Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Metab Brain Dis ; 39(8): 1523-1541, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39172328

RESUMO

Depression is a mental disorder characterised by persistent low mood, anhedonia and cognitive impairment that affects an estimated 3.8% of the world's population, including 5% of adults. Peganum harmala L. (P. harmala) is a medicinal plant and has been reported to be effective against Alzheimer's disease, Parkinson's disease and depression. The present study was aimed to evaluate the behavioral and pharmacological effects of P. harmala seed extract in rats exposed to chronic unpredictable mild stress (CUMS) in vivo and to investigate the mechanism of action. CUMS-exposed rats were treated with P. harmala extract (75 and 150 mg/kg, i.p.) for 2 weeks. HPLC analysis was used to determine the concentration of harmaline and harmine alkaloids in the extract. Heavy metal analysis in seeds was performed by ICP-MS. Our results showed that P. harmala at the dose of 150 mg/kg significantly reduced the depressive-like behaviors in CUMS-exposed rats, as evidenced by increased sucrose consumption in the sucrose preference test (SPT), decreased immobility time in the forced swim test (FST) and plasma corticosterone levels, increased the time spent in open arms in the elevated plus maze (EPM), and improved memory and learning in the passive avoidance test (PAT). In addition, P. harmala decreased monoamine oxidase-A (MAO-A) levels, and increased serotonin (5-HT), dopamine (DA), and noradrenaline (NA) levels in the brains of rats exposed to CUMS. P. harmala decreased the expression of the pro-inflammatory transcription factor nuclear factor-κB (NF-κB), and increased the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) in rat brain. Furthermore, P. harmala improved brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) protein expression in rat brain. In conclusion, P. harmala at a dose of 150 mg/kg is more effective in preventing depressive-like behavior in CUMS-exposed rats by improving neurotransmitter levels, reducing oxidative stress, suppressing neuroinflammation and activating the BDNF/TrkB pathway, all of which are important in the pathogenesis of depression.


Assuntos
Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Depressão , Peganum , Extratos Vegetais , Sementes , Transdução de Sinais , Estresse Psicológico , Animais , Peganum/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Masculino , Depressão/tratamento farmacológico , Depressão/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ratos Sprague-Dawley , Monoaminas Biogênicas/metabolismo , Receptor trkB/metabolismo , Receptor trkB/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
2.
J Cell Mol Med ; 27(23): 3928-3938, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37799103

RESUMO

Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first-line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side-effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Engeletin, a natural Smilax glabra rhizomilax derivative, is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The effects of engeletin were assessed in the forced swimming test (FST) and tail suspension test (TST) in mice. Engeletin was also investigated in the chronic restraint stress (CRS) mouse model of depression with fluoxetine (FLX) as the positive control. Changes in prefrontal cortex (PFC) spine density, synaptic plasticity-linked protein expressions and the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB)- mammalian target of rapamycin complex 1 (mTORC1) signalling pathway after chronic stress and engeletin treatment were then investigated. The TrkB and mTORC1 selective inhibitors, ANA-12 and rapamycin, respectively, were utilized to assess the engeletin's antidepressive mechanisms. Our data shows that engeletin exhibited antidepressant-like activity in the FST and TST in mice without affecting locomotor activity. Furthermore, it exhibited efficiency against the depression of CRS model. Moreover, it enhanced the BDNF-TrkB-mTORC1 pathway in the PFC during CRS and altered the reduction in dendritic spine density and levels of synaptic plasticity-linked protein induced by CRS. In conclusion, engeletin has antidepressant activity via activation of the BDNF-TrkB-mTORC1 signalling pathway and upregulation of PFC synaptic plasticity.


Assuntos
Transtorno Depressivo Maior , Plasticidade Neuronal , Receptor trkB , Animais , Humanos , Camundongos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Receptor trkB/efeitos dos fármacos , Receptor trkB/metabolismo
3.
Sleep Breath ; 26(1): 287-295, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33993395

RESUMO

PURPOSE: Chronic intermittent hypoxia (CIH) plays a key role in the complications of obstructive sleep apnea (OSA), which is strongly associated with retinal and optic nerve diseases. Additionally, the brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling pathway plays an important protective role in neuronal injury. In the present study, we investigated the role of 7,8-dihydroxyflavone (7,8-DHF) in regulating CIH-induced injury in mice retinas and rat primary retinal ganglion cells (RGCs). METHODS: C57BL/6 mice and in vitro primary RGCs were exposed to CIH or normoxia and treated with or without 7,8-DHF. The mice eyeballs or cultured cells were then taken for histochemistry, immunofluorescence or biochemistry, and the protein expression of the BDNF/TrkB signaling pathway analysis. RESULTS: Our results showed that CIH induced oxidative stress (OS) in in vivo and in vitro models and inhibited the conversion of BDNF precursor (pro-BDNF) to a mature form of BDNF, which increased neuronal cell apoptosis. 7,8-DHF reduced the production of reactive oxygen species (ROS) caused by CIH and effectively activated TrkB signals and downstream protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) survival signaling pathways, which upregulated the expression of mature BDNF. ANA-12 (a TrkB specific inhibitor) blocked the protective effect of 7,8-DHF. CONCLUSION: In short, the activation of the BDNF/TrkB signaling pathway alleviated CIH-induced oxidative stress damage of the optic nerve and retinal ganglion cells. 7,8-DHF may serve as a promising agent for OSA related neuropathy.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Hipóxia Celular/efeitos dos fármacos , Flavonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Receptor trkB/efeitos dos fármacos , Receptor trkB/fisiologia , Células Ganglionares da Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Cereb Cortex ; 29(12): 4932-4947, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30877788

RESUMO

Preterm-born children suffer from neurological and behavioral disorders. Herein, we hypothesized that premature birth and non-maternal care of preterm newborns might disrupt neurobehavioral function, hippocampal dendritic arborization, and dendritic spine density. Additionally, we assessed whether 17ß-estradiol (E2) replacement or the TrkB receptor agonist, 7,8-dihydroxyflavone (DHF), would reverse compromised dendritic development and cognitive function in preterm newborns. These hypotheses were tested by comparing preterm (E28.5) rabbit kits cared and gavage-fed by laboratory personnel and term-kits reared and breast-fed by their mother doe at an equivalent postconceptional age. Neurobehavioral tests showed that both premature-birth and formula-feeding with non-maternal care led to increased anxiety behavior, poor social interaction, and lack of novelty preference compared with term-kits. Dendritic branching and number of total or mushroom dendritic spines were reduced in the CA1 field of preterm-kits compared with term controls. While CDC42 and Rac1/2/3 expression levels were lower, RhoA-activity was higher in preterm-kits compared with term controls. Both E2 and DHF treatment reversed prematurity-induced reduction in spine density, reduced total RhoA-GTPase levels, and enhanced cognitive function. Hence, prematurity and non-maternal care result in cognitive deficits, and reduced dendritic arbors and spines in CA1. E2 replacement or DHF treatment might reverse changes in dendritic spines and improve neurodevelopment in premature infants.


Assuntos
Cognição/fisiologia , Espinhas Dendríticas/patologia , Estradiol/farmacologia , Hipocampo/patologia , Nascimento Prematuro/fisiopatologia , Receptor trkB/agonistas , Animais , Cognição/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Estrogênios/farmacologia , Feminino , Flavonas/farmacologia , Hipocampo/efeitos dos fármacos , Privação Materna , Gravidez , Nascimento Prematuro/patologia , Coelhos , Receptor trkB/efeitos dos fármacos
5.
Mol Psychiatry ; 23(10): 2007-2017, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29203848

RESUMO

Conventional antidepressant medications, which act on monoaminergic systems, display significant limitations, including a time lag of weeks to months and low rates of therapeutic efficacy. GLYX-13 is a novel glutamatergic compound that acts as an N-methyl-D-aspartate (NMDA) modulator with glycine-like partial agonist properties; like the NMDA receptor antagonist ketamine GLYX-13 produces rapid antidepressant actions in depressed patients and in preclinical rodent models. However, the mechanisms underlying the antidepressant actions of GLYX-13 have not been characterized. Here we use a combination of neutralizing antibody (nAb), mutant mouse and pharmacological approaches to test the role of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TrkB) signaling in the actions of GLYX-13. The results demonstrate that the antidepressant effects of GLYX-13 are blocked by intra-medial prefrontal cortex (intra-mPFC) infusion of an anti-BDNF nAb or in mice with a knock-in of the BDNF Val66Met allele, which blocks the processing and activity-dependent release of BDNF. We also demonstrate that pharmacological inhibitors of BDNF-TrkB signaling or of L-type voltage-dependent Ca2+ channels (VDCCs) block the antidepressant behavioral actions of GLYX-13. Finally, we examined the role of the Rho GTPase proteins by injecting a selective inhibitor into the mPFC and found that activation of Rac1 but not RhoA is involved in the antidepressant effects of GLYX-13. Together, these findings indicate that enhanced release of BDNF through exocytosis caused by activation of VDCCs and subsequent TrkB-Rac1 signaling is required for the rapid and sustained antidepressant effects of GLYX-13.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Depressão/tratamento farmacológico , Ketamina/farmacologia , Masculino , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/antagonistas & inibidores , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Neuroimmunomodulation ; 26(1): 33-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699428

RESUMO

OBJECTIVE: Both excitotoxicity and neurotrophin deficiency may contribute to the etiology of depression and neurodegeneration. Astrocytes not only regulate glutamate metabolism and clearance, they also produce neurotrophins in the brain. However, the direct interaction between neurons and astrocytes remains unknown. METHODS: This study evaluated the cellular mechanisms by which astrocyte-conditioned medium (ACM) protects prefrontal cortical neurons from glutamate-induced death by measuring cell viability and morphology as well as mRNA and protein expression of brain-derived neurotrophic factor (BDNF), BDNF receptors, glial cell line-derived neurotrophic factor (GDNF), and the proinflammatory cytokine, tumor necrosis factor (TNF)-α. Neurons and astrocytes were purified from the brains of neonatal 1-day-old Sprague-Dawley rats. ACM was harvested after exposing astrocytes to culture medium containing 100 µM glutamate for 48 h. RESULTS: Glutamate insult (100 µM for 6 h) significantly reduced neuronal cell viability and increased the mRNA expression of BDNF. Glutamate (24 h) decreased neuronal viability and the expression of BDNF, but increased mRNA expression of GFAP, p75 neurotrophin receptor (p75NTR), and TNF-α. ACM pretreatment (2 h) reversed glutamate-decreased cell viability and increased BDNF, but reduced the expression of GDNF, P75NTR, and TNF-α at the mRNA level. Western blotting generally confirmed the mRNA expression following 24 glutamate insults. Furthermore, the glutamate-induced decrease in the protein expression of BDNF and full-length TrkB receptor and increase in pro-BDNF, truncated TrkB isoform 1 receptor, p75NTR, GDNF, and TNF-α were significantly attenuated by ACM pretreatment. CONCLUSIONS: The study demonstrates that ACM exerts neuroprotective effects on cell viability, and this effect is most likely mediated through the modulation of neurotrophin and TNF-α expression.


Assuntos
Astrócitos/metabolismo , Morte Celular/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Neurônios/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Fator Neurotrófico Derivado de Linhagem de Célula Glial/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/efeitos dos fármacos , Receptor trkB/genética , Receptor trkB/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Biol Res ; 51(1): 18, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29898774

RESUMO

BACKGROUND: Arsenic trioxide (As2O3), a drug that has been used in China for approximately two thousand years, induces cell death in a variety of cancer cell types, including neuroblastoma (NB). The tyrosine kinase receptor (Trk) family comprises three members, namely TrkA, TrkB and TrkC. Various studies have confirmed that TrkA and TrkC expression is associated with a good prognosis in NB, while TrkB overexpression can lead to tumor cell growth and invasive metastasis. Previous studies have shown that As2O3 can inhibit the growth and proliferation of a human NB cell line and can also affect the N-Myc mRNA expression. It remains unclear whether As2O3 regulates Trks for the purposes of treating NB. METHODS: The aim of the present study was to investigate the effect of As2O3 on Trk expression in NB cell lines and its potential therapeutic efficacy. SK-N-SH cells were grown with increasing doses of As2O3 at different time points. We cultured SK-N-SH cells, which were treated with increasing doses of As2O3 at different time points. Trk expression in the NB samples was quantified by immunohistochemistry, and the cell cycle was analyzed by flow cytometry. TrkA, TrkB and TrkC mRNA expression was evaluated by real-time PCR analysis. RESULTS: Immunohistochemical and real-time PCR analyses indicated that TrkA and TrkC were over-expressed in NB, and specifically during stages 1, 2 and 4S of the disease progression. TrkB expression was increased in stage 3 and 4 NB. As2O3 significantly arrested SK-N-SH cells in the G2/M phase. In addition, TrkA, TrkB and TrkC expression levels were significantly upregulated by higher concentrations of As2O3 treatment, notably in the 48-h treatment period. Our findings suggested that to achieve the maximum effect and appropriate regulation of Trk expression in NB stages 1, 2 and 4S, As2O3 treatment should be at relatively higher concentrations for longer delivery times;however, for NB stages 3 and 4, an appropriate concentration and infusion time for As2O3 must be carefully determined. CONCLUSION: The present findings suggested that As2O3 induced Trk expression in SK-N-SH cells to varying degrees and may be a promising adjuvant to current treatments for NB due to its apoptotic effects.


Assuntos
Arsenicais/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/efeitos dos fármacos , Neuroblastoma/metabolismo , Óxidos/farmacologia , Receptor trkB/efeitos dos fármacos , Trióxido de Arsênio , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Neuroblastoma/patologia , Receptor trkB/metabolismo
8.
Mar Drugs ; 16(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373516

RESUMO

Perfluorooctane sulfonate (PFOS), a stable fluorosurfactant, causes endoplasmic reticulum (ER) stress in the brain. This study was designed to investigate whether a phycoerythrin-derived peptide of Pyropia yezoensis (PYP) reduces PFOS-induced ER stress associated with calcium dysregulation. The protective effects of PYP were determined by cell viability, immunoblotting for ER stress response protein glucose-regulated protein 78 (GRP78) and calcium-dependent protein kinases in rat frontal cortical neurons. PFOS-induced decrease in cell viability was attenuated by PYP pretreatment (1 µg/mL) for 24 h, which was downregulated by inhibiting tropomyosin-receptor kinase B (TrkB). PYP pretreatment downregulated the increase in intracellular calcium levels and phosphorylation of calcium/calmodulin-dependent protein kinase II and c-Jun N-terminal kinase which are associated with a PFOS-induced increase in GRP78. The PFOS-induced increase in GRP78 was downregulated via activation of TrkB receptor-linked extracellular signal-regulated kinases 1/2 (ERK1/2) by PYP pretreatment. Moreover, PYP microinjections (1 µg/kg, 0.54 nmol) attenuated the GRP78 expression in rat prefrontal cortex caused by PFOS (10 mg/kg) exposure for 2 weeks. These findings demonstrate that PYP enhances frontal cortical neuron viability via activation of TrkB receptor-ERK1/2 signaling and attenuation of ER stress in rat prefrontal cortex against PFOS exposure, suggesting that PYP might prevent neuronal dysfunctions caused by PFOS-induced ER stress.


Assuntos
Ácidos Alcanossulfônicos/antagonistas & inibidores , Ácidos Alcanossulfônicos/toxicidade , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fluorocarbonos/antagonistas & inibidores , Fluorocarbonos/toxicidade , Ficoeritrina/farmacologia , Alga Marinha/química , Animais , Química Encefálica/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Gravidez , Cultura Primária de Células , Ratos , Receptor trkB/efeitos dos fármacos
9.
J Neurosci Res ; 95(12): 2483-2492, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28699310

RESUMO

Currently antidepressants take several weeks to be effective, which is one of the main reasons why patients with depression quit therapy. In the present study, we examine the acute and subacute effects of soluble epoxide hydolase (sEH) inhibitor (sEHI), a compound shown to have antidepressant effects, on mice. We found that acute administration of sEHI TPPU decreases immobility time in the forced swimming test and reduces latency to feed in the novelty suppressed-feeding test in adult male mice. Intraperitoneal administration of TPPU for seven days also increased interaction time of socially defeated mice in the social defeat test. Hippocampal BDNF expression and cell proliferation in the dentate gyrus increased six and 24 hours after TPPU treatment, respectively. Improvement in antidepressant behavior and cell proliferation were inhibited by BDNF-trkB antagonist K252a, which suggests that anti-depressant effects of sEHI may be involved in BDNF signaling. Taken together, our findings suggest that sEHI may provide a rapid antidepressant effect through alterations to BDNF-trkB signaling in the hippocampus and may provide an alternative to current slow-acting antidepressants. © 2017 Wiley Periodicals, Inc.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Epóxido Hidrolases/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor trkB/efeitos dos fármacos , Receptor trkB/metabolismo
11.
J Neurosci ; 33(48): 18712-27, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24285878

RESUMO

Loss of neurotrophic support in the striatum caused by reduced brain-derived neurotrophic factor (BDNF) levels plays a critical role in Huntington's disease (HD) pathogenesis. BDNF acts via TrkB and p75 neurotrophin receptors (NTR), and restoring its signaling is a prime target for HD therapeutics. Here we sought to determine whether a small molecule ligand, LM22A-4, specific for TrkB and without effects on p75(NTR), could alleviate HD-related pathology in R6/2 and BACHD mouse models of HD. LM22A-4 was administered to R6/2 mice once daily (5-6 d/week) from 4 to 11 weeks of age via intraperitoneal and intranasal routes simultaneously to maximize brain levels. The ligand reached levels in the R6/2 forebrain greater than the maximal neuroprotective dose in vitro and corrected deficits in activation of striatal TrkB and its key signaling intermediates AKT, PLCγ, and CREB. Ligand-induced TrkB activation was associated with a reduction in HD pathologies in the striatum including decreased DARPP-32 levels, neurite degeneration of parvalbumin-containing interneurons, inflammation, and intranuclear huntingtin aggregates. Aggregates were also reduced in the cortex. Notably, LM22A-4 prevented deficits in dendritic spine density of medium spiny neurons. Moreover, R6/2 mice given LM22A-4 demonstrated improved downward climbing and grip strength compared with those given vehicle, though these groups had comparable rotarod performances and survival times. In BACHD mice, long-term LM22A-4 treatment (6 months) produced similar ameliorative effects. These results support the hypothesis that targeted activation of TrkB inhibits HD-related degenerative mechanisms, including spine loss, and may provide a disease mechanism-directed therapy for HD and other neurodegenerative conditions.


Assuntos
Benzamidas/uso terapêutico , Doença de Huntington/tratamento farmacológico , Transtornos dos Movimentos/tratamento farmacológico , Receptor trkB/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Benzamidas/farmacocinética , Western Blotting , Peso Corporal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Espinhas Dendríticas/fisiologia , Humanos , Proteína Huntingtina , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Imuno-Histoquímica , Ligantes , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Equilíbrio Postural/efeitos dos fármacos , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor trkB/fisiologia , Transdução de Sinais/efeitos dos fármacos , Sobrevida
12.
Am J Physiol Gastrointest Liver Physiol ; 306(4): G328-37, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24356881

RESUMO

Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Jejuno/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo , Animais , Relação Dose-Resposta a Droga , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Jejuno/enzimologia , Músculo Liso/enzimologia , Fosforilação , Coelhos , Receptor trkB/efeitos dos fármacos , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substância P/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores
13.
Br J Cancer ; 107(6): 967-76, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22892391

RESUMO

BACKGROUND: Neuroblastoma remains a major cause of cancer-linked mortality in children. miR-204 has been used in microRNA expression signatures predictive of neuroblastoma patient survival. The aim of this study was to explore the independent association of miR-204 with survival in a neuroblastoma cohort, and to investigate the phenotypic effects mediated by miR-204 expression in neuroblastoma. METHODS: Neuroblastoma cell lines were transiently transfected with miR-204 mimics and assessed for cell viability using MTS assays. Apoptosis levels in cell lines were evaluated by FACS analysis of Annexin V-/propidium iodide-stained cells transfected with miR-204 mimics and treated with chemotherapy drug or vehicle control. Potential targets of miR-204 were validated using luciferase reporter assays. RESULTS: miR-204 expression in primary neuroblastoma tumours was predictive of patient event-free and overall survival, independent of established known risk factors. Ectopic miR-204 expression significantly increased sensitivity to cisplatin and etoposide in vitro. miR-204 direct targeting of the 3' UTR of BCL2 and NTRK2 (TrkB) was confirmed. CONCLUSION: miR-204 is a novel predictor of outcome in neuroblastoma, functioning, at least in part, through increasing sensitivity to cisplatin by direct targeting and downregulation of anti-apoptotic BCL2. miR-204 also targets full-length NTRK2, a potent oncogene involved with chemotherapy drug resistance in neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Receptor trkB/efeitos dos fármacos , Análise de Variância , Animais , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Modelos Animais de Doenças , Intervalo Livre de Doença , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos SCID , Neuroblastoma/mortalidade , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Reação em Cadeia da Polimerase em Tempo Real , Receptor trkB/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
14.
Neural Plast ; 2012: 203536, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22811938

RESUMO

Brain-derived neurotrophic factor (BDNF) is well known as a survival factor during brain development as well as a regulator of adult synaptic plasticity. One potential mechanism to initiate BDNF actions is through its modulation of quantal presynaptic transmitter release. In response to local BDNF application to CA1 pyramidal neurons, the frequency of miniature excitatory postsynaptic currents (mEPSC) increased significantly within 30 seconds; mEPSC amplitude and kinetics were unchanged. This effect was mediated via TrkB receptor activation and required both full intracellular Ca(2+) stores as well as extracellular Ca(2+). Consistent with a role of Ca(2+)-permeable plasma membrane channels of the TRPC family, the inhibitor SKF96365 prevented the BDNF-induced increase in mEPSC frequency. Furthermore, labeling presynaptic terminals with amphipathic styryl dyes and then monitoring their post-BDNF destaining in slice cultures by multiphoton excitation microscopy revealed that the increase in frequency of mEPSCs reflects vesicular fusion events. Indeed, BDNF application to CA3-CA1 synapses in TTX rapidly enhanced FM1-43 or FM2-10 destaining with a time course that paralleled the phase of increased mEPSC frequency. We conclude that BDNF increases mEPSC frequency by boosting vesicular fusion through a presynaptic, Ca(2+)-dependent mechanism involving TrkB receptors, Ca(2+) stores, and TRPC channels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cálcio/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Imidazóis/farmacologia , Cinética , Microscopia de Fluorescência , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor trkB/efeitos dos fármacos , Estimulação Química , Tetrodotoxina/farmacologia
15.
Behav Brain Res ; 423: 113769, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35085701

RESUMO

Finding from animal models of depression indicated that Toll-like receptor 4 (TLR4) is associated with the pathophysiology of depression. Herein, the TLR4 antagonists TAK-242 and baicalin induced antidepressant-like effects in a rat learned helplessness model of depression. The antidepressant-like effects of both TLR4 antagonists were blocked by the TrkB inhibitor ANA-12. Also, the antidepressant-like effects of TAK-242 were blocked by the treatment with AMPA receptor antagonist NBQX. The antidepressant-like effects of the TLR4 antagonist TAK-242 involves BDNF-TrkB signaling and AMPA receptor activation.


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Depressão/tratamento farmacológico , Desamparo Aprendido , Receptor trkB/efeitos dos fármacos , Receptores de AMPA/efeitos dos fármacos , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Flavonoides/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptor trkB/antagonistas & inibidores , Receptores de AMPA/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
16.
Neurobiol Learn Mem ; 96(3): 479-91, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21872672

RESUMO

Chronic exposure to opiates impairs spatial learning and memory. Given the well-known beneficial effects of voluntary exercise on cognitive functions, we investigated whether voluntary exercise would ameliorate the cognitive deficits that are induced by morphine dependence. If an effect of exercise was observed, we aimed to investigate the possible role of hippocampal brain-derived neurotrophic factor (BDNF) in the exercise-induced enhancement of learning and memory in morphine-dependent rats. The rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10 days of voluntary exercise. Following these injections, a water maze task was performed twice a day for five consecutive days, followed by a probe trial 2 days later. A specific BDNF inhibitor (TrkB-IgG chimera) was used to block the hippocampal BDNF action during the 10 days of voluntary exercise. We found that voluntary exercise blocked the ability of chronic morphine to impair spatial memory retention. A blockade of the BDNF action blunted the exercise-induced improvement of spatial memory in the dependent rats. Moreover, the voluntary exercise diminished the severity of the rats' dependency on morphine. This study demonstrates that voluntary exercise ameliorates, via a TrkB-mediated mechanism, the cognitive deficits that are induced by chronic morphine. Thus, voluntary exercise might be a potential method to ameliorate some of the deleterious behavioral consequences of the abuse of morphine and other opiates.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Transtornos Cognitivos/complicações , Aprendizagem em Labirinto/fisiologia , Dependência de Morfina/complicações , Atividade Motora/fisiologia , Análise de Variância , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Dependência de Morfina/fisiopatologia , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar , Receptor trkB/efeitos dos fármacos , Receptor trkB/fisiologia , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia , Estatísticas não Paramétricas
17.
Metab Brain Dis ; 26(3): 185-94, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21826472

RESUMO

Apolipoprotein E (apoE) is one of the major transporters of cholesterol in the body and is essential for maintaining various neural functions in the brain. Given that hypercholesterolemia is a risk factor in Alzheimer's disease (AD), it has been suggested that altered cholesterol metabolism may be involved in the development of the pathogenesis, including neural degeneration, commonly observed in AD patients. Neurotrophic factors and their receptors, which are known to regulate various neural functions, are also known to be altered in various neurodegenerative diseases. We therefore hypothesized that cholesterol metabolism may itself influence the neurotrophin system within the brain. We decided to investigate this possibility by modulating the amount of dietary cholesterol given to apoE-knockout (apoE-KO) and wild-type (WT) mice, and examining the mRNA expression of various neurotrophin ligands and receptors in their hippocampal formations. Groups of eight-week-old apoE-KO and WT mice were fed a diet containing either "high" (HCD) or "normal" (ND) levels of cholesterol for a period of 12 weeks. We found that high dietary cholesterol intake elevated BDNF mRNA expression in both apoE-KO and WT mice and TrkB mRNA expression in apoE-KO animals. On the other hand, NGF and TrkA mRNA levels remained unchanged irrespective of both diet and mouse type. These findings indicate that altered cholesterol metabolism induced by HCD ingestion combined with apoE deficiency can elicit a differential response in the various neurotrophin ligand/receptor systems in the mouse hippocampus. Whether such changes can lead to neural degeneration, and the mechanisms that may be involved in this, awaits further research.


Assuntos
Apolipoproteínas E/deficiência , Fator Neurotrófico Derivado do Encéfalo , Colesterol na Dieta , Hipocampo/metabolismo , Receptor trkB , Doença de Alzheimer/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Neural/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , RNA Mensageiro/metabolismo , Receptor trkA/efeitos dos fármacos , Receptor trkA/metabolismo , Receptor trkB/efeitos dos fármacos , Receptor trkB/metabolismo
18.
Neuroreport ; 32(14): 1183-1191, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34284448

RESUMO

OBJECTIVE: K+-Cl- cotransporter-2 (KCC2), which primarily extrudes chloride in mature neurons, triggers hemiplegia limb spasticity after ischemic stroke by affecting neuronal excitability. Our previous study revealed that the Chinese herb Baishaoluoshi Decoction decreases hemiplegia limb spasticity in poststroke spasticity (PSS) patients. This study aimed at elucidating on the effects of Baishaoluoshi Decoction on the BDNF/TrKB-KCC2 pathway in PSS rat models. METHODS: Middle cerebral artery occlusion (MCAO) was adopted for the establishment of PSS rat models. Muscle tension was evaluated by Modified Ashworth Scale. Nissl staining and transmission electron microscopy were used to measure the protective effects of Baishaoluoshi Decoction on ischemic injury-induced neuronal damage due to MCAO. Expression levels of BDNF, TrKB, and KCC2 in brain tissues around the infarct and brainstem were detected by immunohistochemical staining. RESULTS: It was found that Baishaoluoshi Decoction suppressed hemiplegia limb spasticity and alleviated the damage in neurons and synapses in PSS rat models. Importantly, the expression of BDNF, TrKB, and KCC2 in brain tissues around the infarct and brainstem were significantly upregulated after treatment with low-dose and high-dose Baishaoluoshi Decoction. CONCLUSION: Suppression of spasticity by Baishaoluoshi Decoction in PSS rat models may be correlated with upregulated BDNF/TrKB-KCC2 pathway, which may be a complementary therapeutic strategy for PSS.


Assuntos
Encéfalo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/complicações , Espasticidade Muscular/etiologia , Animais , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptor trkB/efeitos dos fármacos , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Simportadores/efeitos dos fármacos , Simportadores/metabolismo , Cotransportadores de K e Cl-
19.
Behav Brain Res ; 408: 113290, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33845103

RESUMO

It has been established that cisplatin causes neuronal damage and cognitive impairment. However, the mechanism is not sufficiently clear. Apelin-13 is an endogenous peptide with strong neuroprotective effects through the synthesis of neurotrophic factors and suppression of inflammation. The aim of this study was to investigate the role of brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) signaling pathway and the potential inhibitory effects of apelin-13 in the mechanism of cisplatin-induced hippocampal damage and cognitive impairment. Apelin-13 was administered to adult sprague dawley male rats at a dose of 20 nmol/kg every day for 4 weeks, cisplatin was administered at a dose of 5 mg/kg once a week for 4 weeks. The spatial and recognition memory tests of the rats were performed on the 5th week. BDNF and the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) levels were measured by ELISA in hippocampal homogenates. Pyramidal neuron and glial cell damage in the hippocampal CA1, CA3 and dentate gyrus (DG) were analyzed histologically. TrkB activity in the hippocampus was determined by immunohistochemical methods. Cisplatin impaired spatial and recognition memory in rats, while apelin-13 improved spatial memory but did not affect recognition memory. Cisplatin suppressed BDNF in the hippocampus while increased IL-1ß and TNF-α. In contrast, apelin-13 administration increased BDNF but significantly suppressed TNF-α and IL-1B. Cisplatin caused pyramidal neuron and glial cell damage in CA1, CA3 and DG. In the cisplatin + apelin-13 group, however, pyramidal neuron and glial cell damage was less than those without apelin-13. Cisplatin increased TrkB activity in the hippocampus, which was counteracted by apelin-13. In conclusion, apelin-13 reduced the cisplatin-induced cognitive deficiency, by suppressing inflammation and stimulating the synthesis and activation of neurotrophic factors in hippocampal tissue.


Assuntos
Antineoplásicos/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Cisplatino/farmacologia , Disfunção Cognitiva , Hipocampo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptor trkB , Animais , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Masculino , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor trkB/efeitos dos fármacos , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Neuropharmacology ; 197: 108737, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343610

RESUMO

Alzheimer's disease (AD) is the most common dementia, and no disease-modifying therapeutic agents are currently available. BDNF/TrkB signaling is impaired in AD and is associated with prominent delta-secretase (δ-secretase, also known as asparaginyl endopeptidase or legumain) activation, which simultaneously cleaves both APP and Tau and promotes Aß production and neurofibrillary tangles (NFT) pathologies. Here we show that the optimized δ-secretase inhibitor (#11a) or TrkB receptor agonist (CF3CN) robustly blocks δ-secretase activity separately, and their combination synergistically blunts δ-secretase, exhibiting promising therapeutic efficacy in 3xTg AD mouse model. The optimal δ-secretase inhibitor reveals demonstrable brain exposure and oral bioavailability, suppressing APP N585 and Tau N368 cleavage by δ-secretase. Strikingly, CF3CN treatment evidently escalates BDNF levels. Both #11a and CF3CN display strong in vivo PK/PD properties and ability to suppress δ-secretase activity in the brain. Orally administrated CF3CN strongly activates TrkB that triggers active Akt to phosphorylate δ-secretase T322, preventing its proteolytic activation and mitigating AD pathologies. #11a or CF3CN significantly diminishes AD pathogenesis and improves cognitive functions with the combination exhibiting the maximal effect. Thus, our data support that these derivatives are strong pharmaceutical candidates for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Cisteína Endopeptidases/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Glicoproteínas de Membrana/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Receptor trkB/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Cognição/efeitos dos fármacos , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Glicoproteínas de Membrana/agonistas , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacocinética , Ratos , Receptor trkB/agonistas , Proteínas tau/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA