structures of DsbB and VKOR variants share the architecture of a four-transmembrane-helix bundle that supports the coupled redox reaction and a flexible region containing another cysteine pair for electron transfer. Despite considerable similarities, recent high-resolution crystal structures of DsbB and VKOR variants reveal significant differences. DsbB activates the cysteine thiolate by a catalytic triad of polar residues, a reminiscent of classical cysteine/serine proteases. In contrast, bacterial VKOR homologs create a hydrophobic pocket to activate the cysteine thiolate. Vertebrate VKOR and VKOR-like maintain this hydrophobic pocket and further evolved two strong hydrogen bonds to stabilize the reaction intermediates and increase the quinone redox potential. These hydrogen bonds are critical to overcome the higher energy barrier required for epoxide reduction. The electron transfer process of DsbB and VKOR variants uses slow and fast pathways, but their relative contribution may be different in prokaryotic and eukaryotic cells. The quinone is a tightly bound cofactor in DsbB and bacterial VKOR homologs, whereas vertebrate VKOR variants use transient substrate binding to trigger the electron transfer in the slow pathway. Overall, the catalytic mechanisms of DsbB and VKOR variants have fundamental differences.


Assuntos
Bactérias , Cisteína , Cisteína/metabolismo , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/metabolismo , Oxirredução , Bactérias/metabolismo , Quinonas , Dissulfetos/química , Dissulfetos/metabolismo , Proteínas de Bactérias/metabolismo
7.
J Biol Chem ; 300(5): 107149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479599

RESUMO

Persulfides (RSSH/RSS-) participate in sulfur metabolism and are proposed to transduce hydrogen sulfide (H2S) signaling. Their biochemical properties are poorly understood. Herein, we studied the acidity and nucleophilicity of several low molecular weight persulfides using the alkylating agent, monobromobimane. The different persulfides presented similar pKa values (4.6-6.3) and pH-independent rate constants (3.2-9.0 × 103 M-1 s-1), indicating that the substituents in persulfides affect properties to a lesser extent than in thiols because of the larger distance to the outer sulfur. The persulfides had higher reactivity with monobromobimane than analogous thiols and putative thiols with the same pKa, providing evidence for the alpha effect (enhanced nucleophilicity by the presence of a contiguous atom with high electron density). Additionally, we investigated two enzymes from the human mitochondrial H2S oxidation pathway that form catalytic persulfide intermediates, sulfide quinone oxidoreductase and thiosulfate sulfurtransferase (TST, rhodanese). The pH dependence of the activities of both enzymes was measured using sulfite and/or cyanide as sulfur acceptors. The TST half-reactions were also studied by stopped-flow fluorescence spectroscopy. Both persulfidated enzymes relied on protonated groups for reaction with the acceptors. Persulfidated sulfide quinone oxidoreductase appeared to have a pKa of 7.8 ± 0.2. Persulfidated TST presented a pKa of 9.38 ± 0.04, probably due to a critical active site residue rather than the persulfide itself. The TST thiol reacted in the anionic state with thiosulfate, with an apparent pKa of 6.5 ± 0.1. Overall, our study contributes to a fundamental understanding of persulfide properties and their modulation by protein environments.


Assuntos
Sulfetos , Tiossulfato Sulfurtransferase , Humanos , Compostos Bicíclicos com Pontes , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxirredução , Quinona Redutases/metabolismo , Quinona Redutases/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Tiossulfato Sulfurtransferase/química , Quinonas/química , Quinonas/metabolismo , Especificidade por Substrato
8.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115403

RESUMO

Photosystem II (PSII), the water/plastoquinone photo-oxidoreductase, plays a key energy input role in the biosphere. [Formula: see text], the reduced semiquinone form of the nonexchangeable quinone, is often considered capable of a side reaction with O2, forming superoxide, but this reaction has not yet been demonstrated experimentally. Here, using chlorophyll fluorescence in plant PSII membranes, we show that O2 does oxidize [Formula: see text] at physiological O2 concentrations with a t1/2 of 10 s. Superoxide is formed stoichiometrically, and the reaction kinetics are controlled by the accessibility of O2 to a binding site near [Formula: see text], with an apparent dissociation constant of 70 ± 20 µM. Unexpectedly, [Formula: see text] could only reduce O2 when bicarbonate was absent from its binding site on the nonheme iron (Fe2+) and the addition of bicarbonate or formate blocked the O2-dependant decay of [Formula: see text] These results, together with molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations, indicate that electron transfer from [Formula: see text] to O2 occurs when the O2 is bound to the empty bicarbonate site on Fe2+ A protective role for bicarbonate in PSII was recently reported, involving long-lived [Formula: see text] triggering bicarbonate dissociation from Fe2+ [Brinkert et al, Proc. Natl. Acad. Sci. U.S.A. 113, 12144-12149 (2016)]. The present findings extend this mechanism by showing that bicarbonate release allows O2 to bind to Fe2+ and to oxidize [Formula: see text] This could be beneficial by oxidizing [Formula: see text] and by producing superoxide, a chemical signal for the overreduced state of the electron transfer chain.


Assuntos
Bicarbonatos/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clorofila/metabolismo , Transporte de Elétrons/fisiologia , Formiatos/metabolismo , Oxirredução , Quinonas/metabolismo , Spinacia oleracea/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(27): e2123090119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759670

RESUMO

Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is essential for cellular energy metabolism coupling NADH oxidation to proton translocation. The mechanism of proton translocation by complex I is still under debate. Its membrane arm contains an unusual central axis of polar and charged amino acid residues connecting the quinone binding site with the antiporter-type subunits NuoL, NuoM, and NuoN, proposed to catalyze proton translocation. Quinone chemistry probably causes conformational changes and electrostatic interactions that are propagated through these subunits by a conserved pattern of predominantly lysine, histidine, and glutamate residues. These conserved residues are thought to transfer protons along and across the membrane arm. The distinct charge distribution in the membrane arm is a prerequisite for proton translocation. Remarkably, the central subunit NuoM contains a conserved glutamate residue in a position that is taken by a lysine residue in the two other antiporter-type subunits. It was proposed that this charge asymmetry is essential for proton translocation, as it should enable NuoM to operate asynchronously with NuoL and NuoN. Accordingly, we exchanged the conserved glutamate in NuoM for a lysine residue, introducing charge symmetry in the membrane arm. The stably assembled variant pumps protons across the membrane, but with a diminished H+/e- stoichiometry of 1.5. Thus, charge asymmetry is not essential for proton translocation by complex I, casting doubts on the suggestion of an asynchronous operation of NuoL, NuoM, and NuoN. Furthermore, our data emphasize the importance of a balanced charge distribution in the protein for directional proton transfer.


Assuntos
Membrana Celular , Complexo I de Transporte de Elétrons , Proteínas de Escherichia coli , NADH Desidrogenase , Substituição de Aminoácidos , Membrana Celular/química , Sequência Conservada , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamatos/química , Glutamatos/genética , Lisina/química , Lisina/genética , NADH Desidrogenase/química , NADH Desidrogenase/genética , Prótons , Quinonas/química
10.
J Biol Chem ; 299(7): 104839, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209822

RESUMO

Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.


Assuntos
Elétrons , Modelos Moleculares , Oxidantes , Complexo de Proteína do Fotossistema II , Benzoquinonas/química , Transporte de Elétrons , Oxidantes/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Quinonas/química , Quinonas/metabolismo , Água/química , Sítios de Ligação , Estrutura Terciária de Proteína , Difração de Raios X , Cianobactérias/química , Cianobactérias/fisiologia
11.
Biochem Biophys Res Commun ; 690: 149096, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988924

RESUMO

Electron-driven process helps the living organism in the generations of energy, biomass production and detoxification of synthetic compounds. Soluble quinone oxidoreductases (QORs) mediate the transfer of an electron from NADPH to various quinone and other compounds, helping in the detoxification of quinones. QORs play a crucial role in cellular metabolism and are thus potential targets for drug development. Here we report the crystal structure of the NADPH-dependent QOR from Leishmania donovani (LdQOR) at 2.05 Å. The enzyme exists as a homo-dimer, with each protomer consisting of two domains, responsible for binding NADPH cofactor and the substrate. Interestingly, the human QOR exists as a tetramer. Comparative analysis of the oligomeric interfaces of LdQOR with HsQOR shows no significant differences in the protomer/dimer assembly. The tetrameric interface of HsQOR is stabilized by salt bridges formed between Arg 169 and Glu 271 which is non-existent in LdQOR, with an Alanine replacing the glutamate. This distinct feature is conserved across other dimeric QORs, indicating the importance of this interaction for tetramer association. Among the homologs, the sequences of the loop region involved in the stabilization and binding of the adenine ring of the NADPH shows significant differences except for an Arginine & glycine residues. In dimer QORs, this Arginine acts as a gate to the co-factor, while the NADPH binding mode in the human homolog is distinct, stabilized by His 200 and Asn 229, which are not conserved in LdQOR. These distinct features have the potential to be utilized for therapeutic interventions.


Assuntos
NAD(P)H Desidrogenase (Quinona) , Quinona Redutases , Humanos , NADP/metabolismo , Subunidades Proteicas , NAD(P)H Desidrogenase (Quinona)/metabolismo , Quinona Redutases/química , Quinona Redutases/metabolismo , Quinonas , Arginina , Sítios de Ligação , Cristalografia por Raios X
12.
Photosynth Res ; 159(2-3): 115-131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37093503

RESUMO

Photosystem I from the menB strain of Synechocystis sp. PCC 6803 containing foreign quinones in the A1 sites was used for studying the primary steps of electron transfer by pump-probe femtosecond laser spectroscopy. The free energy gap (- ΔG) of electron transfer between the reduced primary acceptor A0 and the quinones bound in the A1 site varied from 0.12 eV for the low-potential 1,2-diamino-anthraquinone to 0.88 eV for the high-potential 2,3-dichloro-1,4-naphthoquinone, compared to 0.5 eV for the native phylloquinone. It was shown that the kinetics of charge separation between the special pair chlorophyll P700 and the primary acceptor A0 was not affected by quinone substitutions, whereas the rate of A0 → A1 electron transfer was sensitive to the redox-potential of quinones: the decrease of - ΔG by 400 meV compared to the native phylloquinone resulted in a ~ fivefold slowing of the reaction The presence of the asymmetric inverted region in the ΔG dependence of the reaction rate indicates that the electron transfer in photosystem I is controlled by nuclear tunneling and should be treated in terms of quantum electron-phonon interactions. A three-mode implementation of the multiphonon model, which includes modes around 240 cm-1 (large-scale protein vibrations), 930 cm-1 (out-of-plane bending of macrocycles and protein backbone vibrations), and 1600 cm-1 (double bonds vibrations) was applied to rationalize the observed dependence. The modes with a frequency of at least 1600 cm-1 make the predominant contribution to the reorganization energy, while the contribution of the "classical" low-frequency modes is only 4%.


Assuntos
Benzoquinonas , Complexo de Proteína do Fotossistema I , Synechocystis , Complexo de Proteína do Fotossistema I/metabolismo , Vitamina K 1/metabolismo , Transporte de Elétrons , Quinonas/metabolismo , Synechocystis/metabolismo , Cinética
13.
Drug Metab Dispos ; 52(3): 188-197, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123940

RESUMO

Dihydrotanshinone I (DHTI) is a pharmacologically active component occurring in the roots of the herbal medicine Salvia miltiorrhiza Bunge. This study investigated DHTI-induced inhibition of CYP1A1, CYP1A2, and CYP1B1 with the aim to determine the potential effects of DHTI on the bioactivation of estradiol (E2), possibly related to preventive/therapeutic strategy for E2-associated breast cancer. Ethoxyresorufin as a specific substrate for CYP1s was incubated with human recombinant CYP1A1, CYP1A2, or CYP1B1 in the presence of DHTI at various concentrations. Enzymatic inhibition and kinetic behaviors were examined by monitoring the formation of the corresponding product. Molecular docking was further conducted to define the interactions between DHTI and the three CYP1s. The same method and procedure were employed to examine the DHTI-induced alteration of E2 metabolism. DHTI showed significant inhibition of ethoxyresorufin O-deethylation activity catalyzed by CYP1A1, CYP1A2 and CYP1B1 in a concentration-dependent manner (IC50 = 0.56, 0.44, and 0.11 µM, respectively). Kinetic analysis showed that DHTI acted as a competitive type of inhibitor of CYP1A1 and CYP1B1, whereas it noncompetitively inhibited CYP1A2. The observed enzyme inhibition was independent of NADPH and time. Molecular docking analysis revealed hydrogen bonding interactions between DHTI and Asp-326 of CYP1B1. Moreover, DHTI displayed preferential activity to inhibit 4-hydroxylation of E2 (a genotoxic pathway) mediated by CYP1B1. Exposure to DHTI could reduce the risk of genotoxicity induced by E2. SIGNIFICANCE STATEMENT: CYP1A1, CYP1A2, and CYP1B1 enzymes are involved in the conversion of estradiol (E2) into 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2) through oxidation. 2-OHE2 is negatively correlated with breast cancer risk, and 4-OHE2 may be a significant initiator and promoter of breast cancer. The present study revealed that dihydrotanshinone I (DHTI) competitively inhibits CYP1A1/CYP1B1 and noncompetitively inhibits CYP1A2. DHTI exhibits a preference for inhibiting the genotoxicity associated with E2 4-hydroxylation pathway mediated by CYP1B1, potentially reducing the risk of 4-OHE2-induced genotoxicity.


Assuntos
Neoplasias da Mama , Citocromo P-450 CYP1A2 , Furanos , Fenantrenos , Quinonas , Humanos , Feminino , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Simulação de Acoplamento Molecular , Cinética , Citocromo P-450 CYP1B1/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo
14.
J Biol Inorg Chem ; 29(4): 455-475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38780762

RESUMO

Ferritins are multimeric nanocage proteins that sequester/concentrate excess of free iron and catalytically synthesize a hydrated ferric oxyhydroxide bio-mineral. Besides functioning as the primary intracellular iron storehouses, these supramolecular assemblies also oversee the controlled release of iron to meet physiologic demands. By virtue of the reducing nature of the cytosol, reductive dissolution of ferritin-iron bio-mineral by physiologic reducing agents might be a probable pathway operating in vivo. Herein, to explore this reductive iron-release pathway, a series of quinone analogs differing in size, position/nature of substituents and redox potentials were employed to relay electrons from physiologic reducing agent, NADH, to the ferritin core. Quinones are well known natural electron/proton mediators capable of facilitating both 1/2 electron transfer processes and have been implicated in iron/nutrient acquisition in plants and energy transduction. Our findings on the structure-reactivity of quinone mediators highlight that iron release from ferritin is dictated by electron-relay capability (dependent on E1/2 values) of quinones, their molecular structure (i.e., the presence of iron-chelation sites and the propensity for H-bonding) and the type/amount of reactive oxygen species (ROS) they generate in situ. Juglone/Plumbagin released maximum iron due to their intermediate E1/2 values, presence of iron chelation sites, the ability to inhibit in situ generation of H2O2 and form intramolecular H-bonding (possibly promotes semiquinone formation). This study may strengthen our understanding of the ferritin-iron-release process and their significance in bioenergetics/O2-based cellular metabolism/toxicity while providing insights on microbial/plant iron acquisition and the dynamic host-pathogen interactions.


Assuntos
Ferritinas , Ferro , NAD , Oxirredução , Quinonas , Espécies Reativas de Oxigênio , Ferritinas/química , Ferritinas/metabolismo , Ferro/metabolismo , Ferro/química , NAD/metabolismo , NAD/química , Oxigênio/metabolismo , Oxigênio/química , Quinonas/química , Quinonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mycobacterium
15.
Chemistry ; 30(33): e202400082, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38628039

RESUMO

Fagopyrins are phenantroperylenequinones present in the flowers of Fagopyrum esculentum (buckwheat) endowed with photodynamic activity. It has been reported that fagopyrin extracts actually contain a complex mixture of closely related compounds, differing only on the nature of the perylenequinone substituents. We report our systematic and detailed study on the chemical composition of fagopyrin extracts by a combination of preparative and analytical techniques. The combined use of 1H-NMR and CD spectroscopy was found to be particularly suited to fully characterize all stereochemical aspects of the extracted fagopyrins. For the first time nine isomers have been structurally characterized and their stereochemistry fully elucidated. The presence of two different heterocyclic ring substituents, two stereogenic centers and the inherent axial chirality of the aromatic system provides a complex stereochemical relationships among isomers, thus giving account of the high level of molecular multiplicity found in the extract.


Assuntos
Dicroísmo Circular , Fagopyrum , Flores , Fagopyrum/química , Flores/química , Estereoisomerismo , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Estrutura Molecular , Extratos Vegetais/química , Quinonas
16.
Artigo em Inglês | MEDLINE | ID: mdl-39073408

RESUMO

Two Gram-stain-negative, aerobic, rod-shaped, non-endospore-forming and motile bacterial strains, designated IT1137T and S025T, were isolated from an intertidal sediment sample collected from the Fildes Peninsula (King George Island, Maritime Antarctica) and a soil sample under red snow in the Ny-Ålesund region (Svalbard, High Arctic), respectively. The 16S rRNA gene sequence similarity values grouped them in the genus Pseudomonas. The two strains were characterized phenotypically using API 20E, API 20NE, API ZYM and Biolog GENIII tests and chemotaxonomically by their fatty acid contents, polar lipids and respiratory quinones. Multilocus sequence analysis (concatenated 16S rRNA, gyrB, rpoB and rpoD sequences), together with genome comparisons by average nucleotide identity and digital DNA-DNA hybridization, were performed. The results showed that the similarity values of the two isolates with the type strains of related Pseudomonas species were below the recognized thresholds for species definition. Based on polyphasic taxonomy analysis, it can be concluded that strains IT1137T and S025T represent two novel species of the genus Pseudomonas, for which the names Pseudomonas paeninsulae sp. nov. (type strain IT1137T=PMCC 100533T=CCTCC AB 2023226T=JCM 36637T) and Pseudomonas svalbardensis sp. nov. (type strain S025T=PMCC 200367T= CCTCC AB 2023225T=JCM 36638T) are proposed.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Filogenia , Pseudomonas , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , RNA Ribossômico 16S/genética , Pseudomonas/genética , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Sedimentos Geológicos/microbiologia , DNA Bacteriano/genética , Regiões Árticas , Regiões Antárticas , Ácidos Graxos/análise , Svalbard , Composição de Bases , Quinonas/análise
17.
Org Biomol Chem ; 22(5): 1038-1046, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197499

RESUMO

This paper describes a simple and practical protocol for the direct synthesis of acyclic and cyclic quinone derivatives via an acid-promoted nickel(II)-catalyzed inner rim C-H oxidation of cyclotriveratrylene (CTV) and its analogues. The cyclic quinone derivatives resulted from trimethoxy-cyclotriveratrylene (TCTV) through C-C bond formation via intramolecular ipso substitution followed by subsequent anionic rearrangement containing stereo-vicinal quaternary centers. The DFT calculations strongly support the experimental findings and reveal the role of Brønsted acids in the C-H bond activation of CTV. All the newly synthesized compounds were screened for their in vitro anti-cancer activity using colorimetric SRB assay analysis. Among them, compounds 3a, 3d, 3h, 4a, 4b, 4c and 4e exhibited moderate anticancer activity against A549, HCT-116, PC-3, MDA-MB-231, HEK-293 and SW620 human cancer cell lines.


Assuntos
Antineoplásicos , Compostos Policíclicos , Humanos , Quinonas/farmacologia , Células HEK293 , Antineoplásicos/química , Catálise
18.
Environ Sci Technol ; 58(13): 5921-5931, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512777

RESUMO

Identifying transformed emerging contaminants in complex environmental compartments is a challenging but meaningful task. Substituted para-phenylenediamine quinones (PPD-quinones) are emerging contaminants originating from rubber antioxidants and have been proven to be toxic to the aquatic species, especially salmonids. The emergence of multiple PPD-quinones in various environmental matrices and evidence of their specific hazards underscore the need to understand their environmental occurrences. Here, we introduce a fragmentation pattern-based nontargeted screening strategy combining full MS/All ion fragmentation/neutral loss-ddMS2 scans to identify potential unknown PPD-quinones in different environmental matrices. Using diagnostic fragments of m/z 170.0600, 139.0502, and characteristic neutral losses of 199.0633, 138.0429 Da, six known and three novel PPD-quinones were recognized in air particulates, surface soil, and tire tissue. Their specific structures were confirmed, and their environmental concentration and composition profiles were clarified with self-synthesized standards. N-(1-methylheptyl)-N'-phenyl-1,4-benzenediamine quinone (8PPD-Q) and N,N'-di(1,3-dimethylbutyl)-p-phenylenediamine quinone (66PD-Q) were identified and quantified for the first time, with their median concentrations found to be 0.02-0.21 µg·g-1 in tire tissue, 0.40-2.76 pg·m-3 in air particles, and 0.23-1.02 ng·g-1 in surface soil. This work provides new evidence for the presence of unknown PPD-quinones in the environment, showcasing a potential strategy for screening emerging transformed contaminants in the environment.


Assuntos
Fenilenodiaminas , Quinonas , Fenilenodiaminas/química , Benzoquinonas , Solo
19.
Bioorg Chem ; 143: 107021, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104499

RESUMO

The diagnosis and treatment of breast cancer is of immense importance in improving patient outcomes. The biological marker NAD(P)H:quinone oxidoreductase 1 was utilized to design BrCyS-Q, a near-infrared activatable photosensitizer for breast cancer. BrCyS-Q was successfully employed to diagnose breast cancer cells using fluorescence and photodynamic inhibition. The findings of this research may offer novel insights for the diagnosis and treatment of clinical breast cancer via photodynamic therapy.


Assuntos
Neoplasias da Mama , Fotoquimioterapia , Humanos , Feminino , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Quinonas , Fluorescência
20.
Bioorg Chem ; 143: 107015, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086241

RESUMO

Conventional topoisomerase (Topo) inhibitors typically usually exert their cytotoxicity by damaging the DNAs, which exhibit high toxicity and tend to result in secondary carcinogenesis risk. Molecules that have potent topoisomerase inhibitory activity but involve less DNA damage provide more desirable scaffolds for developing novel chemotherapeutic agents. In this work, we broke the rigid pentacyclic system of luotonin A and synthesized thirty-three compounds as potential Topo inhibitors based on the devised molecular motif. Further investigation disclose that two compounds with the highest antiproliferation activity against cancer cells, 5aA and 5dD, had a distinct Topo I inhibitory mechanism different from those of the classic Topo I inhibitors CPT or luteolin, and were able to obviate the obvious cellular DNA damage typically associated with clinically available Topo inhibitors. The animal model experiments demonstrated that even in mice treated with a high dosage of 50 mg/kg 5aA, there were no obvious signs of toxicity or loss of body weight. The tumor growth inhibition (TGI) rate was 54.3 % when 20 mg/kg 5aA was given to the T24 xenograft mouse model, and 5aA targeted the cancer tissue precisely without causing damage to the liver and other major organs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Antineoplásicos/farmacologia , Quinonas , Pirróis , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase II/farmacologia , DNA Topoisomerases Tipo II , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA