Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 545(7652): 112-115, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445455

RESUMO

Protease-activated receptors (PARs) are a family of G-protein-coupled receptors (GPCRs) that are irreversibly activated by proteolytic cleavage of the N terminus, which unmasks a tethered peptide ligand that binds and activates the transmembrane receptor domain, eliciting a cellular cascade in response to inflammatory signals and other stimuli. PARs are implicated in a wide range of diseases, such as cancer and inflammation. PARs have been the subject of major pharmaceutical research efforts but the discovery of small-molecule antagonists that effectively bind them has proved challenging. The only marketed drug targeting a PAR is vorapaxar, a selective antagonist of PAR1 used to prevent thrombosis. The structure of PAR1 in complex with vorapaxar has been reported previously. Despite sequence homology across the PAR isoforms, discovery of PAR2 antagonists has been less successful, although GB88 has been described as a weak antagonist. Here we report crystal structures of PAR2 in complex with two distinct antagonists and a blocking antibody. The antagonist AZ8838 binds in a fully occluded pocket near the extracellular surface. Functional and binding studies reveal that AZ8838 exhibits slow binding kinetics, which is an attractive feature for a PAR2 antagonist competing against a tethered ligand. Antagonist AZ3451 binds to a remote allosteric site outside the helical bundle. We propose that antagonist binding prevents structural rearrangements required for receptor activation and signalling. We also show that a blocking antibody antigen-binding fragment binds to the extracellular surface of PAR2, preventing access of the tethered ligand to the peptide-binding site. These structures provide a basis for the development of selective PAR2 antagonists for a range of therapeutic uses.


Assuntos
Receptor PAR-2/química , Receptor PAR-2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Anticorpos Bloqueadores/química , Anticorpos Bloqueadores/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Álcoois Benzílicos/química , Álcoois Benzílicos/farmacologia , Cristalografia por Raios X , Humanos , Imidazóis/química , Imidazóis/farmacologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Cinética , Ligantes , Modelos Moleculares , Receptor PAR-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 18(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165389

RESUMO

The G protein-coupled receptor proteinase-activated receptor 2 (PAR2) has been implicated in various aspects of cellular physiology including inflammation, obesity and cancer. In cancer, it usually acts as a driver of cancer progression in various tumor types by promoting invasion and metastasis in response to activation by serine proteinases. Recently, we discovered another mode through which PAR2 may enhance tumorigenesis: crosstalk with transforming growth factor-ß (TGF-ß) signaling to promote TGF-ß1-induced cell migration/invasion and invasion-associated gene expression in ductal pancreatic adenocarcinoma (PDAC) cells. In this chapter, we review what is known about the cellular TGF-ß responses and signaling pathways affected by PAR2 expression, the signaling activities of PAR2 required for promoting TGF-ß signaling, and the potential molecular mechanism(s) that underlie(s) the TGF-ß signaling-promoting effect. Since PAR2 is activated through various serine proteinases and biased agonists, it may couple TGF-ß signaling to a diverse range of other physiological processes that may or may not predispose cells to cancer development such as local inflammation, systemic coagulation and pathogen infection.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Receptor PAR-2/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor PAR-2/química , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
3.
Mol Pharmacol ; 89(5): 606-14, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26957205

RESUMO

Thrombin is known to signal to cells by cleaving/activating a G-protein-coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggeringß-arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.


Assuntos
Sinalização do Cálcio , Sistema de Sinalização das MAP Quinases , Receptor PAR-2/agonistas , Trombina/metabolismo , Vasodilatação , Substituição de Aminoácidos , Animais , Aorta , Arrestinas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Endotélio Vascular/fisiologia , Humanos , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mutação , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteólise , Coelhos , Receptor PAR-2/química , Receptor PAR-2/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Vasodilatação/efeitos dos fármacos , beta-Arrestinas
4.
J Biol Chem ; 290(6): 3529-41, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25519908

RESUMO

Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface.


Assuntos
Proteólise , Receptor PAR-2/metabolismo , Serina Endopeptidases/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Receptor PAR-2/química , Elementos de Resposta
5.
J Comput Aided Mol Des ; 30(8): 625-37, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27600555

RESUMO

Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe243(5.39) is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na(+) allosteric site in contrast to PAR2 agonist that showed Na(+) relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.


Assuntos
Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor PAR-2/química , Alinhamento de Sequência
6.
Cell Tissue Res ; 359(3): 817-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25519044

RESUMO

The protease-activated receptors are a group of unique G protein-coupled receptors, including PAR-1, PAR-2, PAR-3 and PAR-4. PAR-2 is activated by multiple trypsin-like serine proteases, including trypsin, tryptase and coagulation proteases. The clusters of phosphorylation sites in the PAR-2 carboxyl tail are suggested to be important for the binding of adaptor proteins to initiate intracellular signaling to Ca(2+) and mitogen-activated protein kinases. To explore the functional role of PAR-2 carboxyl tail in controlling intracellular Ca(2+), ERK and AKT signaling, a series of truncated mutants containing different clusters of serines/threonines were generated and expressed in HEK293 cells. Firstly, we observed that lack of the complete C-terminus of PAR-2 in a mutated receptor gave a relatively low level of localization on the cell plasma membrane. Secondly, the shortened carboxyl tail containing 13 amino acids was sufficient for receptor internalization. Thirdly, the cells expressing truncation mutants showed deficits in their capacity to couple to intracellular Ca(2+) and ERK and AKT signaling upon trypsin challenge. In addition, HEK293 cells carrying different PAR-2 truncation mutants displayed decreased levels of cell survival after long-lasting trypsin stimulation. In summary, the PAR-2 carboxyl tail was found to control the receptor localization, internalization, intracellular Ca(2+) responses and signaling to ERK and AKT. The latter can be considered to be important for cell death control.


Assuntos
Espaço Intracelular/metabolismo , Receptor PAR-2/química , Receptor PAR-2/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor PAR-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tripsina/farmacologia
7.
J Chem Inf Model ; 55(6): 1181-91, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26000704

RESUMO

Protease activated receptor 2 (PAR2) is an unusual G-protein coupled receptor (GPCR) involved in inflammation and metabolism. It is activated through cleavage of its N-terminus by proteases. The new N-terminus functions as a tethered ligand that folds back and intramolecularly activates PAR2, initiating multiple downstream signaling pathways. The only compounds reported to date to inhibit PAR2 activation are of moderate potency. Three structural models for PAR2 have been constructed based on sequence homology with known crystal structures for bovine rhodopsin, human ORL-1 (also called nociceptin/orphanin FQ receptor), and human PAR1. The three PAR2 model structures were compared and used to predict potential interactions with ligands. Virtual screening for ligands using the Chembridge database, and either ORL-1 or PAR1 derived PAR2 models led to identification of eight new small molecule PAR2 antagonists (IC50 10-100 µM). Notably, the most potent compound 1 (IC50 11 µM) was derived from the less homologous template protein, human ORL-1. The results suggest that virtual screening against multiple homology models of the same GPCR can produce structurally diverse antagonists and that this may be desirable even when some models have less sequence homology with the target protein.


Assuntos
Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular , Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/química , Homologia de Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Membrana Celular/metabolismo , Bases de Dados de Proteínas , Avaliação Pré-Clínica de Medicamentos , Células HT29 , Humanos , Ligantes , Estrutura Terciária de Proteína , Receptor PAR-2/metabolismo
8.
J Biol Chem ; 288(5): 3265-74, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23235155

RESUMO

ß-Arrestins are multifunctional adaptor proteins that, upon recruitment to an activated G-protein-coupled receptor, can promote desensitization of G-protein signaling and receptor internalization while simultaneously eliciting an independent signal. The result of ß-arrestin signaling depends upon the activating receptor. For example, activation of two Gα(q)-coupled receptors, protease-activated receptor-2 (PAR(2)) and neurokinin-1 receptor (NK1R), results in drastically different signaling events. PAR(2) promotes ß-arrestin-dependent membrane-sequestered extracellular signal-regulated kinase (ERK1/2) activation, cofilin activation, and cell migration, whereas NK1R promotes nuclear ERK1/2 activation and proliferation. Using bioluminescence resonance energy transfer to monitor receptor/ß-arrestin interactions in real time, we observe that PAR(2) has a higher apparent affinity for both ß-arrestins than does NK1R, recruits them at a faster rate, and exhibits more rapid desensitization of the G-protein signal. Furthermore, recruitment of ß-arrestins to PAR(2) does not require prior Gα(q) signaling events, whereas inhibition of Gα(q) signaling intermediates inhibits recruitment of ß-arrestins to NK1R. Using chimeric receptors in which the C terminus of PAR(2) is fused to the N terminus of NK1R and vice versa and a critical Ser/Thr mutant of PAR(2), we demonstrate that interactions between ß-arrestins and specific phosphoresidues in the C termini of each receptor are crucial for determining the rate and magnitude of ß-arrestin recruitment as well as the ultimate signaling outcome.


Assuntos
Arrestinas/metabolismo , Receptor PAR-2/química , Receptor PAR-2/metabolismo , Receptores da Neurocinina-1/química , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais , Fatores de Despolimerização de Actina/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cálcio/metabolismo , Movimento Celular , Cricetinae , Endocitose , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Cinética , Camundongos , Proteínas Mutantes/metabolismo , Antagonistas dos Receptores de Neurocinina-1 , Fosforilação , Receptor PAR-2/antagonistas & inibidores , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo , beta-Arrestinas
9.
J Cell Biochem ; 113(3): 977-84, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22034092

RESUMO

Factor Xa (FXa) elicits intracellular signaling responses through the activation of protease-activated receptor 2 (PAR2) and possibly also through PAR1 in endothelial cells. In this study, we investigated FXa signaling in endothelial cells when the protease was either in free form or assembled into the prothrombinase complex. Furthermore, we prepared several wild-type and mutant PAR1 and PAR2 cleavage-reporter constructs in which their exodomains were fused to cDNA encoding for a soluble alkaline phosphatase (ALP). In the mutants, P2 residues were exchanged between PAR1 and PAR2 cleavage-reporter constructs and the hirudin-like binding site (HLBS) of PAR1 was inserted into the homologous site of PAR2. In non-transfected cells, FXa elicited a protective response which could be blocked by a specific anti-PAR2 but not by an anti-PAR1 antibody. A similar protective activity was observed for FXa in the prothrombinase complex. Further studies revealed that neither the Gla- nor EGF1-domain of FXa is required for its signaling activity, however, the N-terminus Arg-86 and Lys-87 of the EGF2-domain were essential. In the cleavage-reporter transfected cells, FXa cleaved the PAR2 construct effectively, however, replacing its P2-Gly with P2-Pro of PAR1 impaired its cleavage by FXa but improved it by thrombin. A PAR2 construct containing both P2-Pro and HLBS of PAR1 was poorly cleaved by FXa, but effectively by thrombin. A PAR1 construct containing P2 and P3 residues of PAR2 was poorly cleaved by thrombin but effectively by FXa. These results provide new insight into mechanisms through which coagulation proteases specifically interact with their target PAR receptors.


Assuntos
Fator Xa/metabolismo , Receptor PAR-1/química , Receptor PAR-1/metabolismo , Receptor PAR-2/química , Receptor PAR-2/metabolismo , Trombina/metabolismo , Fosfatase Alcalina/análise , Fosfatase Alcalina/genética , Sequência de Aminoácidos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator Xa/química , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptor PAR-1/genética , Receptor PAR-2/genética , Alinhamento de Sequência , Transdução de Sinais
10.
J Allergy Clin Immunol ; 128(6): 1326-1334.e3, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21839502

RESUMO

BACKGROUND: Atopic diseases are the most common chronic diseases of childhood, and the genetics of atopy are complex and heterogeneous. Protease-activated receptor-2 (PAR-2) is involved in various inflammatory diseases, but the association of PAR-2 with allergic diseases remains unclear. OBJECTIVE: To examine the contribution of genetic variation of PAR-2 to atopic phenotypes in the Korean childhood cohort. METHODS: We identified PAR-2 variations in a Korean population and conducted association analyses by using 316 unrelated atopic and 210 nonatopic subjects. We analyzed serum IgE and total eosinophil count levels and examined PAR-2 mRNA and protein expression levels. RESULTS: In the case-control association analysis, atopy was significantly associated with a single c.621C>T (p.I207I, rs631465) polymorphism of PAR-2 (P = .001, odds ratio = 1.95). Subjects with the c.621T risk allele had significantly higher serum IgE (P = .004) and total eosinophil count (P = .03) levels. Moreover, the positive association of c.621T was reproduced in the replication study (P = .01, joint P value of the replication < .001). An in silico analysis of RNA secondary structure prediction revealed that the C to T conversion at c.621 greatly increased predicted PAR-2 mRNA stability. This was also confirmed by an in vitro assay for mRNA stability. Furthermore, following an in vivo approach on gene expression in PBMCs showed that the expression levels of PAR-2 mRNA and protein in subjects with the c.621CT or TT genotype were significantly higher than in those with the c.621CC genotype. CONCLUSIONS: These results indicate that the synonymous c.621C>T polymorphism in PAR-2 might be associated with the risk of atopy, potentially by altering PAR-2 gene expression.


Assuntos
Regulação da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Hipersensibilidade Imediata/genética , Receptor PAR-2/genética , Povo Asiático/genética , Sequência de Bases , Western Blotting , Estudos de Casos e Controles , Criança , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/genética , Coreia (Geográfico) , Masculino , Dados de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único , Estrutura Secundária de Proteína , Estabilidade de RNA , Reação em Cadeia da Polimerase em Tempo Real , Receptor PAR-2/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Commun Biol ; 3(1): 782, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335291

RESUMO

Protease-activated receptor-2 (PAR2) has been implicated in multiple pathophysiologies but drug discovery is challenging due to low small molecule tractability and a complex activation mechanism. Here we report the pharmacological profiling of a potent new agonist, suggested by molecular modelling to bind in the putative orthosteric site, and two novel PAR2 antagonists with distinctly different mechanisms of inhibition. We identify coupling between different PAR2 binding sites. One antagonist is a competitive inhibitor that binds to the orthosteric site, while a second antagonist is a negative allosteric modulator that binds at a remote site. The allosteric modulator shows probe dependence, more effectively inhibiting peptide than protease activation of PAR2 signalling. Importantly, both antagonists are active in vivo, inhibiting PAR2 agonist-induced acute paw inflammation in rats and preventing activation of mast cells and neutrophils. These results highlight two distinct mechanisms of inhibition that potentially could be targeted for future development of drugs that modulate PAR2.


Assuntos
Regulação Alostérica , Sítio Alostérico , Ligantes , Receptor PAR-2/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/metabolismo , Transdução de Sinais
12.
Proteins ; 77(3): 559-69, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19536895

RESUMO

Signaling of the tissue factor-FVIIa complex regulates angiogenesis, tumor growth, and inflammation. TF-FVIIa triggers cell signaling events by cleavage of protease activated receptor (PAR2) at the Arg36-Ser37 scissile bond. The recognition of PAR2 by the FVIIa protease domain is poorly understood. We perform molecular modeling and dynamics simulations to derive the PAR2-FVIIa interactions. Docking of the PAR2 Arg36-Ser37 scissile bond to the S1 site and subsequent molecular dynamics leads to interactions of the PAR2 ectodomain with P and P' sites of the FVIIa catalytic cleft as well as to electrostatic interactions between a stably folded region of PAR2 and a cluster of basic residues remote from the catalytic cleft of FVIIa. To address the functional significance of this interaction for PAR2 cleavage, we employed two antibodies with epitopes previously mapped to this cluster of basic residues. Although these antibodies do not block the catalytic cleft, both antibodies completely abrogated PAR2 activation by TF-FVIIa. Our simulations indicate a conformation of the PAR2 ectodomain that limits the cleavage site to no more than 33 A from its membrane proximal residue. Since the active site of FVIIa in the TF-FVIIa complex is approximately 75 A above the membrane, cleavage of the folded conformation of PAR2 would require tilting of the TF-FVIIa complex toward the membrane, indicating that additional cellular factors may be required to properly align the scissile bond of PAR2 with TF-FVIIa.


Assuntos
Fator VIIa/química , Receptor PAR-2/química , Domínio Catalítico , Simulação por Computador , Células Endoteliais/citologia , Epitopos/química , Glicosilação , Humanos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Solventes/química , Veias Umbilicais/citologia
13.
ACS Chem Biol ; 14(9): 1913-1920, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31329413

RESUMO

Demonstration of target binding is a key requirement for understanding the mode of action of new therapeutics. The cellular thermal shift assay (CETSA) has been introduced as a powerful label-free method to assess target engagement in physiological environments. Here, we present the application of live-cell CETSA to different classes of integral multipass transmembrane proteins using three case studies, the first showing a large and robust stabilization of the outer mitochondrial five-pass transmembrane protein TSPO, the second being a modest stabilization of SERCA2, and the last describing an atypical compound-driven stabilization of the GPCR PAR2. Our data demonstrated that using modified protocols with detergent extraction after the heating step, CETSA can reliably be applied to several membrane proteins of different complexity. By showing examples with distinct CETSA behaviors, we aim to provide the scientific community with an overview of different scenarios to expect during CETSA experiments, especially for challenging, membrane bound targets.


Assuntos
Receptor PAR-2/metabolismo , Receptores de GABA/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Aminoquinolinas/farmacologia , Benzamidas/farmacologia , Benzimidazóis/farmacologia , Benzodiazepinonas/farmacologia , Benzodioxóis/farmacologia , Álcoois Benzílicos/farmacologia , Bioensaio , Linhagem Celular Tumoral , Antagonistas GABAérgicos/farmacologia , Células HEK293 , Temperatura Alta , Humanos , Imidazóis/farmacologia , Transição de Fase/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Piridinas/farmacologia , Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/química , Receptores de GABA/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Tapsigargina/farmacologia
14.
Biochem J ; 408(2): 221-30, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17680774

RESUMO

PAR-2 (protease-activated receptor 2) is a GPCR (G-protein-coupled receptor) that can elicit both G-protein-dependent and -independent signals. We have shown previously that PAR-2 simultaneously promotes Galphaq/Ca2+-dependent activation and beta-arrestin-1-dependent inhibition of class IA PI3K (phosphoinositide 3-kinase), and we sought to characterize further the role of beta-arrestins in the regulation of PI3K activity. Whereas the ability of beta-arrestin-1 to inhibit p110alpha (PI3K catalytic subunit alpha) has been demonstrated, the role of beta-arrestin-2 in PI3K regulation and possible differences in the regulation of the two catalytic subunits (p110alpha and p110beta) associated with p85alpha (PI3K regulatory subunit) have not been examined. In the present study we have demonstrated that: (i) PAR-2 increases p110alpha- and p110beta-associated lipid kinase activities, and both p110alpha and p110beta are inhibited by over-expression of either beta-arrestin-1 or -2; (ii) both beta-arrestin-1 and -2 directly inhibit the p110alpha catalytic subunit in vitro, whereas only beta-arrestin-2 directly inhibited p110beta; (iii) examination of upstream pathways revealed that PAR-2-induced PI3K activity required the small GTPase Cdc (cell-division cycle)42, but not tyrosine phosphorylation of p85; and (iv) beta-arrestins inhibit PAR-2-induced Cdc42 activation. Taken together, these results indicated that beta-arrestins could inhibit PAR-2-stimulated PI3K activity, both directly and through interference with upstream pathways, and that the two beta-arrestins differ in their ability to inhibit the p110alpha and p110beta catalytic subunits. These results are particularly important in light of the growing interest in PAR-2 as a pharmacological target, as commonly used biochemical assays that monitor G-protein coupling would not screen for beta-arrestin-dependent signalling events.


Assuntos
Arrestinas/fisiologia , Domínio Catalítico/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Receptor PAR-2/fisiologia , Animais , Arrestinas/química , Classe I de Fosfatidilinositol 3-Quinases , Camundongos , Células NIH 3T3 , Fosfatidilinositol 3-Quinases/classificação , Fosfatidilinositol 3-Quinases/metabolismo , Receptor PAR-2/química , beta-Arrestina 1 , beta-Arrestina 2 , beta-Arrestinas
15.
Nat Commun ; 8(1): 311, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827518

RESUMO

Graft-vs.-host disease (GvHD) is a major complication of allogenic hematopoietic stem-cell(HSC) transplantation. GvHD is associated with loss of endothelial thrombomodulin, but the relevance of this for the adaptive immune response to transplanted HSCs remains unknown. Here we show that the protease-activated protein C (aPC), which is generated by thrombomodulin, ameliorates GvHD aPC restricts allogenic T-cell activation via the protease activated receptor (PAR)2/PAR3 heterodimer on regulatory T-cells (Tregs, CD4+FOXP3+). Preincubation of pan T-cells with aPC prior to transplantation increases the frequency of Tregs and protects from GvHD. Preincubation of human T-cells (HLA-DR4-CD4+) with aPC prior to transplantation into humanized (NSG-AB°DR4) mice ameliorates graft-vs.-host disease. The protective effect of aPC on GvHD does not compromise the graft vs. leukaemia effect in two independent tumor cell models. Ex vivo preincubation of T-cells with aPC, aPC-based therapies, or targeting PAR2/PAR3 on T-cells may provide a safe and effective approach to mitigate GvHD.Graft-vs.-host disease is a complication of allogenic hematopoietic stem cell transplantation, and is associated with endothelial dysfunction. Here the authors show that activated protein C signals via PAR2/PAR3 to expand Treg cells, mitigating the disease in mice.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Proteína C/imunologia , Receptor PAR-2/imunologia , Receptores Ativados por Proteinase/imunologia , Receptores de Trombina/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Proteína C/metabolismo , Multimerização Proteica , Receptor PAR-2/química , Receptor PAR-2/metabolismo , Receptores Ativados por Proteinase/química , Receptores Ativados por Proteinase/metabolismo , Receptores de Trombina/química , Receptores de Trombina/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Reguladores/metabolismo , Transplante Homólogo
16.
J Biomol Struct Dyn ; 34(6): 1363-76, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26295578

RESUMO

Protease activated receptor 2 (PAR2) has emerged as one of the promising therapeutic targets to inhibit rapidly metastasizing breast cancer cells. However, its elusive molecular mechanism of activation and signaling has made it a difficult target for drug development. In this study, in silico methods were used to unfold PAR2 molecular mechanism of signaling based on the concept of GPCR receptor plasticity. Although, there are no conclusive evidences of the presence of specific endogenous ligands for PAR2, the efficacy of synthetic agonist and antagonist in PAR2 signaling has opened up the possibilities of ligand-mediated signaling. Furthermore, it has been proved that ligands specific for one GPCR can induce signaling in GPCRs belonging to other subfamilies. Therefore, the aim of this study was to identify potential agonists and antagonists from the GPCR ligand library (GLL), which may induce biased signaling in PAR2 using the concept of existence of multiple ligand-stabilized receptor conformations. The results of our in silico study suggest that PAR2 may show biased signaling mainly with agonists of serotonin type 1, ß-adrenergic type 1,3 and antagonists of substance K (NK1), serotonin type 2, dopamine type 4, and thromboxane receptors. Further, this study also throws light on the putative ligand-specific conformations of PAR2. Thus, the results of this study provide structural insights to putative conformations of PAR2 and also gives initial clues to medicinal chemists for rational drug design targeting this challenging receptor.


Assuntos
Descoberta de Drogas , Ligantes , Modelos Moleculares , Receptor PAR-2/química , Sítios de Ligação , Desenho de Fármacos , Descoberta de Drogas/métodos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptor PAR-2/agonistas , Receptor PAR-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
17.
Immunobiology ; 220(4): 525-32, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25468564

RESUMO

BACKGROUND: Protease activity of Per a 10 has been shown to modulate dendritic cells toward Th-2 polarization and to induce airway inflammation. OBJECTIVE: To elucidate the role of serine protease activity of Per a 10 in inducing biochemical responses in epithelial cells. METHODS: Per a 10 was inactivated by heat treatment (ΔPer a 10) or AEBSF (iPer a 10). A549 cells were exposed to either enzymatically active/inactive Per a 10. The supernatant was analyzed for the secretion of proinflammatory cytokines by ELISA. Ca(2+) mobilization was analyzed by flow cytometry. A PAR-2 derived synthetic peptide 28GTNRSSKGRSLIGKVDGTSHVTGKGVTC54 was incubated with Per a 10 and the resultant cleaved products were analyzed by LC-MS. PAR-2 activation was inhibited by PAR-2 cleavage inhibiting antibody. RESULTS: ΔPer a 10 was completely inactivated whereas iPer a 10 showed some residual activity. nPer a 10 having protease activity increased the secretion of IL-6, IL-8 and GMCSF from A549 in a dose and time dependent manner whereas iPer a 10 has reduced cytokine secretion. ΔPer a 10 and rPer a 10 were unable to activate the cells. nPer a 10 mobilized intracellular Ca(2+). nPer a 10 cleaved the PAR-2 derived peptide between arginine and serine residues (36R-S37) to expose PAR-2 ligand SLIGKV, as determined by LC-MS. Incubating with anti-PAR-2 cleavage antibody showed diminished cytokine secretion when treated with nPer a 10. CONCLUSION: Serine protease activity of Per a 10 activates A549 cells to secrete proinflammatory cytokines by PAR-2 activation and Ca(2+)mobilization and can be exploited therapeutically.


Assuntos
Alérgenos/imunologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Proteínas de Insetos/imunologia , Receptor PAR-2/metabolismo , Serina Proteases/imunologia , Sequência de Aminoácidos , Cálcio/metabolismo , Linhagem Celular , Citocinas/biossíntese , Humanos , Mediadores da Inflamação/metabolismo , Espaço Intracelular/metabolismo , Proteólise , Receptor PAR-2/química
18.
J Biomol Struct Dyn ; 33(9): 2003-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25386994

RESUMO

The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.


Assuntos
Neoplasias da Mama/química , Proliferação de Células/efeitos dos fármacos , Compostos Fitoquímicos/química , Receptor PAR-2/química , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ciclo Celular/efeitos dos fármacos , Simulação por Computador , Feminino , Humanos , Compostos Fitoquímicos/farmacologia , Ligação Proteica , Receptor PAR-2/genética , Transdução de Sinais/efeitos dos fármacos
19.
Expert Rev Mol Med ; 4(16): 1-17, 2002 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-14585156

RESUMO

PAR-2 (protease-activated receptor 2), a G-protein-coupled receptor activated by certain serine proteases such as trypsin and tryptase, is now considered a physiologically important molecule and also a novel target for drug development. PAR-2 is widely distributed in the mammalian body, especially throughout the alimentary system. PAR-2 plays various roles in the alimentary, circulatory, respiratory and neuronal systems. In the gastric mucosa, PAR-2 modulates multiple functions and exerts mucosal cytoprotection mainly by activating sensory neurons. Thus, PAR-2 would appear to be a therapeutic target for treatment of gastric mucosal injury. Agonists and/or antagonists for PAR-2 might also be applicable to the clinical treatment of patients with inflammatory diseases in other organs.


Assuntos
Mucosa Gástrica/patologia , Receptor PAR-2/química , Receptor PAR-2/fisiologia , Gastropatias/patologia , Animais , Mucosa Gástrica/enzimologia , Humanos , Gastropatias/enzimologia
20.
PLoS One ; 9(6): e99702, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24964046

RESUMO

Protease-activated receptor-2 is widely expressed in mammalian epithelial, immune and neural tissues. Cleavage of PAR2 by serine proteases leads to self-activation of the receptor by the tethered ligand SLIGRL. The contribution of other classes of proteases to PAR activation has not been studied in detail. Cathepsin S is a widely expressed cysteine protease that is upregulated in inflammatory conditions. It has been suggested that cathepsin S activates PAR2. However, cathepsin S activation of PAR2 has not been demonstrated directly nor has the potential mechanism of activation been identified. We show that cathepsin S cleaves near the N-terminus of PAR2 to expose a novel tethered ligand, KVDGTS. The hexapeptide KVDGTS generates downstream signaling events specific to PAR2 but is weaker than SLIGRL. Mutation of the cathepsin S cleavage site prevents receptor activation by the protease while KVDGTS retains activity. In conclusion, the range of actions previously ascribed to cysteine cathepsins in general, and cathepsin S in particular, should be expanded to include molecular signaling. Such signaling may link together observations that had been attributed previously to PAR2 or cathepsin S individually. These interactions may contribute to inflammation.


Assuntos
Catepsinas/fisiologia , Receptor PAR-2/fisiologia , Sequência de Aminoácidos , Catepsinas/genética , Catepsinas/metabolismo , Células HeLa , Humanos , Queratinócitos/metabolismo , Mapeamento de Interação de Proteínas , Receptor PAR-2/química , Receptor PAR-2/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA