Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(11): 1359-1370, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32929274

RESUMO

Elucidating the mechanisms that sustain asthmatic inflammation is critical for precision therapies. We found that interleukin-6- and STAT3 transcription factor-dependent upregulation of Notch4 receptor on lung tissue regulatory T (Treg) cells is necessary for allergens and particulate matter pollutants to promote airway inflammation. Notch4 subverted Treg cells into the type 2 and type 17 helper (TH2 and TH17) effector T cells by Wnt and Hippo pathway-dependent mechanisms. Wnt activation induced growth and differentiation factor 15 expression in Treg cells, which activated group 2 innate lymphoid cells to provide a feed-forward mechanism for aggravated inflammation. Notch4, Wnt and Hippo were upregulated in circulating Treg cells of individuals with asthma as a function of disease severity, in association with reduced Treg cell-mediated suppression. Our studies thus identify Notch4-mediated immune tolerance subversion as a fundamental mechanism that licenses tissue inflammation in asthma.


Assuntos
Asma/etiologia , Asma/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Receptor Notch4/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Alérgenos/imunologia , Análise de Variância , Asma/diagnóstico , Biomarcadores , Suscetibilidade a Doenças , Expressão Gênica , Via de Sinalização Hippo , Humanos , Tolerância Imunológica , Imunofenotipagem , Proteínas Serina-Treonina Quinases/metabolismo , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Via de Sinalização Wnt
2.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915108

RESUMO

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Celular , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Receptor Notch4/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Anfirregulina/farmacologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Pneumonia Viral/patologia , Receptor Notch4/antagonistas & inibidores , Receptor Notch4/genética , Índice de Gravidade de Doença
4.
Int Immunol ; 35(10): 497-509, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37478314

RESUMO

IL-13 signaling polarizes macrophages to an M2 alternatively activated phenotype, which regulates tissue repair and anti-inflammatory responses. However, an excessive activation of this pathway leads to severe pathologies, such as allergic airway inflammation and asthma. In this work, we identified NOTCH4 receptor as an important modulator of M2 macrophage activation. We show that the expression of NOTCH4 is induced by IL-13, mediated by Janus kinases and AP1 activity, probably mediated by the IL-13Rα1 and IL-13Rα2 signaling pathway. Furthermore, we demonstrate an important role for NOTCH4 signaling in the IL-13 induced gene expression program in macrophages, including various genes that contribute to pathogenesis of the airways in asthma, such as ARG1, YM1, CCL24, IL-10, or CD-163. We also demonstrate that NOTCH4 signaling modulates IL-13-induced gene expression by increasing IRF4 activity, mediated, at least in part, by the expression of the histone H3K27me3 demethylase JMJD3, and by increasing AP1-dependent transcription. In summary, our results provide evidence for an important role of NOTCH4 signaling in alternative activation of macrophages by IL-13 and suggest that NOTCH4 may contribute to the increased severity of lesions in M2 inflammatory responses, such as allergic asthma, which points to NOTCH4 as a potential new target for the treatment of these pathologies.


Assuntos
Asma , Interleucina-13 , Humanos , Macrófagos/metabolismo , Inflamação/metabolismo , Transdução de Sinais/genética , Receptor Notch4/metabolismo
5.
Angiogenesis ; 26(2): 249-263, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36376768

RESUMO

The Notch signaling pathway is an important therapeutic target for the treatment of inflammatory diseases and cancer. We previously created ligand-specific inhibitors of Notch signaling comprised of Fc fusions to specific EGF-like repeats of the Notch1 extracellular domain, called Notch decoys, which bound ligands, blocked Notch signaling, and showed anti-tumor activity with low toxicity. However, the study of their function depended on virally mediated expression, which precluded dosage control and limited clinical applicability. We have refined the decoy design to create peptibody-based Notch inhibitors comprising the core binding domains, EGF-like repeats 10-14, of either Notch1 or Notch4. These Notch peptibodies showed high secretion properties and production yields that were improved by nearly 100-fold compared to previous Notch decoys. Using surface plasmon resonance spectroscopy coupled with co-immunoprecipitation assays, we observed that Notch1 and Notch4 peptibodies demonstrate strong but distinct binding properties to Notch ligands DLL4 and JAG1. Both Notch1 and Notch4 peptibodies interfere with Notch signaling in endothelial cells and reduce expression of canonical Notch targets after treatment. While prior DLL4 inhibitors cause hyper-sprouting, the Notch1 peptibody reduced angiogenesis in a 3-dimensional in vitro sprouting assay. Administration of Notch1 peptibodies to neonate mice resulted in reduced radial outgrowth of retinal vasculature, confirming anti-angiogenic properties. We conclude that purified Notch peptibodies comprising EGF-like repeats 10-14 bind to both DLL4 and JAG1 ligands and exhibit anti-angiogenic properties. Based on their secretion profile, unique Notch inhibitory activities, and anti-angiogenic properties, Notch peptibodies present new opportunities for therapeutic Notch inhibition.


Assuntos
Inibidores da Angiogênese , Células Endoteliais , Receptor Notch1 , Receptor Notch4 , Animais , Camundongos , Inibidores da Angiogênese/genética , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Imunoprecipitação , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vasos Retinianos/efeitos dos fármacos , Ressonância de Plasmônio de Superfície
6.
Eur Neurol ; 86(2): 107-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724752

RESUMO

INTRODUCTION: Brain arteriovenous malformations (BAVMs) are high-flow intracranial vascular malformations characterized by the direct connection of arteries to veins without an intervening capillary bed. They are one of the main causes of intracranial hemorrhage and epilepsy, although morbidity is low. Angiogenesis, heredity, inflammation, and arteriovenous malformation syndromes play important roles in BAVM formation. Animal experiments and previous studies have confirmed that NOTCH4 may be associated with BAVM development. Our study identifies a connection between NOTCH4 gene polymorphisms and BAVM in a Chinese Han population. METHODS: We enrolled 150 patients with BAVMs confirmed by digital subtraction angiography (DSA) in the Department of Neurosurgery, Zhujiang Hospital, Southern Medical University from June 2017 to July 2019. Simultaneously, 150 patients without cerebrovascular disease were confirmed by computed tomography angiography/magnetic resonance angiography/DSA. DNA was extracted from peripheral blood and NOTCH4 genotypes were identified by PCR-ligase detection reaction. The χ2 test or Fisher's exact test was used to evaluate the differences in allele and genotype frequencies between the BAVM group, control group, bleeding group, and other complications. RESULTS: Two single-nucleotide polymorphisms (SNPs), rs443198 and rs438475, were significantly associated with BAVM. No SNP genotypes were significantly associated with hemorrhage or epilepsy. SNPs rs443198_AA-SNP and rs438475_AA-SNP may be associated with a lower risk of BAVM (p = 0.011, odds ratio (OR) = 0.459, 95% confidence interval (CI): 0.250-0.845; p = 0.033, OR = 0.759, 95% CI: 0.479-1.204). CONCLUSION: NOTCH4 gene polymorphisms were associated with BAVM and may be a risk factor in a Chinese Han population.


Assuntos
Epilepsia , Malformações Arteriovenosas Intracranianas , Humanos , Polimorfismo de Nucleotídeo Único , População do Leste Asiático , Encéfalo/patologia , Malformações Arteriovenosas Intracranianas/cirurgia , Receptor Notch4/genética
7.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108670

RESUMO

The Notch signalling pathway is one of the most conserved and well-characterised pathways involved in cell fate decisions and the development of many diseases, including cancer. Among them, it is worth noting the Notch4 receptor and its clinical application, which may have prognostic value in patients with colon adenocarcinoma. The study was performed on 129 colon adenocarcinomas. Immunohistochemical and fluorescence expression of Notch4 was performed using the Notch4 antibody. The associations between the IHC expression of Notch4 and clinical parameters were analysed using the Chi2 test or Chi2Yatesa test. The Kaplan-Meier analysis and the log-rank test were used to verify the relationship between the intensity of Notch4 expression and the 5-year survival rate of patients. Intracellular localisation of Notch4 was detected by the use of the immunogold labelling method and TEM. 101 (78.29%) samples had strong Notch4 protein expression, and 28 (21.71%) samples were characterised by low expression. The high expression of Notch4 was clearly correlated with the histological grade of the tumour (p < 0.001), PCNA immunohistochemical expression (p < 0.001), depth of invasion (p < 0.001) and angioinvasion (p < 0.001). We can conclude that high expression of Notch4 is correlated with poor prognosis of colon adenocarcinoma patients (log-rank, p < 0.001).


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Receptor Notch4/metabolismo , Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Imuno-Histoquímica , Transdução de Sinais , Receptores Notch
8.
Hepatology ; 74(3): 1164-1173, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33721342

RESUMO

BACKGROUND AND AIMS: Direct-acting antivirals (DAAs) usually lead to improvement/remission of cryoglobulinemic vasculitis (CV), although symptoms may persist/recur after a sustained virological response (SVR). We evaluated hematological and genetic markers in patients with HCV-SVR vasculitis with and without persisting/recurring symptoms to early predict the CV outcome. APPROACH AND RESULTS: Ninety-eight patients with HCV-CV were prospectively enrolled after a DAA-induced SVR: Group A: 52 with complete clinical response; Group B: 46 with symptom maintenance/recurrence. Monoclonal B-cell lymphocytosis, t(14;18) translocation, and abnormal free light chains κ/λ ratios were detected by flow cytometry or nested-PCR or nephelometry in 4% Group A versus 17% Group B (P = 0.04) patients, 17% Group A versus 40% Group B patients (P = 0.02), and 17% Group A versus 47% Group B (P = 0.003) patients, respectively. At least 1 out of 3 clonality markers was altered/positive in 29% of Group A versus 70% of Group B patients (P < 0.0001). When available, pretherapy samples were also tested for t(14;18) translocation (detected in 12/37 [32%] Group A and 21/38 [55%] Group B) and κ/λ ratios (abnormal in 5/35 [14%] Group A and 20/38 [53%] Group B) (P = 0.0006), whereas at least one clonality marker was detected/altered in 16/37 (43%) Group A and 30/38 (79%) Group B (P = 0.002). CV-associated single-nucleotide polymorphisms were tested by real-time PCR. Among them, notch4 rs2071286 T minor allele and TT genotype showed a higher frequency in Group B versus Group A (46% vs. 29%, P = 0.01, and 17% vs. 2%, P = 0.006, respectively). CONCLUSIONS: Hematological or genetic analyses could be used to foresee the CV clinical response after DAA therapy and could be valuable to assess a rational flowchart to manage CV during follow-up.


Assuntos
Antivirais/uso terapêutico , Crioglobulinemia/sangue , Hepatite C Crônica/tratamento farmacológico , Vasculite/sangue , Idoso , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 18/genética , Crioglobulinemia/genética , Feminino , Hepatite C Crônica/sangue , Hepatite C Crônica/genética , Humanos , Cadeias kappa de Imunoglobulina/sangue , Cadeias lambda de Imunoglobulina/sangue , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico , Receptor Notch4/genética , Recidiva , Resposta Viral Sustentada , Translocação Genética , Vasculite/genética
9.
Respir Res ; 23(1): 6, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016680

RESUMO

BACKGROUND: Hypoxic pulmonary hypertension (HPH) is a chronic progressive advanced disorder pathologically characterized by pulmonary vascular remodeling. Notch4 as a cell surface receptor is critical for vascular development. However, little is known about the role and mechanism of Notch4 in the development of hypoxic vascular remodeling. METHODS: Lung tissue samples were collected to detect the expression of Notch4 from patients with HPH and matched controls. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic and normoxic conditions. Real-time quantitative PCR and western blotting were used to examine the mRNA and protein levels of Notch4. HPASMCs were transfected with small interference RNA (siRNA) against Notch4 or Notch4 overexpression plasmid, respectively. Cell viability, cell proliferation, apoptosis, and migration were assessed using Cell Counting Kit-8, Edu, Annexin-V/PI, and Transwell assay. The interaction between Notch4 and ERK, JNK, P38 MAPK were analyzed by co-immunoprecipitation. Adeno-associated virus 1-mediated siRNA against Notch4 (AAV1-si-Notch4) was injected into the airways of hypoxic rats. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular remodeling were evaluated. RESULTS: In this study, we demonstrate that Notch4 is highly expressed in the media of pulmonary vascular and is upregulated in lung tissues from patients with HPH and HPH rats compared with control groups. In vitro, hypoxia induces the high expression of Delta-4 and Notch4 in HPASMCs. The increased expression of Notch4 promotes HPASMCs proliferation and migration and inhibits cells apoptosis via ERK, JNK, P38 signaling pathways. Furthermore, co-immunoprecipitation result elucidates the interaction between Notch4 and ERK/JNK/P38. In vivo, silencing Notch4 partly abolished the increase in RVSP and pulmonary vascular remodeling caused by hypoxia in HPH rats. CONCLUSIONS: These findings reveal an important role of the Notch4-ERK/JNK/P38 MAPK axis in hypoxic pulmonary remodeling and provide a potential therapeutic target for patients with HPH.


Assuntos
Regulação da Expressão Gênica , Hipertensão Pulmonar/genética , Hipóxia/complicações , Miócitos de Músculo Liso/metabolismo , Receptor Notch4/genética , Remodelação Vascular/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipóxia/genética , Hipóxia/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor Notch4/biossíntese , Transdução de Sinais , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese
10.
J Med Genet ; 58(10): 666-678, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32900838

RESUMO

The association between NOTCH4 and schizophrenia has been repeatedly reported. However, the results from different genetic studies are inconsistent, and the role of NOTCH4 in schizophrenia pathogenesis remains unknown. Here, we provide convergent lines of evidence that support NOTCH4 as a schizophrenia risk gene. We first performed a meta-analysis and found that a genetic variant (rs2071287) in NOTCH4 was significantly associated with schizophrenia (a total of 125 848 subjects, p=8.31×10-17), with the same risk allele across all tested samples. Expression quantitative trait loci (eQTL) analysis showed that rs2071287 was significantly associated with NOTCH4 expression (p=1.08×10-14) in human brain tissues, suggesting that rs2071287 may confer schizophrenia risk through regulating NOTCH4 expression. Sherlock integrative analysis using a large-scale schizophrenia GWAS and eQTL data from human brain tissues further revealed that NOTCH4 was significantly associated with schizophrenia (p=4.03×10-7 in CMC dataset and p=3.06×10-6 in xQTL dataset), implying that genetic variants confer schizophrenia risk through modulating NOTCH4 expression. Consistently, we found that NOTCH4 was significantly downregulated in brains of schizophrenia patients compared with controls (p=2.53×10-3), further suggesting that dysregulation of NOTCH4 may have a role in schizophrenia. Finally, we showed that NOTCH4 regulates proliferation, self-renewal, differentiation and migration of neural stem cells, suggesting that NOTCH4 may confer schizophrenia risk through affecting neurodevelopment. Our study provides convergent lines of evidence that support the involvement of NOTCH4 in schizophrenia. In addition, our study also elucidates a possible mechanism for the role of NOTCH4 in schizophrenia pathogenesis.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Receptor Notch4/genética , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Alelos , Animais , Encéfalo/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Mapeamento Cromossômico , Biologia Computacional/métodos , Expressão Gênica , Técnicas de Silenciamento de Genes , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Knockout , Anotação de Sequência Molecular , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único , Vigilância da População , Locos de Características Quantitativas , Esquizofrenia/diagnóstico
11.
BMC Med ; 19(1): 154, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34284787

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy elicits durable antitumor responses in patients with many types of cancer. Genomic mutations may be used to predict the clinical benefits of ICI therapy. NOTCH homolog-4 (NOTCH4) is frequently mutated in several cancer types, but its role in immunotherapy is still unclear. Our study is the first to study the association between NOTCH4 mutation and the response to ICI therapy. METHODS: We tested the predictive value of NOTCH4 mutation in the discovery cohort, which included non-small cell lung cancer, melanoma, head and neck squamous cell carcinoma, esophagogastric cancer, and bladder cancer patients, and validated it in the validation cohort, which included non-small cell lung cancer, melanoma, renal cell carcinoma, colorectal cancer, esophagogastric cancer, glioma, bladder cancer, head and neck cancer, cancer of unknown primary, and breast cancer patients. Then, the relationships between NOTCH4 mutation and intrinsic and extrinsic immune response mechanisms were studied with multiomics data. RESULTS: We collected an ICI-treated cohort (n = 662) and found that patients with NOTCH4 mutation had better clinical benefits in terms of objective response rate (ORR: 42.9% vs 25.9%, P = 0.007), durable clinical benefit (DCB: 54.0% vs 38.1%, P = 0.021), progression-free survival (PFS, hazard ratio [HR] = 0.558, P < 0.001), and overall survival (OS, HR = 0.568, P = 0.006). In addition, we validated the prognostic value of NOTCH4 mutation in an independent ICI-treated cohort (n = 1423). Based on multiomics data, we found that NOTCH4 mutation is significantly associated with enhanced immunogenicity, including a high tumor mutational burden, the expression of costimulatory molecules, and activation of the antigen-processing machinery, and NOTCH4 mutation positively correlates activated antitumor immunity, including infiltration of diverse immune cells and various immune marker sets. CONCLUSIONS: Our findings indicated that NOTCH4 mutation serves as a novel biomarker correlated with a better response to ICI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Esofágicas , Neoplasias Pulmonares , Neoplasias Gástricas , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Receptor Notch4
12.
J Cell Mol Med ; 24(23): 14110-14120, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33118329

RESUMO

Androgen receptor (AR) can suppress hepatocellular carcinoma (HCC) invasion and metastasis at an advanced stage. Vasculogenic mimicry (VM), a new vascularization pattern by which tumour tissues nourish themselves, is correlated with tumour progression and metastasis. Here, we investigated the effect of AR on the formation of VM and its mechanism in HCC. The results suggested that AR could down-regulate circular RNA (circRNA) 7, up-regulate micro RNA (miRNA) 7-5p, and suppress the formation of VM in HCC Small hairpin circR7 (ShcircR7) could reverse the impact on VM and expression of VE-cadherin and Notch4 increased by small interfering AR (shAR) in HCC, while inhibition of miR-7-5p blocked the formation of VM and expression of VE-cadherin and Notch4 decreased by AR overexpression (oeAR) in HCC. Mechanism dissection demonstrated that AR could directly target the circR7 host gene promoter to suppress circR7, and miR-7-5p might directly target the VE-cadherin and Notch4 3'UTR to suppress their expression in HCC. In addition, knockdown of Notch4 and/or VE-cadherin revealed that shVE-cadherin or shNotch4 alone could partially reverse the formation of HCC VM, while shVE-cadherin and shNotch4 together could completely suppress the formation of HCC VM. Those results indicate that AR could suppress the formation of HCC VM by down-regulating circRNA7/miRNA7-5p/VE-Cadherin/Notch4 signals in HCC, which will help in the design of novel therapies against HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Receptores Androgênicos/metabolismo , Antígenos CD/metabolismo , Biomarcadores , Caderinas/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Interferência de RNA , RNA Circular/genética , Receptor Notch4/metabolismo , Transdução de Sinais
14.
Blood ; 131(2): 191-201, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29101237

RESUMO

Megakaryocytes (MKs) in adult marrow produce platelets that play important roles in blood coagulation and hemostasis. Monoallelic mutations of the master transcription factor gene RUNX1 lead to familial platelet disorder (FPD) characterized by defective MK and platelet development. However, the molecular mechanisms of FPD remain unclear. Previously, we generated human induced pluripotent stem cells (iPSCs) from patients with FPD containing a RUNX1 nonsense mutation. Production of MKs from the FPD-iPSCs was reduced, and targeted correction of the RUNX1 mutation restored MK production. In this study, we used isogenic pairs of FPD-iPSCs and the MK differentiation system to identify RUNX1 target genes. Using integrative genomic analysis of hematopoietic progenitor cells generated from FPD-iPSCs, and mutation-corrected isogenic controls, we identified 2 gene sets the transcription of which is either up- or downregulated by RUNX1 in mutation-corrected iPSCs. Notably, NOTCH4 expression was negatively controlled by RUNX1 via a novel regulatory DNA element within the locus, and we examined its involvement in MK generation. Specific inactivation of NOTCH4 by an improved CRISPR-Cas9 system in human iPSCs enhanced megakaryopoiesis. Moreover, small molecules known to inhibit Notch signaling promoted MK generation from both normal human iPSCs and postnatal CD34+ hematopoietic stem and progenitor cells. Our study newly identified NOTCH4 as a RUNX1 target gene and revealed a previously unappreciated role of NOTCH4 signaling in promoting human megakaryopoiesis. Our work suggests that human iPSCs with monogenic mutations have the potential to serve as an invaluable resource for discovery of novel druggable targets.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Megacariócitos/citologia , Receptor Notch4/genética , Trombopoese , Sistemas CRISPR-Cas , Linhagem Celular , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo , Mutação Puntual , Receptor Notch4/metabolismo , Transdução de Sinais
15.
BMC Psychiatry ; 20(1): 363, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646407

RESUMO

BACKGROUND: Schizotypal traits are considered as inheritable traits and the endophenotype for schizophrenia. A common variant in the NOTCH4 gene, rs204993, has been linked with schizophrenia, but the neural underpinnings are largely unknown. METHODS: In present study, we compared the differences of brain functions between different genotypes of rs204993 and its relationship with schizotypal traits among 402 Chinese Han healthy volunteers. The brain function was evaluated with functional connectivity strength (FCS) using the resting-state functional magnetic resonance image(rs-fMRI). The schizotypal traits were measured by the schizotypal personality questionnaire (SPQ). RESULTS: Our results showed that carriers with the AA genotype showed reduced FCS in the left occipital cortex when compared with carriers with the AG and GG genotypes, and the carriers with the AG genotype showed reduced FCS in the left occipital cortex when compared with carriers with the GG genotype. The FCS values in the left occipital lobe were negatively associated with the SPQ scores and its subscale scores within the carriers with the GG genotype, but not within the carriers with AA or AG genotype. CONCLUSION: Our results suggested that the common variant in the NOTCH4 gene, rs204993, modulates the function of the occipital cortex, which may contribute to schizotypal traits. These findings provide insight for genetic effects on schizotypal traits and its potential neural substrate.


Assuntos
Esquizofrenia , Transtorno da Personalidade Esquizotípica , Genótipo , Humanos , Imageamento por Ressonância Magnética , Lobo Occipital/diagnóstico por imagem , Receptor Notch4 , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Transtorno da Personalidade Esquizotípica/diagnóstico por imagem , Transtorno da Personalidade Esquizotípica/genética
16.
J Clin Lab Anal ; 34(2): e23066, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31605414

RESUMO

BACKGROUND: Asthma is a complicated and polygenic inheritance disease, and its prevalence increases worldwide. Recent genome-wide association studies (GWASs) identified a significant association of single nucleotide polymorphism with asthma in the Japanese population. This study aimed to examine the association of GWAS-supported noncoding area loci, namely rs404860, rs3117098, and rs7775228, with asthma in Chinese Zhuang population. METHODS: A case-control study involving 223 individuals, comprising 123 patients with asthma and 100 healthy controls, was conducted. Genotypes were determined by polymerase chain reaction (PCR)/ligase detection reaction assay. The association between gene polymorphisms and asthma risk was calculated by logistic regression analysis using different genetic models through comparisons of alleles (A vs a), homozygote genotypes (AA vs aa), heterozygote genotypes (Aa vs aa), dominant models (AA+Aa vs aa), and recessive models (AA vs. Aa+aa). RESULTS: The distribution of the genotype frequency of rs3117098 was statistically different between the case and control groups. For rs3117098, significant associations were observed through comparisons of alleles (OR: 1.832, 95% CI: 1.048-3.204, P = .034) and dominant models (OR: 2.065, 95% CI: 1.001-4.260, P = .050). The statistical analysis showed no significant difference for loci rs404860 and rs7775228 between patients with asthma and controls. CONCLUSION: rs3117098 may be the risk factor for asthma in Chinese Zhuang population.


Assuntos
Asma/genética , Butirofilinas/genética , Antígenos HLA-DQ/genética , Polimorfismo de Nucleotídeo Único , Receptor Notch4/genética , Adulto , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , China/etnologia , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino
17.
BMC Cancer ; 19(1): 351, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975104

RESUMO

BACKGROUND: Optimising breast cancer treatment remains a challenge. Resistance to therapy is a major problem in both ER- and ER+ breast cancer. Tumour recurrence after chemotherapy and/or targeted therapy leads to more aggressive tumours with enhanced metastatic ability. Self-renewing cancer stem cells (CSCs) have been implicated in treatment resistance, recurrence and the development of metastatic disease. METHODS: In this study, we utilised in vitro, in vivo and ex vivo breast cancer models using ER+ MCF-7 and ER- MDA-MB-231 cells, as well as solid and metastatic breast cancer patient samples, to interrogate the effects of FKBPL and its peptide therapeutics on metastasis, endocrine therapy resistant CSCs and DLL4 and Notch4 expression. The effects of FKBPL overexpression or peptide treatment were assessed using a t-test or one-way ANOVA with Dunnett's multiple comparison test. RESULTS: We demonstrated that FKBPL overexpression or treatment with FKBPL-based therapeutics (AD-01, pre-clinical peptide /ALM201, clinical peptide) inhibit i) CSCs in both ER+ and ER- breast cancer, ii) cancer metastasis in a triple negative breast cancer metastasis model and iii) endocrine therapy resistant CSCs in ER+ breast cancer, via modulation of the DLL4 and Notch4 protein and/or mRNA expression. AD-01 was effective at reducing triple negative MDA-MB-231 breast cancer cell migration (n ≥ 3, p < 0.05) and invasion (n ≥ 3, p < 0.001) and this was translated in vivo where AD-01 inhibited breast cancer metastasis in MDA-MB-231-lucD3H1 in vivo model (p < 0.05). In ER+ MCF-7 cells and primary breast tumour samples, we demonstrated that ALM201 inhibits endocrine therapy resistant mammospheres, representative of CSC content (n ≥ 3, p < 0.05). Whilst an in vivo limiting dilution assay, using SCID mice, demonstrated that ALM201 alone or in combination with tamoxifen was very effective at delaying tumour recurrence by 12 (p < 0.05) or 21 days (p < 0.001), respectively, by reducing the number of CSCs. The potential mechanism of action, in addition to CD44, involves downregulation of DLL4 and Notch4. CONCLUSION: This study demonstrates, for the first time, the pre-clinical activity of novel systemic anti-cancer therapeutic peptides, ALM201 and AD-01, in the metastatic setting, and highlights their impact on endocrine therapy resistant CSCs; both areas of unmet clinical need.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Imunofilinas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mama/patologia , Neoplasias da Mama/patologia , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunofilinas/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos SCID , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/patologia , Peptídeos/uso terapêutico , Receptor Notch4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Tacrolimo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Allergy Clin Immunol ; 142(4): 1243-1256.e17, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29627423

RESUMO

BACKGROUND: Exposure to traffic-related particulate matter promotes asthma and allergic diseases. However, the precise cellular and molecular mechanisms by which particulate matter exposure acts to mediate these effects remain unclear. OBJECTIVE: We sought to elucidate the cellular targets and signaling pathways critical for augmentation of allergic airway inflammation induced by ambient ultrafine particles (UFP). METHODS: We used in vitro cell-culture assays with lung-derived antigen-presenting cells and allergen-specific T cells and in vivo mouse models of allergic airway inflammation with myeloid lineage-specific gene deletions, cellular reconstitution approaches, and antibody inhibition studies. RESULTS: We identified lung alveolar macrophages (AM) as the key cellular target of UFP in promoting airway inflammation. Aryl hydrocarbon receptor-dependent induction of Jagged 1 (Jag1) expression in AM was necessary and sufficient for augmentation of allergic airway inflammation by UFP. UFP promoted TH2 and TH17 cell differentiation of allergen-specific T cells in a Jag1- and Notch 4-dependent manner. Treatment of mice with an anti-Notch 4 antibody abrogated exacerbation of allergic airway inflammation induced by UFP. CONCLUSION: UFP exacerbate allergic airway inflammation by promoting a Jag1-Notch 4-dependent interaction between AM and allergen-specific T cells, leading to augmented TH cell differentiation.


Assuntos
Poluentes Atmosféricos/toxicidade , Proteína Jagged-1/imunologia , Macrófagos Alveolares/imunologia , Material Particulado/toxicidade , Receptor Notch4/imunologia , Hipersensibilidade Respiratória/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Células Apresentadoras de Antígenos/imunologia , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptor Notch4/antagonistas & inibidores , Hipersensibilidade Respiratória/tratamento farmacológico
19.
J Infect Dis ; 218(2): 312-323, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29228365

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis infection, remains a global threat to human health, but knowledge of the molecular mechanisms underlying the pathogenesis of tuberculosis is still limited. Although Notch4, a member of the Notch receptor family, is involved in the initiation of mammary tumors, its function in M. tuberculosis infection remains unclear. In this study, we found that Notch4-deficient mice were more resistant to M. tuberculosis infection, with a much lower bacterial burden and fewer pathological changes in the lungs. Notch4 inhibited M. tuberculosis-induced production of proinflammatory cytokines by interaction with TAK1 and inhibition of its activation. Furthermore, we found that Notch intracellular domain 4 prevented TRAF6 autoubiquitination and suppressed TRAF6-mediated TAK1 polyubiquitination. Finally, Notch inhibitors made mice more resistant to M. tuberculosis infection. These results suggest that Notch4 is a negative regulator of M. tuberculosis-induced inflammatory response, and treatment with a Notch inhibitor could serve as a new therapeutic strategy for tuberculosis.


Assuntos
Regulação da Expressão Gênica , MAP Quinase Quinase Quinases/metabolismo , Receptor Notch4/metabolismo , Tuberculose Pulmonar/patologia , Animais , Carga Bacteriana , Citocinas/análise , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Receptor Notch4/deficiência , Fator 6 Associado a Receptor de TNF/metabolismo , Tuberculose Pulmonar/microbiologia
20.
J Cell Physiol ; 233(10): 6975-6985, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29693251

RESUMO

Notch signal has complex roles in human malignancies, which might be attributed to the diversity of Notch receptors. Here, we set out to identify the association of NOTCH4 with colorectal cancer (CRC). In the hospital-based study cohort, we investigated NOTCH4 mRNA levels in primary CRC, as well as its association with clinicopathologic characteristics. Besides, NOTCH4 cDNA and siRNA was transfected into colorectal cancer cell line to elucidate its impact on tumor cell proliferation and migration. Results revealed a statistically significant lower expression of NOTCH4 mRNA in tumor specimens compared with that in control. NOTCH4 level in CRC was found to be related to tumor differentiation, invasion, and node metastasis. Moreover, it was demonstrated that NOTCH4 mRNA level could be an independent prognostic factor for both disease-free and overall survival of CRC patients. Overexpression of NOTCH4 in CRC cell lines suppressed tumor cell proliferation, migration, and invasion, while induced apoptosis. In the opposite, the malignant behavior of CRC cells was enhanced by NOTCH4 knockdown. These results demonstrated for the first time that NOTCH4 expression was decreased in CRC, which could determine tumor proliferation, relapse, and prognosis.


Assuntos
Proliferação de Células/fisiologia , Neoplasias Colorretais/metabolismo , Receptor Notch4/metabolismo , Apoptose/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA