Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 39(23): 4606-4623, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30902874

RESUMO

Major depressive disorder is the most common mental illness. Mounting evidence indicates that astrocytes play a crucial role in the pathophysiology of depression; however, the underlying molecular mechanisms remain elusive. Compared with other neuronal cell types, astrocytes are enriched for arachidonic acid metabolism. Herein, we observed brain-region-specific alterations of epoxyeicosatrienoic acid (EET) signaling, which is an arachidonic acid metabolic pathway, in both a mouse model of depression and postmortem samples from patients with depression. The enzymatic activity of soluble epoxide hydrolase (sEH), the key enzyme in EET signaling, was selectively increased in the mPFC of susceptible mice after chronic social defeated stress and was negatively correlated with the social interaction ratio, which is an indicator of depressive-like behavior. The specific deletion of Ephx2 (encode sEH) in adult astrocytes induced resilience to stress, whereas the impaired EET signaling in the mPFC evoked depressive-like behaviors in response to stress. sEH was mainly expressed on lysosomes of astrocytes. Using pharmacological and genetic approaches performed on C57BL/6J background adult male mice, we found that EET signaling modulated astrocytic ATP release in vitro and in vivo Moreover, astrocytic ATP release was required for the antidepressant-like effect of Ephx2 deletion in adult astrocytes. In addition, sEH inhibitors produced rapid antidepressant-like effects in multiple animal models of depression, including chronic social defeated stress and chronic mild stress. Together, our results highlight that EET signaling in astrocytes in the mPFC is essential for behavioral adaptation in response to psychiatric stress.SIGNIFICANCE STATEMENT Astrocytes, the most abundant glial cells of the brain, play a vital role in the pathophysiology of depression. Astrocytes secrete adenosine ATP, which modulates depressive-like behaviors. Notably, astrocytes are enriched for arachidonic acid metabolism. In the present study, we explored the hypothesis that epoxyeicosatrienoic acid signaling, an arachidonic acid metabolic pathway, modulates astrocytic ATP release and the expression of depressive-like behaviors. Our work demonstrated that epoxyeicosatrienoic acid signaling in astrocytes in the mPFC is essential for behavioral homeostatic adaptation in response to stress, and the extent of astrocyte functioning is greater than expected based on earlier reports.


Assuntos
Astrócitos/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Eicosanoides/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Animais , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Química Encefálica , Células Cultivadas , Transtorno Depressivo Maior/genética , Modelos Animais de Doenças , Método Duplo-Cego , Eicosanoides/análise , Epóxido Hidrolases/deficiência , Epóxido Hidrolases/genética , Epóxido Hidrolases/fisiologia , Genes Reporter , Vetores Genéticos/administração & dosagem , Humanos , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Córtex Pré-Frontal/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Transdução de Sinais , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Suicídio , Adulto Jovem
2.
J Biol Chem ; 294(4): 1142-1151, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30487289

RESUMO

CRISPR/Cas9 is a powerful technology widely used for genome editing, with the potential to be used for correcting a wide variety of deleterious disease-causing mutations. However, the technique tends to generate more indels (insertions and deletions) than precise modifications at the target sites, which might not resolve the mutation and could instead exacerbate the initial genetic disruption. We sought to develop an improved protocol for CRISPR/Cas9 that would correct mutations without unintended consequences. As a case study, we focused on achondroplasia, a common genetic form of dwarfism defined by missense mutation in the Fgfr3 gene that results in glycine to arginine substitution at position 374 in mice in fibroblast growth factor receptor 3 (Fgfr3-G374R), which corresponds to G380R in humans. First, we designed a GFP reporter system that can evaluate the cutting efficiency and specificity of single guide RNAs (sgRNAs). Using the sgRNA selected based on our GFP reporter system, we conducted targeted therapy of achondroplasia in mice. We found that we achieved higher frequency of precise correction of the Fgfr3-G374R mutation using Cas9 protein rather than Cas9 mRNA. We further demonstrated that targeting oligos of 100 and 200 nucleotides precisely corrected the mutation at equal efficiency. We showed that our strategy completely suppressed phenotypes of achondroplasia and whole genome sequencing detected no off-target effects. These data indicate that improved protocols can enable the precise CRISPR/Cas9-mediated correction of individual mutations with high fidelity.


Assuntos
Acondroplasia/terapia , Sistemas CRISPR-Cas , Marcação de Genes , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Acondroplasia/genética , Animais , Feminino , Edição de Genes , Masculino , Camundongos , Camundongos Knockout , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
3.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842331

RESUMO

The papillomavirus (PV) E2 protein coordinates viral transcription and genome replication. Following a strategy to identify amino acids in E2 that are posttranslationally modified, we reported that tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) complexes with and phosphorylates E2, which inhibits viral DNA replication. Here, we present several lines of evidence indicating that tyrosine (Y) 138 of HPV-31 E2 is a substrate of FGFR3. The active form of FGFR3 bound to and phosphorylated the region of amino acids (aa) 107 to 175 in HPV-31 E2. The E2 phenylalanine (F) mutant Y138F displayed reduced FGFR3-induced phosphotyrosine. A constitutive kinase-active FGFR3 inhibited wild-type (WT) E2-induced E1-dependent DNA replication, while the 138F mutant retained activity. The tyrosine to glutamic acid (E) mutant Y138E, which can mimic phosphotyrosine, failed to induce transient DNA replication, although it maintained the ability to bind and localize the viral DNA helicase E1 to the viral origin. The bromodomain-containing protein 4 (Brd4) binds to E2 and is necessary for initiation of viral DNA synthesis. Interestingly, the Y138E protein coimmunoprecipitated with full-length Brd4 but was defective for association with its C-terminal domain (CTD). These results imply that the activity of the FGFR3 kinase in the infected epithelial cell restricts the HPV replication program through phosphorylation of E2 at Y138, which interferes with E2 binding to the Brd4 CTD, and that this interaction is required for initiation of viral DNA synthesis.IMPORTANCE Human papillomaviruses (HPVs) are highly infectious pathogens that commonly infect the oropharynx and uterine cervix. The idea that posttranslational modifications of viral proteins coordinates viral genome replication is less explored. We recently discovered that fibroblast growth factor receptor 3 (FGFR3) phosphorylates the viral E2 protein. The current study demonstrates that FGFR3 phosphorylates E2 at tyrosine 138, which inhibits association with the C-terminal peptide of Brd4. This study illustrates a novel regulatory mechanism of virus-host interaction and provides insight into the role of Brd4 in viral replication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral/fisiologia , Proteínas de Ciclo Celular/fisiologia , DNA Helicases/metabolismo , Replicação do DNA , DNA Viral/metabolismo , Proteínas de Ligação a DNA/fisiologia , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/fisiologia , Papillomaviridae/metabolismo , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/metabolismo , Fosforilação , Ligação Proteica , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Fatores de Transcrição/fisiologia , Tirosina/metabolismo , Replicação Viral/genética
4.
Dev Dyn ; 246(4): 291-309, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27987249

RESUMO

Autosomal dominant mutations in fibroblast growth factor receptor 3 (FGFR3) cause achondroplasia (Ach), the most common form of dwarfism in humans, and related chondrodysplasia syndromes that include hypochondroplasia (Hch), severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN), and thanatophoric dysplasia (TD). FGFR3 is expressed in chondrocytes and mature osteoblasts where it functions to regulate bone growth. Analysis of the mutations in FGFR3 revealed increased signaling through a combination of mechanisms that include stabilization of the receptor, enhanced dimerization, and enhanced tyrosine kinase activity. Paradoxically, increased FGFR3 signaling profoundly suppresses proliferation and maturation of growth plate chondrocytes resulting in decreased growth plate size, reduced trabecular bone volume, and resulting decreased bone elongation. In this review, we discuss the molecular mechanisms that regulate growth plate chondrocytes, the pathogenesis of Ach, and therapeutic approaches that are being evaluated to improve endochondral bone growth in people with Ach and related conditions. Developmental Dynamics 246:291-309, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Acondroplasia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/fisiologia , Acondroplasia/etiologia , Acondroplasia/patologia , Acondroplasia/terapia , Animais , Condrócitos/metabolismo , Lâmina de Crescimento/citologia , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/ultraestrutura , Humanos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia
5.
Toxicol Pathol ; 45(7): 904-910, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29096595

RESUMO

Fibroblast growth factor-23 (FGF23) is a bone-derived hormone, mainly produced by osteoblasts and osteocytes in response to increased extracellular phosphate and circulating vitamin D hormone. Endocrine FGF23 signaling requires co-expression of the ubiquitously expressed FGF receptor 1 (FGFR1) and the co-receptor α-Klotho (Klotho). In proximal renal tubules, FGF23 suppresses the membrane expression of the sodium-phosphate cotransporters Npt2a and Npt2c which mediate urinary reabsorption of filtered phosphate. In addition, FGF23 suppresses proximal tubular expression of 1α-hydroxylase, the key enzyme responsible for vitamin D hormone production. In distal renal tubules, FGF23 signaling activates with-no-lysine kinase 4, leading to increased renal tubular reabsorption of calcium and sodium. Therefore, FGF23 is not only a phosphaturic but also a calcium- and sodium-conserving hormone, a finding that may have important implications for the pathophysiology of chronic kidney disease. Besides these endocrine, Klotho-dependent functions of FGF23, FGF23 is also an auto-/paracrine suppressor of tissue-nonspecific alkaline phosphatase transcription via Klotho-independent FGFR3 signaling, leading to local inhibition of mineralization through accumulation of pyrophosphate. In addition, FGF23 may target the heart via an FGFR4-mediated Klotho-independent signaling cascade. Taken together, there is emerging evidence that FGF23 is a pleiotropic hormone, linking bone with several other organ systems.


Assuntos
Osso e Ossos/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Glucuronidase/fisiologia , Comunicação Autócrina , Calcificação Fisiológica , Sistema Cardiovascular , Fator de Crescimento de Fibroblastos 23 , Humanos , Imunomodulação , Túbulos Renais Proximais/fisiologia , Proteínas Klotho , Comunicação Parácrina , Fosfatos/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/fisiologia
6.
Hepatology ; 62(6): 1767-78, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26235436

RESUMO

UNLABELLED: Fibroblast growth factor receptors (FGFRs) are frequently up-regulated in subsets of hepatocellular carcinoma (HCC). Here, we provide mechanistic insight that FGFR3 splice variants IIIb and IIIc impact considerably on the malignant phenotype of HCC cells. The occurrence of FGFR3 variants was analyzed in human HCC samples. In hepatoma/hepatocarcinoma cell lines, FGFR3 isoforms were overexpressed by lentiviral constructs or down-modulated by small interfering RNA (siRNA; affecting FGFR3-IIIb and -IIIc) or an adenoviral kinase-dead FGFR3-IIIc construct (kdFGFR3). Elevated levels of FGFR3-IIIb and/or -IIIc were found in 53% of HCC cases. FGFR3-IIIb overexpression occurred significantly more often in primary tumors of large (pT2-4) than of small size (pT1). Furthermore, one or both isoforms were enhanced mostly in cases with early tumor infiltration and/or recurrence at the time of surgery or follow-up examinations. In hepatoma/hepatocarcinoma cells, up-regulated FGFR3-IIIb conferred an enhanced capability for proliferation. Both FGFR3-IIIb and FGFR3-IIIc suppressed apoptotic activity, enhanced clonogenic growth, and induced disintegration of the blood/lymph endothelium. The tumorigenicity of cells in severe combined immunodeficiency mice was augmented to a larger degree by variant IIIb than by IIIc. Conversely, siRNA targeting FGFR3 and kdFGFR3 reduced clonogenicity, anchorage-independent growth, and disintegration of the blood/lymph endothelium in vitro. Furthermore, kdFGFR3 strongly attenuated tumor formation in vivo. CONCLUSIONS: Deregulated FGFR3 variants exhibit specific effects in the malignant progression of HCC cells. Accordingly, blockade of FGFR3-mediated signaling may be a promising therapeutic approach to antagonize growth and malignant behavior of HCC cells.


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos SCID , Isoformas de Proteínas , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Células Tumorais Cultivadas , Regulação para Cima
7.
BJU Int ; 118(5): 681-691, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27271022

RESUMO

Molecular analysis has identified subsets of urothelial carcinoma (UC) expressing distinct genetic signatures. Genomic alterations in the oncogenic fibroblast growth factor receptor 3 (FGFR3) pathway are among the most well described in UC and have led to extensive and ongoing investigation of FGFR3-targeted therapies in this disease, although no new drugs have yet been approved. Given the unmet need for effective treatments in advanced and metastatic UC, a better understanding of the known molecular alterations of FGFR3 and of the previous and ongoing clinical investigations of this promising target in UC deserves attention. The objective of the present review is to describe the landscape of alterations and biology of FGFR3 in UC, comprehensively summarize the current state of UC clinical trials of FGFR3 inhibitors, and discuss future therapeutic applications. Using the Pubmed and Clinicaltrials.gov databases, articles describing the spectrum and biological activity of FGFR3 genomic alterations and trials of FGFR3 inhibitors in UC were identified. Search terms included 'FGFR3 genomic alterations' and 'urothelial cancer' or 'bladder cancer'. Genomic alterations, including translocations and activating mutations, are increasingly described in advanced and metastatic UC. The majority of clinical trials have been performed in unselected populations; however, recent studies have reported encouraging preliminary data. We argue that routine use of molecular genomic tumour analysis in UC may inform selection of patients for appropriate trials and we further investigate the potential of FGFR3 as a meaningful clinical target for this difficult disease.


Assuntos
Carcinoma de Células de Transição/genética , Genômica , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Neoplasias Urológicas/genética , Ensaios Clínicos como Assunto , Previsões , Humanos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia
8.
Cancer Cell ; 12(3): 187-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17785199

RESUMO

The tyrosine kinase receptor FGFR3 is thought to play a role in hematopoietic malignancies. A new study in this issue of Cancer Cell identifies the serine/threonine kinase RSK2 as a key substrate of FGFR3 in human t(4;14)-positive multiple myeloma (MM) cells. Constitutively active FGFR3 directly phosphorylates RSK2 on Tyr529, which primes RSK2 for activation by the kinases ERK1 and ERK2 (ERK1/2). In turn, RSK2 activity plays an important role in the survival of FGFR3-expressing MM cells.


Assuntos
Sistema de Sinalização das MAP Quinases , Mieloma Múltiplo/enzimologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Ativação Enzimática , Humanos , Modelos Biológicos , Fosforilação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores
9.
Cancer Cell ; 12(3): 201-14, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17785202

RESUMO

To better understand the signaling properties of oncogenic FGFR3, we performed phospho-proteomics studies to identify potential downstream signaling effectors that are tyrosine phosphorylated in hematopoietic cells expressing constitutively activated leukemogenic FGFR3 mutants. We found that FGFR3 directly tyrosine phosphorylates the serine/threonine kinase p90RSK2 at Y529, which consequently regulates RSK2 activation by facilitating inactive ERK binding to RSK2 that is required for ERK-dependent phosphorylation and activation of RSK2. Moreover, inhibition of RSK2 by siRNA or a specific RSK inhibitor fmk effectively induced apoptosis in FGFR3-expressing human t(4;14)-positive myeloma cells. Our findings suggest that FGFR3 mediates hematopoietic transformation by activating RSK2 in a two-step fashion, promoting both the ERK-RSK2 interaction and subsequent phosphorylation of RSK2 by ERK.


Assuntos
Transformação Celular Neoplásica/metabolismo , Sistema de Sinalização das MAP Quinases , Mieloma Múltiplo/enzimologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Apoptose , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mieloma Múltiplo/metabolismo , Fosforilação , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Tirosina/metabolismo
10.
Am J Med Genet A ; 158A(9): 2336-41, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22888019

RESUMO

Achondroplasia and hypochondroplasia are two of the most common forms of skeletal dysplasia. They are both caused by activating mutations in FGFR3 and are inherited in an autosomal dominant manner. Our patient was born to parents with presumed achondroplasia, and found on prenatal testing to have p.G380R and p.N540K FGFR3 mutations. In addition to having typical problems associated with both achondroplasia and hypochondroplasia, our patient had several atypical findings including: abnormal lobulation of the lungs with respiratory insufficiency, C1 stenosis, and hypoglycemia following a Nissen fundoplication. After his reflux and aspiration were treated, the persistence of the tachypnea and increased respiratory effort indicated this was not the primary source of the respiratory distress. Our subsequent hypothesis was that primary restrictive lung disease was the cause of his respiratory distress. A closer examination of his chest circumference did not support this conclusion either. Following his death, an autopsy found the right lung had 2 lobes while the left lung had 3 lobes. A literature review demonstrates that other children with achondroplasia-hypochondroplasia complex have been described with abnormal pulmonary function and infants with thanatophoric dysplasia have similar abnormal pulmonary anatomy. We hypothesize that there may be a primary pulmonary phenotype associated with FGFR3-opathies, unrelated to chest size which leads to the consistent finding of increased respiratory signs and symptoms in these children. Further observation of respiratory status, combined with the macroscopic and microscopic analysis of pulmonary branching anatomy and alveolar structure in this patient population will be important to explore this hypothesis.


Assuntos
Acondroplasia/patologia , Pulmão/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Feminino , Humanos , Recém-Nascido , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
11.
Dev Dyn ; 240(11): 2584-96, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22016144

RESUMO

Muenke syndrome caused by the FGFR3(P250R) mutation is an autosomal dominant disorder mostly identified with coronal suture synostosis, but it also presents with other craniofacial phenotypes that include mild to moderate midface hypoplasia. The Muenke syndrome mutation is thought to dysregulate intramembranous ossification at the cranial suture without disturbing endochondral bone formation in the skull. We show in this study that knock-in mice harboring the mutation responsible for the Muenke syndrome (FgfR3(P244R)) display postnatal shortening of the cranial base along with synchondrosis growth plate dysfunction characterized by loss of resting, proliferating and hypertrophic chondrocyte zones and decreased Ihh expression. Furthermore, premature conversion of resting chondrocytes along the perichondrium into prehypertrophic chondrocytes leads to perichondrial bony bridge formation, effectively terminating the postnatal growth of the cranial base. Thus, we conclude that the Muenke syndrome mutation disturbs endochondral and perichondrial ossification in the cranial base, explaining the midface hypoplasia in patients.


Assuntos
Craniossinostoses/genética , Ossificação Heterotópica/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Base do Crânio/anormalidades , Substituição de Aminoácidos/fisiologia , Animais , Arginina/genética , Suturas Cranianas/anormalidades , Suturas Cranianas/diagnóstico por imagem , Suturas Cranianas/metabolismo , Suturas Cranianas/patologia , Lâmina de Crescimento/diagnóstico por imagem , Lâmina de Crescimento/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação de Sentido Incorreto/fisiologia , Osteogênese/genética , Fenótipo , Prolina/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Base do Crânio/diagnóstico por imagem , Base do Crânio/metabolismo , Microtomografia por Raio-X
12.
Dev Dyn ; 240(6): 1586-99, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21491541

RESUMO

The fibroblast growth factor receptor 3 (Fgfr3) is expressed in a rostral(low) to caudal(high) gradient in the developing cerebral cortex. Therefore, we hypothesized that Fgfr3 contributes to the correct morphology and connectivity of the caudal cortex. Overall, the forebrain structures appeared normal in Fgfr3(-/-) mice. However, cortical and hippocampal volumes were reduced by 26.7% and 16.3%, respectively. Hypoplasia was particularly evident in the caudo-ventral region of the telencephalon where proliferation was mildly decreased at embryonic day 18.5. Dysplasia of GABAergic neurons in the amygdala and piriform cortex was seen following GAD67 immunohistochemistry. Dye-tracing studies and diffusion magnetic resonance imaging and tractography detected a subtle thalamocortical tract deficit, and significant decreases in the stria terminalis and lateral arms of the anterior commissure. These results indicate the subtle role of Fgfr3 in formation of caudal regions of the telencephalon affecting some brain projections.


Assuntos
Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Telencéfalo/embriologia , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Regulação para Baixo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Hipocampo/embriologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurogênese/genética , Neurogênese/fisiologia , Tamanho do Órgão/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Telencéfalo/metabolismo
13.
Am J Physiol Endocrinol Metab ; 300(3): E508-17, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21139072

RESUMO

Uncertainty exists regarding the physiologically relevant fibroblast growth factor (FGF) receptor (FGFR) for FGF23 in the kidney and the precise tubular segments that are targeted by FGF23. Current data suggest that FGF23 targets the FGFR1c-Klotho complex to coordinately regulate phosphate transport and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] production in the proximal tubule. In studies using the Hyp mouse model, which displays FGF23-mediated hypophosphatemia and aberrant vitamin D, deletion of Fgfr3 or Fgfr4 alone failed to correct the Hyp phenotype. To determine whether FGFR1 is sufficient to mediate the renal effects of FGF23, we deleted Fgfr3 and Fgfr4 in Hyp mice, leaving intact the FGFR1 pathway by transferring compound Fgfr3/Fgfr4-null mice on the Hyp background to create wild-type (WT), Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice. We found that deletion of Fgfr3 and Fgfr4 in Fgfr3(-/-)/Fgfr4(-/-) and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice induced an increase in 1,25(OH)(2)D. In Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, it partially corrected the hypophosphatemia (P(i) = 9.4 ± 0.9, 6.1 ± 0.2, 9.1 ± 0.4, and 8.0 ± 0.5 mg/dl in WT, Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, respectively), increased Na-phosphate cotransporter Napi2a and Napi2c and Klotho mRNA expression in the kidney, and markedly increased serum FGF23 levels (107 ± 20, 3,680 ± 284, 167 ± 22, and 18,492 ± 1,547 pg/ml in WT, Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, respectively), consistent with a compensatory response to the induction of end-organ resistance. Fgfr1 expression was unchanged in Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice and was not sufficient to transduce the full effects of FGF23 in Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice. These studies suggest that FGFR1, FGFR3, and FGFR4 act in concert to mediate FGF23 effects on the kidney and that loss of FGFR function leads to feedback stimulation of Fgf23 expression in bone.


Assuntos
Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Absorciometria de Fóton , Animais , Osso e Ossos/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/farmacologia , Deleção de Genes , Homozigoto , Hipofosfatemia/genética , Hipofosfatemia/metabolismo , Imuno-Histoquímica , Rim/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Fenótipo , Fosfatos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tomografia Computadorizada por Raios X , Vitamina D/metabolismo
14.
J Neurosci ; 29(46): 14571-80, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19923290

RESUMO

During corticogenesis, the balance between the self-renewal of radial glial stem cells and the production of their descendent progenitor cells is essential in generating the correct size and cell composition of the neocortex. How the stem-to-progenitor cell transition is regulated is poorly understood. FGFs are commonly implicated in promoting proliferation of neural precursor cells, but it is unclear how they exert their effects on stem cells, progenitor cells, or both in vivo. Here, three FGF receptor genes are simultaneously deleted during cortical neurogenesis. In these mutants, radial glia are depleted due to an increased transition from an uncommitted state to a more differentiated one, initially causing an increase in progenitors, but ultimately resulting in a smaller cortex. The proliferation rate of progenitors themselves, however, is unchanged. These results indicate that FGFs normally repress the radial glia to progenitor cell transition during corticogenesis.


Assuntos
Córtex Cerebral/fisiologia , Neurogênese , Neuroglia/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Transdução de Sinais , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Feminino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurogênese/genética , Neuroglia/citologia , Gravidez , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética , Células-Tronco/citologia
15.
Clin Calcium ; 20(10): 1490-6, 2010 Oct.
Artigo em Japonês | MEDLINE | ID: mdl-20890030

RESUMO

FGFR3 has been establishing its position in growth plate cartilage after the identification as a responsible gene for achondroplasia. The major pathway of the pathogenesis in achondroplasia is the suppression of PTHrP-PTHR system, which is mainly mediated by ERK activation induced by constitutive active FGFR3. However, intracellular signaling system in FGFR3 is complex and the molecular pathogenesis of achondroplasia and related disorders has not been fully clarified. Especially, recently found human loss-of-function mutations in newly identified syndromes casted novel findings in the relation between phenotype and receptor function. In this review, I summarized recent consensus in the pathogenesis of FGFR3 related chondrodysplasia.


Assuntos
Acondroplasia/genética , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Transdução de Sinais/fisiologia , Animais , Cartilagem , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Lâmina de Crescimento , Humanos , Imunoglobulina D , Camundongos , Proteína Relacionada ao Hormônio Paratireóideo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo
16.
Nat Neurosci ; 23(10): 1297-1306, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895565

RESUMO

How astrocytes grow and integrate into neural circuits remains poorly defined. Zebrafish are well suited for such investigations, but bona fide astrocytes have not been described in this system. Here we characterize a zebrafish cell type that is remarkably similar to mammalian astrocytes that derive from radial glial cells and elaborate processes to establish their territories at early larval stages. Zebrafish astrocytes associate closely with synapses, tile with one another and express markers, including Glast and glutamine synthetase. Once integrated into circuits, they exhibit whole-cell and microdomain Ca2+ transients, which are sensitive to norepinephrine. Finally, using a cell-specific CRISPR-Cas9 approach, we demonstrate that fgfr3 and fgfr4 are required for vertebrate astrocyte morphogenesis. This work provides the first visualization of astrocyte morphogenesis from stem cell to post-mitotic astrocyte in vivo, identifies a role for Fgf receptors in vertebrate astrocytes and establishes zebrafish as a valuable new model system to study astrocyte biology in vivo.


Assuntos
Astrócitos/fisiologia , Encéfalo/crescimento & desenvolvimento , Células Ependimogliais/fisiologia , Morfogênese , Neurônios/fisiologia , Medula Espinal/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Sinalização do Cálcio , Vias Neurais/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/fisiologia , Sinapses/fisiologia , Proteínas de Peixe-Zebra/fisiologia
17.
Dev Biol ; 316(2): 336-49, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18339367

RESUMO

To address the functions of FGFR2 and FGFR3 signaling during mandibular skeletogenesis, we over-expressed in the developing chick mandible, replication-competent retroviruses carrying truncated FGFR2c or FGFR3c that function as dominant negative receptors (RCAS-dnFGFR2 and RCAS-dnFGFR3). Injection of RCAS-dnFGFR3 between HH15 and 20 led to reduced proliferation, increased apoptosis, and decreased differentiation of chondroblasts in Meckel's cartilage. These changes resulted in the formation of a hypoplastic mandibular process and truncated Meckel's cartilage. This treatment also affected the proliferation and survival of osteoprogenitor cells in osteogenic condensations, leading to the absence of five mandibular bones on the injected side. Injection of RCAS-dnFGFR2 between HH15 and 20 or RCAS-dnFGFR3 at HH26 did not affect the morphogenesis of Meckel's cartilage but resulted in truncations of the mandibular bones. RCAS-dnFGFR3 affected the proliferation and survival of the cells within the periosteum and osteoblasts. Together these results demonstrate that FGFR3 signaling is required for the elongation of Meckel's cartilage and FGFR2 and FGFR3 have roles during intramembranous ossification of mandibular bones.


Assuntos
Cartilagem/embriologia , Mandíbula/embriologia , Morfogênese/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Animais , Células Cultivadas , Embrião de Galinha , Galinhas , Feminino , Osteogênese , Óvulo/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Deleção de Sequência , Transdução de Sinais
18.
Br J Cancer ; 101(12): 2030-7, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19888223

RESUMO

BACKGROUND: The hypothesis that malignant tumours are generated by rare populations of cancer stem cells that are more tumourigenic than other cancer cells has gained increasing credence. The objective of this study was to identify and characterise a subpopulation of human sarcoma-initiating cells. METHODS: We examined established rhabdomyosarcoma cell lines by flow cytometry. Tumourigenesis was examined by xenograft models. Real-time PCR and immunohistochemistry were performed to examine the gene expression using cell lines and biopsy specimens. RESULTS: Rhabdomyosarcoma cell lines included small populations of fibroblast growth factor receptor 3 (FGFR3)-positive cells. FGFR3-positive KYM-1 and RD cells were more strongly tumourigenic than FGFR3-negative cells. In addition, xenoengraftment of 33% of single FGFR3-positive KYM-1 cells yielded tumour formation. Stem cell properties of FGFR3-positive cells were further established by real-time PCR, which demonstrated upregulation of undifferentiated cell markers and downregulation of differentiation markers. We showed that in the absence of serum, addition of basic fibroblast growth factor maintained and enriched FGFR3-positive cells. On the other hand, ciliary neurotrophic factor reduced the proportion of FGFR3-positive cells. Real-time PCR and immunohistochemical examination revealed that embryonal rhabdomyosarcoma patient biopsy specimens were found to over-express FGFR3. CONCLUSIONS: Our findings suggest that rhabdomyosarcoma cell lines include a minor subpopulation of FGFR3-positive sarcoma-initiating cells, which can be maintained indefinitely in culture and which is crucial for their malignancy.


Assuntos
Células-Tronco Neoplásicas/patologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Rabdomiossarcoma/patologia , Animais , Biópsia , Diferenciação Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Camundongos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/análise
19.
Mol Biol Cell ; 17(2): 576-84, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16291864

RESUMO

Fibroblast growth factors play important roles in angiogenesis, but their functions in lymphangiogenesis remain poorly understood. The homeodomain transcription factor Prox1 is essential for development of the lymphatic system by specifying lymphatic endothelial cell (LEC) fate. Here, we identify fibroblast growth factor (FGF) receptor (FGFR)-3 as a novel Prox1 target gene. Ectopic overexpression of Prox1 in blood vascular endothelial cells up-regulates FGFR-3. Prox1 induces the expression of the IIIc isoform, which we also found to be the major isoform of FGFR-3 expressed in LECs. This transcriptional activation is mediated by a direct binding of Prox1 to newly identified Prox1-response elements in the FGFR-3 promoter. Consistently, FGFR-3 is up-regulated in Prox1-positive newly formed lymphatic vessels during embryogenesis and its lymphatic-specific expression is maintained throughout development. We also found that FGF-1 and FGF-2 promote proliferation, migration, and survival of cultured LECs without involvement of vascular endothelial cell growth factor receptor-3. We show that FGF-2 binds to low- and high-affinity receptors on LECs and is efficiently internalized and processed. Moreover, functional inhibition of FGFR-3 using small interfering RNA represses LEC proliferation. Together, these results indicate that FGFR-3 is an initial target of Prox1 during the lymphatic cell fate specification and that FGF signaling may play an important role in lymphatic vessel development.


Assuntos
Endotélio Linfático/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Linfangiogênese/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Transdução de Sinais/fisiologia , Animais , Apoptose , Sequência de Bases , Proliferação de Células , Células Cultivadas , Endotélio Linfático/citologia , Endotélio Linfático/embriologia , Fator 1 de Crescimento de Fibroblastos/fisiologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Ratos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Supressoras de Tumor , Regulação para Cima
20.
J Orthop Res ; 37(12): 2550-2560, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31373395

RESUMO

Osteoarthritis (OA) is a degenerative joint disease associated with chronic pain and disability in humans and companion animals. The canine species can be subdivided into non-chondrodystrophic (NCD) and chondrodystrophic (CD) dogs, the latter having disproportionally short limbs due to disturbance in endochondral ossification of long bones. This phenotype is associated with retrogene insertions of the fibroblast growth factor 4 (FGF4) gene, resulting in enhanced fibroblast growth factor receptor 3 (FGFR3) signaling. The effect on cartilage is unknown and in experimental studies with dogs, breeds are seemingly employed randomly. The aim of this study was to determine whether CD- and NCD-derived cartilage differs on a structural and biochemical level, and to explore the relationship between FGF4 associated chondrodystrophy and OA. Cartilage explants from CD and NCD dogs were cultured for 21 days. Activation of canonical Wnt signaling was assessed in primary canine chondrocytes. OA and synovitis severity from an experimental OA model were compared between healthy and OA samples from CD and NCD dogs. Release of glycosaminoglycans, DNA content, and cyclooxygenase 2 (COX-2) expression were higher in NCD cartilage explants. Healthy cartilage from NCD dogs displayed higher cartilage degeneration and synovitis scores, which was aggravated by the induction of OA. Dikkopf-3 gene expression was higher in NCD cartilage. No differences in other Wnt pathway read outs were found. To conclude, chondrodystrophy associated with the FGF4 retrogene seems to render CD dogs less susceptible to the development of OA when compared with NCD dogs. These differences should be considered when choosing a canine model to study the pathobiology and new treatment strategies of OA. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. J Orthop Res 37:2550-2560, 2019.


Assuntos
Modelos Animais de Doenças , Fator 4 de Crescimento de Fibroblastos/genética , Osteoartrite/etiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Cartilagem Articular/patologia , Ciclo-Oxigenase 2/análise , Cães , Glicosaminoglicanos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA