Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.739
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Arch Microbiol ; 206(8): 362, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066800

RESUMO

Mercury (Hg) is one of the most potent toxic heavy metals that distresses livestock, humans, and ecological health. Owing to uncontrolled exposure to untreated tannery industrial effluents, metals such as Hg are increasing in nature and are, therefore, becoming a global concern. As a result, understanding the thriving microflora in that severe condition and their characteristics becomes immensely important. During the course of this study, two Hg-resistant bacteria were isolated from tannery wastewater effluents from leather factories in Kolkata, India, which were able to tolerate 2.211 × 10- 3 M (600 µg/ml) Hg. 16 S rDNA analysis revealed strong sequence homology with Citrobacter freundii, were named as BNC22A and BNC22C for this study. In addition they showed high tolerance to nickel (Ni) and Chromium (Cr) at 6.31 × 10- 3 M (1500 µg/ml) and 6.792 × 10- 3 M (2000 µg/ml) respectively. However, both the isolates were sensitive to arsenic (As) and cadmium (Cd). Furthermore, their antibiotic sensitivity profiles reveal a concerning trend towards resistance to multiple drugs. Overuse and misuse of antibiotics in healthcare systems and agriculture has been identified as two of the main reasons for the decline in efficacy of antibiotics. Though their ability to produce lipase makes them industrially potent organisms, their competence to resist several antibiotics and metals that are toxic makes this study immensely relevant. In addition, their ability to negate heavy metal toxicity makes them potential candidates for bioremediation. Finally, the green mung bean seed germination test showed a significant favourable effect of BNC22A and BNC22C against Hg-stimulated toxicity.


Assuntos
Antibacterianos , Citrobacter freundii , Farmacorresistência Bacteriana Múltipla , Resíduos Industriais , Mercúrio , Testes de Sensibilidade Microbiana , Águas Residuárias , Citrobacter freundii/isolamento & purificação , Citrobacter freundii/efeitos dos fármacos , Citrobacter freundii/genética , Índia , Mercúrio/metabolismo , Mercúrio/farmacologia , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Resíduos Industriais/análise , Curtume , RNA Ribossômico 16S/genética , Metais Pesados/toxicidade , Cádmio/farmacologia , Arsênio/metabolismo
2.
Microb Cell Fact ; 23(1): 211, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061030

RESUMO

BACKGROUND: Beet filter cake (BFC) is a food-grade solid waste produced by the sugar industry, constituting a permanent source of pollution. Cyanobacteria are considered a sustainable resource for various bioactive compounds such as phycocyanin pigment with valuable applications. This study aimed to use beet filter cake extract (BFCE) as an alternative medium for the economic cultivation of cyanobacterium Leptolyngbya sp. SSI24 PP723083, then biorefined the bioactive component such as phycocyanin pigment that could be used in the production of selenium nanoparticles. RESULTS: The results of the batch experiment displayed that the highest protein content was in BG11medium (47.9%); however, the maximum carbohydrate and lipid content were in 25% BFCE (15.25 and 10.23%, respectively). In addition, 75% BFCE medium stimulated the phycocyanin content (25.29 mg/g) with an insignificant variation compared to BG11 (22.8 mg/g). Moreover, crude phycocyanin extract from Leptolyngbya sp SSI24 cultivated on BG11 and 75% BFCE successfully produced spherical-shaped selenium nanoparticles (Se-NPs) with mean sizes of 95 and 96 nm in both extracts, respectively. Moreover, XRD results demonstrated that the biosynthesized Se-NPs have a crystalline nature. In addition, the Zeta potential of the biosynthesized Se-NPs equals - 17 mV and - 15.03 mV in the control and 75% BFCE treatment, respectively, indicating their stability. The biosynthesized Se-NPs exhibited higher effectiveness against Gram-positive bacteria than Gram-negative bacteria. Moreover, the biosynthesized Se-NPs from BG11 had higher antioxidant activity with IC50 of 60 ± 0.7 compared to 75% BFCE medium. Further, Se-NPs biosynthesized from phycocyanin extracted from Leptolyngbya sp cultivated on 75% BFCE exhibited strong anticancer activity with IC50 of 17.31 ± 0.63 µg/ml against the human breast cancer cell line. CONCLUSIONS: The BFCE-supplemented medium can be used for the cultivation of cyanobacterial strain for the phycocyanin accumulation that is used for the green synthesis of selenium nanoparticles that have biological applications.


Assuntos
Ficocianina , Selênio , Ficocianina/biossíntese , Ficocianina/metabolismo , Selênio/metabolismo , Selênio/química , Cianobactérias/metabolismo , Humanos , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Antibacterianos/química , Nanopartículas Metálicas/química , Beta vulgaris/química , Nanopartículas/química , Resíduos Industriais/análise
3.
Environ Sci Technol ; 58(9): 4346-4356, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38380834

RESUMO

Ocean disposal of industrial waste from technical DDT [mainly 1,1'-(2,2,2-trichloroethane-1,1-diyl)bis(4-chlorobenzene), or 4,4'-DDT] manufacture occurred historically in the Southern California Bight. However, the paucity of historical records highlights uncertainties as to the mode, location, and timing of disposal or ongoing ecological effects of these wastes. This study combines sampling, chemical analysis, and numerical modeling of deep San Pedro Basin sediments revealing substantial DDT contamination that extends at least 25 km from the mainland. These findings narrate bulk DDT waste disposal to the offshore that peaked in the 1950s, prior to the onset of formal regulations; was agnostic to later-designated disposal sites; and has experienced sluggish transformation. Our findings further indicate an attenuating secondary source for the DDT daughter product, 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (4,4'-DDE), which still deposits into deep San Pedro Basin sediments. While demonstrating the severity of DDT contamination to the region, these findings further define the burial potential of DDT wastes and inform the past, present, and future contamination potential that is needed to understand and predict ecological consequences. This work also points firmly to bulk, not containerized, disposal of DDT waste and to potential alternative contents of collocated waste.


Assuntos
DDT , Resíduos Industriais , DDT/análise , Resíduos Industriais/análise , Monitoramento Ambiental , Oceanos e Mares , California
4.
Nature ; 564(7734): 99-103, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518888

RESUMO

Through its important role in the formation of particulate matter, atmospheric ammonia affects air quality and has implications for human health and life expectancy1,2. Excess ammonia in the environment also contributes to the acidification and eutrophication of ecosystems3-5 and to climate change6. Anthropogenic emissions dominate natural ones and mostly originate from agricultural, domestic and industrial activities7. However, the total ammonia budget and the attribution of emissions to specific sources remain highly uncertain across different spatial scales7-9. Here we identify, categorize and quantify the world's ammonia emission hotspots using a high-resolution map of atmospheric ammonia obtained from almost a decade of daily IASI satellite observations. We report 248 hotspots with diameters smaller than 50 kilometres, which we associate with either a single point source or a cluster of agricultural and industrial point sources-with the exception of one hotspot, which can be traced back to a natural source. The state-of-the-art EDGAR emission inventory10 mostly agrees with satellite-derived emission fluxes within a factor of three for larger regions. However, it does not adequately represent the majority of point sources that we identified and underestimates the emissions of two-thirds of them by at least one order of magnitude. Industrial emitters in particular are often found to be displaced or missing. Our results suggest that it is necessary to completely revisit the emission inventories of anthropogenic ammonia sources and to account for the rapid evolution of such sources over time. This will lead to better health and environmental impact assessments of atmospheric ammonia and the implementation of suitable nitrogen management strategies.


Assuntos
Agricultura/métodos , Amônia/análise , Atmosfera/química , Poluição Ambiental/análise , Resíduos Industriais/análise , Imagens de Satélites , Gerenciamento de Resíduos
5.
Environ Res ; 248: 118296, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280525

RESUMO

This investigation assesses the embodied energy and carbon footprint in the manufacture of pavers using varying proportions of recycled Construction and Demolition Waste (CDW). Additionally, Thin Film Composite Polyamide fiber (TFC PA), extracted from end-of-life Reverse Osmosis (RO) membranes, is introduced as an additive to enhance the concrete's strength. Machine learning techniques, namely Artificial Neural Network (ANN), Support Vector Regression (SVR), and Response Surface Methodology (RSM), are employed to predict the mechanical properties of pavers. The study focuses on examining the energy required and embodied carbon in various mix proportions, as well as the mechanical properties-specifically compressive strength and split tensile strength of concrete with different CDW and TFC PA proportions. Findings reveal that the optimal percentage of TFC PA is 3 % for all CDW replacement proportions, resulting in low carbon content both in terms of energy and embodiment and in mechanical behavior. The implementation of ANN and SVR is conducted in MATLAB, while a Design Expert is employed to generate the experimental design for RSM. The RSM regression model demonstrates a robust correlation between variables and observed outcomes, with optimal p-values, R2 values, and f-values. The ANN model successfully captures the variability in the data. Additionally, the findings indicate a consistent superiority of the Support Vector Regression (SVR) model over both Artificial Neural Network (ANN) and Response Surface Model (RSM) models when considering diverse performance metrics such as residuals and correlation coefficients.


Assuntos
Carbono , Materiais de Construção , Resíduos Industriais/análise , Reciclagem/métodos , Filtração
6.
Environ Res ; 250: 118339, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325791

RESUMO

Combustion is an effective and cost-efficient thermochemical conversion method for solid waste, showing promise for the resource utilization of shoe manufacturing waste (SMW). However, SMW is generally composed of different components, which can lead to unstable combustion and excessive pollutant emissions, especially NOx. To date, combustion characteristics, reaction mechanism and fuel nitrogen (fuel-N) conversion of different SMW components remain unclear. In this work, the combustion behavior of typical SMW components combustion was investigated using Thermogravimetric coupled with Fourier transform infrared spectrum (TG-FTIR). A simplified single-step reaction mechanism was proposed according to the temperature interval to estimate reaction mechanism of SMW. Additionally, the relationship between fuel-N conversion tendency and fuel properties was established. The results indicate that the values for the comprehensive combustion performance index (S) and flammability index (C) range from 1.65 to 0.44 and 3.98 to 1.37, respectively. This demonstrates the significant variability in combustion behavior among different SMW components. Cardboard, leather and sponge have higher values of S and C, suggesting a better ignition characteristic and a stable combustion process. During the combustion of SMW, nitrogen oxides (NO and N2O) are the main nitrogen-containing compounds in the flue gases, with NO being the major contributor, accounting for over 82.97 % of the nitrogen oxides. NO has a negative correlation with nitrogen content, but it is opposite for N2O, HCN and NH3. Furthermore, the conversion of NO, N2O and NH3 is proportional to logarithmic values of O/N, while its conversion to HCN is proportional to logarithmic values of VM/N. These findings facilitate the prediction of the fuel-N conversion of solid waste combustion. This work might shed light on combustion optimization and in-situ pollutant emission control in solid waste combustion.


Assuntos
Sapatos , Cinética , Resíduos Industriais/análise , Nitrogênio/análise , Incineração , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise
7.
Environ Res ; 248: 118282, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295974

RESUMO

The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.


Assuntos
Braquiúros , Carvão Vegetal , Animais , Óleo de Palmeira , Micro-Ondas , Pirólise , Vapor , Resíduos Industriais/análise
8.
Environ Res ; 258: 119427, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889840

RESUMO

This review approach is divided into two scopes to focus the pollution threats. We cover the applications of nanomaterials to curtail the pollution induced by fossil fuel combustion, and textile dye effluents. Toxic emissions released from automobile exhaust that comprise of NOX. SOX and PAHs compile to harsh breathing and respiratory troubles. The effluents generated from the mammoth textile and leather industry is potential threat to beget massive health issues to human life, and environmental problem. Part I projects the broad envisage on role of nano materials in production of alternative biofuels. In addition, green sources for synthesizing nanomaterials are given special importance. Nano catalyst's utilization in bio-derived fuels such as biogas, bio-oil, bioethanol, and biodiesel are catered to this article. Part II cover the current statistics of textile effluent pollution level in India and its steps in confronting the risks of pollution are discussed. A clear picture of the nano techniques in pre-treatment, and the recent nano related trends pursued in industries to eliminate the dyes and chemicals from the discharges is discussed. The substantial aspect of nano catalysis in achieving emission-free fuel and toxic-free effluents and the augmentation in this field is conferred. This review portrays the dependency on nano materials & technology for sustainable future.


Assuntos
Combustíveis Fósseis , Nanoestruturas , Indústria Têxtil , Nanoestruturas/química , Combustíveis Fósseis/análise , Resíduos Industriais/análise , Têxteis/análise , Biocombustíveis/análise
9.
Environ Res ; 249: 118378, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311206

RESUMO

With the advent of the second industrial revolution, mining and metallurgical processes generate large volumes of tailings and mine wastes (TMW), which worsens global environmental pollution. Studying the occurrence of metal and metalloid elements in TMW is an effective approach to evaluating pollution linked to TMW. However, traditional laboratory-based measurements are complicated and time-consuming; thus, an empirical method is urgently needed that can rapidly and accurately determine elemental occurrence forms. In this study, a model combining Bayesian optimization and random forest (RF) approaches was proposed to predict TMW occurrence forms. To build the RF model, a dataset of 2376 samples was obtained, with mineral composition, elemental properties, and total concentration composition used as inputs and the percentage of occurrence forms as the model output. The correlation coefficient (R), coefficient of determination, mean absolute error, root mean squared error, and root mean squared logarithmic error metrics were used for model evaluation. After Bayesian optimization, the optimal RF model achieved accurate predictive performance, with R values of 0.99 and 0.965 on the training and test sets, respectively. The feature significance was analyzed using feature importance and Shapley additive explanatory values, which revealed that the electronegativity and total concentration of the elements were the two features with the greatest influence on the model output. As the electronegativity of an element increases, its corresponding residual fraction content gradually decreases. This is because the solubility typically increases with the solvent's polarity and electronegativity. Overall, this study proposes an RF model based on the nature of TMW that can rapidly and accurately predict the percentage values of metal and metalloid element occurrence forms in TMW. This method can minimize testing time requirements and help to assess TMW pollution risks, as well as further promote safe TMW management and recycling.


Assuntos
Inteligência Artificial , Teorema de Bayes , Mineração , Resíduos Industriais/análise , Monitoramento Ambiental/métodos , Metais/análise
10.
Environ Res ; 251(Pt 1): 118636, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458585

RESUMO

The processing of steel waste slag from the black metallurgical sector seriously threatened the ecology. To counter these dangers, appropriate detoxification methods were required. Vermitechnology was one such strategy that could successfully convert this industrial waste into nutrient-rich products suitable for use in agriculture. This research primarily focuses on employing vermitechnology for the transformation of waste steel slag into vermicompost and to determine changes in microbial composition, nutrient cycling, and metal detoxification facilitated by earthworms (Eisenia fetida). Earthworm populations in steel waste vermibeds (sw-vermibeds) increased by 2.87-3.07 folds. T1(SW + CD-1:1) comparatively showed increased levels of nutrients such as nitrogen, phosphorus, and potassium. Microbial and enzymatic parameters were more pronounced in treatment T1. The findings of phospholipid fatty acid (PLFA) diversity demonstrate microbial diversity and fatty acid composition. Based on PLFA Sobol Sensitivity Analysis (SSA), PUFA and cyclo were the most sensitive inputs to the presence of heavy metal (HMs) concentrations in SW. In accordance with Taylor-based modelling, R-tree, and Mars were the most trusted regression models for predicting HMs toxicity on microbes. The bioavailable metal fractions of HMs (Fe, Ni, Cd, Cu, Pb, and Cr) decreased by 61-83%. The correlation was performed for 0 and 90 days for metal microbial interactions r (0 days), [BSR vs Fe, Cd, Cu, Ni = -0.99, -0.82, -0.43, -0.99] and r (90 days), [FDA vs Fe, Cu, Ni = -0.97, -0.47, -0.95]. Overall, the results indicated that T1(1:1 SW + CD) provided more favorable conditions for the development of microbes and Eisenia fetida. This research presents a new perspective to the world community on the transformation of harmful steel waste slag into advantageous biological resources by introducing a novel method of employing Eisenia fetida to remediate hazardous steel waste slag.


Assuntos
Resíduos Industriais , Oligoquetos , Aço , Animais , Resíduos Industriais/análise , Poluentes do Solo/análise , Metais Pesados/análise , Biodegradação Ambiental
11.
Environ Res ; 252(Pt 2): 118903, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609070

RESUMO

Heavy carbon industries produce solid side stream materials that contain inorganic chemicals like Ca, Na, or Mg, and other metals such as Fe or Al. These inorganic compounds usually react efficiently with CO2 to form stable carbonates. Therefore, using these side streams instead of virgin chemicals to capture CO2 is an appealing approach to reduce CO2 emissions. Herein, we performed an experimental study of the mineral carbonation potential of three industrial steel slags via aqueous, direct carbonation. To this end, we studied the absorption capacities, reaction yields, and physicochemical characteristics of the carbonated samples. The absorption capacities and the reaction yields were analyzed through experiments carried out in a reactor specifically designed to work without external stirring. As for the physicochemical characterization, we used solid-state Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). Using this reactor, the absorption capacities were between 5.8 and 35.3 g/L and reaction yields were in the range of 81-211 kg CO2/ton of slag. The physicochemical characterization of the solid products with solid FTIR, XRD and SEM indicated the presence of CaCO3. This suggests that there is potential to use the carbonated products in commercial applications.


Assuntos
Resíduos Industriais , Aço , Aço/química , Resíduos Industriais/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Difração de Raios X , Dióxido de Carbono/química
12.
Environ Res ; 257: 119381, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857858

RESUMO

This study assessed the efficacy of granular cylindrical periodic discontinuous batch reactors (GC-PDBRs) for produced water (PW) treatment by employing eggshell and waste activated sludge (WAS) derived Nickel (Ni) augmented biochar. The synthesized biochar was magnetized to further enhance its contribution towards achieving carbon neutrality due to carbon negative nature, Carbon dioxide (CO2) sorption, and negative priming effects. The GC-PDBR1 and GC-PDBR2 process variables were optimized by the application of central composite design (CCD). This is to maximize the decarbonization rate. Results showed that the systems could reduce total phosphorus (TP) and chemical oxygen demand (COD) by 76-80% and 92-99%, respectively. Optimal organic matter and nutrient removals were achieved at 80% volumetric exchange ratio (VER), 5 min settling time and 3000 mg/L mixed liquor suspended solids (MLSS) concentration with desirability values of 0.811 and 0.954 for GC-PDBR1 and GC-PDBR2, respectively. Employing four distinct models, the biokinetic coefficients of the GC-PDBRs treating PW were calculated. The findings indicated that First order (0.0758-0.5365) and Monod models (0.8652-0.9925) have relatively low R2 values. However, the Grau Second-order model and Modified Stover-Kincannon model have high R2 values. This shows that, the Grau Second Order and Modified Stover-Kincannon models under various VER, settling time, and MLSS circumstances, are more suited to explain the removal of pollutants in the GC-PDBRs. Microbiological evaluation demonstrated that a high VER caused notable rises in the quantity of several microorganisms. Under high biological selective pressure, GC-PDBR2 demonstrated a greater percentage of nitrogen removal via autotrophic denitrification and a greater number of nitrifying bacteria. The overgrowth of bacteria such as Actinobacteriota spp. Bacteroidota spp, Gammaproteobacteria, Desulfuromonas Mesotoga in the phylum, class, and genus, has positively impacted on granule formation and stability. Taken together, our study through the introduction of intermittent aeration GC-PDBR systems with added magnetized waste derived biochar, is an innovative approach for simultaneous aerobic sludge granulation and PW treatment, thereby providing valuable contributions in the journey toward achieving decarbonization, carbon neutrality and sustainable development goals (SDGs).


Assuntos
Reatores Biológicos , Carvão Vegetal , Níquel , Carvão Vegetal/química , Eliminação de Resíduos Líquidos/métodos , Resíduos Industriais/análise , Anaerobiose , Purificação da Água/métodos , Aerobiose , Indústria de Petróleo e Gás , Poluentes Químicos da Água/análise
13.
Environ Res ; 250: 118508, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395333

RESUMO

Industrial processes and municipal wastes largely contribute to the fluctuations in iron (Fe) content in soils. Fe, when present in unfavorable amount, causes harmful effects on human, flora, and fauna. The present study is an attempt to evaluate the composition of Fe in surface soils from paper mill and municipal landfill sites and assess their potential ecological and human health risks. Geochemical fractionation was conducted to explore the chemical bonding of Fe across different fractions, i.e., water-soluble (F1) to residual (F6). Different contamination factors and pollution indices were evaluated to comprehend Fe contamination extent across the study area. Results indicated the preference for less mobile forms in the paper mill and landfill, with 26.66% and 43.46% of Fe associated with the Fe-Mn oxide bound fraction (F4), and 57.22% and 24.78% in the residual fraction (F6). Maximum mobility factor (MF) of 30.65% was observed in the paper mill, and 80.37% in the landfill. The enrichment factor (EF) varied within the range of 20 < EF < 40, signifying a high level of enrichment in the soil. The individual contamination factor (ICF) ranged from 0 to >6, highlighting low to high contamination. Adults were found to be more vulnerable towards Fe associated health risks compared to children. The Hazard Quotient (HQ) index showed the highest risk potential pathways as dermal contact > ingestion > inhalation. The study offers insights into potential Fe contamination risks in comparable environments, underscoring the crucial role of thorough soil assessments in shaping land use and waste management policies.


Assuntos
Ferro , Papel , Poluentes do Solo , Instalações de Eliminação de Resíduos , Ferro/análise , Poluentes do Solo/análise , Humanos , Medição de Risco , Monitoramento Ambiental , Resíduos Industriais/análise , Fracionamento Químico , Solo/química , Adulto , Criança
14.
Environ Res ; 242: 117736, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007083

RESUMO

Environmental contamination is a global challenge that impacts every aspect of ecosystem. The contaminants from anthropogenic or industrial trash continually recirculate into the environment, agricultural land, plants, livestock, and ultimately into humans by way of the food chain. After an increase in human and farmland animal deaths from illnesses due to contaminated drinking water, toxic metal water poisoning has remained a global concern. Diverse environmental and enforcement organisations have attempted to regulate the activities that serve as precursors to these heavy metals which have been proven ineffective. These unnecessary metals have severely hampered most biological processes. The presence of hazardous metals, which are harmful at extremely high levels and have a negative effect on the health of living bodies generally degrades the nutritional value of water. In order to evaluate the heavy metals (Cu, Ni, and Fe) toxicity of groundwater in pri-urban areas, the current study was conducted that have been considered as advance solution to tackle climate change which influence coastal ecosystem. Additionally, the impacts of soil and plant (spinach and brassica) contamination from groundwater were evaluated. The heavy metals were examined in the soil and groundwater samples (Pb, Fe and Ni). While Fe concentrations in water samples were found to be high as 1.978 mg/L as compared to Ni and Cu values low. According to WHO guidelines, the mean value of Fe exceeds the limit value. Similarly, Cu had a higher mean value (0.7 mg/L) in soil samples than other metals (Ni and Fe). In comparison to Ni and Cu, the Fe concentrations in spinach and brassica plants samples are greater, at 17.2 mg/L and 3.22 mg/L, respectively. The possible effects of metal poisoning of groundwater and plants on human health have been assessed using the Hazard Quotient (HQ), Evaluated Daily Intake (EDI), and Incremental Life Time Cancer Risk formulas (ILTCR). When drinking Ni-contaminated water, humans are more at risk of developing cancer (0.0031) than Fe and Cu. Metal concentrations in water and brassica showed substantially more scattered behaviour on the plot and no meaningful relationship, although PCA and masked matrix correlation showed a fair association between Ni and Cu in brassica (r2: 0.46) and Fe and Ni in spinach (r2: 0.31). According to the study's findings, it is anticipated that special management and groundwater monitoring will be needed in the examined area to reduce the health risks related to drinking water that has been contaminated with metals.


Assuntos
Água Potável , Metais Pesados , Neoplasias , Poluentes do Solo , Animais , Humanos , Monitoramento Ambiental/métodos , Ecossistema , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Resíduos Industriais/análise , Solo , Medição de Risco
15.
Environ Res ; 260: 119434, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945515

RESUMO

Nano-zero valent iron (nZVI) was anchored and dispersed on the surface of acid-modified blast furnace slag (mBFS) through the liquid phase reduction method. The synthesized nZVI@mBFS composite exhibited remarkable ability to degrade phenol when used in conjunction with persulfate (PDS), 97.8% phenol could be eliminated in 30 min. All the anions like SO42-, HCO3-, H2PO4-, and CO32- were detrimental to the phenol degradation in nZVI@mBFS system. Moreover, electron paramagnetic resonance (EPR) analysis and radical scavenging tests confirmed that SO4•-, •OH and •O2- were the principal reactive oxygen species (ROSs) generated during the reaction process. The potential degradation pathways were also deduced based on the results obtained from gas chromatograph-mass spectrometer (GC-MS) analysis. Collectively, this study holds substantial significance in regards to recycling industrial solid wastes, devising efficient persulfate-activated materials, and treating wastewater.


Assuntos
Ferro , Fenol , Sulfatos , Águas Residuárias , Poluentes Químicos da Água , Ferro/química , Águas Residuárias/química , Sulfatos/química , Fenol/química , Poluentes Químicos da Água/química , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Nanopartículas Metálicas/química
16.
Environ Res ; 259: 119527, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977155

RESUMO

The wastewater produced during coffee cherry pulping is known for containing harmful pollutants, particularly organic compounds containing carbon, which pose significant risks to the environment and human health. This research aimed to evaluate the effectiveness of Tamarindus indica L. seed polysaccharides in treating coffee effluent. Varying doses (ranging from 0.05 to 0.30 g) of the isolated polysaccharides were added to samples of the effluent to determine their ability to remove contaminants, especially those of organic carbon origin. Notably, a dosage of 0.10 g demonstrated optimal efficacy, resulting in a 55% decrease in total dissolved solids and an 80% decrease in chemical oxygen demand. Additionally, Fourier-transform infrared and zeta potential analysis of both the polysaccharides and the treated effluent samples revealed the presence of functional groups potentially pivotal for the pollutant removal activity of the isolated polysaccharides. This provides insights into the coagulation mechanism of Tamarindus indica L. seed polysaccharides in eliminating organic carbon-based pollutants. These findings highlight the potential of Tamarindus polysaccharides as a sustainable alternative to chemical agents for removing pollutants, thus promoting environmental sustainability and human well-being.


Assuntos
Polissacarídeos , Sementes , Tamarindus , Águas Residuárias , Tamarindus/química , Polissacarídeos/química , Sementes/química , Águas Residuárias/química , Carbono/química , Poluentes Químicos da Água/análise , Resíduos Industriais/análise , Café/química , Eliminação de Resíduos Líquidos/métodos
17.
Environ Res ; 259: 119584, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992758

RESUMO

The growing concern of water pollution is a critical issue stemming from industrialization and urbanization. One of the specific concerns within this broader problem is the toxicity associated with chromium (Cr), especially in its Cr (VI) form. Transition metal carbides/nitrides (MXenes) are attractive materials for the treatment of water due to their unique properties such as layered structure, high surface area, conductivity, flexibility, scalable manufacture, and surface functions. Adsorption and photocatalysis reactions are the two promising methods for the removal of Cr (VI) by using MXenes. Still, most of the previous reviews were limited to the single application area. Hence, this review covers recent developments in MXene-based composites, highlighting their dual role as both adsorbents and photocatalysts in the removal of Cr (VI). MXene-based composites are found to be effective in both adsorption and photodegradation of Cr (VI). Most MXene-based composites have demonstrated exceptional removal efficiency for Cr (VI), achieving impressive adsorption capacities ranging from 100 to 1500 mg g-1 and degradation percentages between 80% and 100% in a relatively short period. The active functional groups present on the surface of MXene have a viable impact on the adsorption and photodegradation performance. The mechanism of Cr (VI) removal is explained, with MXenes playing a key role in electrostatic attraction for adsorption and as co-catalysts in photocatalysis. However, MXene-based composites have limitations such as instability, competition with co-existing ions, and regeneration challenges. Further research is needed to address these limitations. Additionally, MXene-based composites hold promise for addressing water contamination, heavy metal removal, hydrogen production, energy storage, gas sensing, and biomedical applications.


Assuntos
Cromo , Águas Residuárias , Poluentes Químicos da Água , Cromo/química , Águas Residuárias/química , Adsorção , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Catálise , Fotólise , Purificação da Água/métodos , Resíduos Industriais/análise , Elementos de Transição/química
18.
Environ Res ; 256: 119235, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810826

RESUMO

Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes. Membrane removal technology has been vital for the filtration/separation of the dyes. In comparison to polymeric membranes, inorganic and mixed matrix (MM) membranes have shown potentials to the removal of dyes. The inorganic and MM membranes are particularly effective due to their high porosity, enhanced stability, improved permeability, higher enhanced selectivity and good stability and resistance to harsh chemical and thermal conditions. They have shown prospects in filtration/separation, adsorption, and catalytic degradation of the dyes. This review highlighted the advantages of the inorganic and MM membranes for the various removal techniques for the treatments of the dyes. Methods for the membranes production have been reviewed. Their application for the filtration/separation and adsorption have been critically analyzed. Their application as support for advanced oxidation processes such as persulfate, photo-Fenton and photocatalytic degradations have been highlighted. The mechanisms underscoring the efficiency of the processes have been cited. Lastly, comments were given on the prospects and challenges of both inorganic and MM membranes towards removal of the dyes from industrial effluents.


Assuntos
Corantes , Resíduos Industriais , Membranas Artificiais , Poluentes Químicos da Água , Corantes/química , Corantes/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Filtração/métodos , Adsorção
19.
Environ Res ; 251(Pt 1): 118643, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458590

RESUMO

Coal gasification fine slag (CGFS), as a difficult-to-dispose solid waste in the coal chemical industry, consists of minerals and residual carbon. Due to the aggregate structure of minerals blocking pores and encapsulating active substances, the high-value utilization of CGFS still remains a challenge. Based on the intrinsic characteristics of CGFS, this study synthesized Fe-N doped porous carbon/silicate composites (Fe-NC) by alkali activation and pyrolysis for electrocatalytic degradation of phenolic wastewater. Meanwhile, minerals were utilized to regulate the surface chemical and pore structure, turning their disadvantages into advantages, which caused a sharp increase in m-cresol mineralization. The positive effect of minerals on composite properties was investigated by characterization techniques, electrochemical analyses and density functional theory (DFT) calculations. It was found that the mesoporous structure of the mineral-regulated composites was further developed, with more carbon defects and reactive substances on its surface. Most importantly, silicate mediated iron conversion through strong interaction with H2O2, high work function gradient with electroactive iron, and excellent superoxide radical (•O2-) production capacity. It effectively improved the reversibility and kinetics of the entire electrocatalytic reaction. Within the Fe-NC311 electrocatalytic system, the m-cresol removal rate reached 99.55 ± 1.24%, surpassing most reported Fe-N-doped electrocatalysts. In addition, the adsorption and electrooxidation experiment confirmed that the synergistic effect of Fe-N doped porous carbon and silicate simultaneously promoted the capture of pollutants and the transformation of electroactive molecules, and hence effectively shortened the diffusion path of short-lived radicals, which was further supported by molecular dynamics simulation. Therefore, this research provides new insights into the problem of mineral limitations and opens an innovative approach for CGFS recycling and environmental remediation.


Assuntos
Carbono , Ferro , Fenóis , Silicatos , Águas Residuárias , Poluentes Químicos da Água , Silicatos/química , Águas Residuárias/química , Carbono/química , Porosidade , Ferro/química , Poluentes Químicos da Água/química , Fenóis/química , Catálise , Carvão Mineral , Minerais/química , Nitrogênio/química , Eliminação de Resíduos Líquidos/métodos , Técnicas Eletroquímicas/métodos , Resíduos Industriais/análise
20.
Environ Res ; 251(Pt 2): 118716, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490627

RESUMO

The effect of changes in microbial community structure on the migration and release of toxic heavy metal (loid)s is often ignored in ecological restoration. Here, we investigated a multi-metal (mercury and thallium, Tl) mine waste slag. With particular focus on its strong acidity, poor nutrition, and high toxicity pollution characteristics, we added fish manure and carbonate to the slag as environmental-friendly amendments. On this basis, ryegrass, which is suitable for the remediation of metal waste dumps, was then planted for ecological restoration. We finally explored the influence of changes in microbial community structure on the release of Tl and As in the waste slag during vegetation reconstruction. The results show that the combination of fish manure and carbonate temporarily halted the release of Tl, but subsequently promoted the release of Tl and arsenic (As), which was closely related to changes in the microbial community structure in the waste slag after fish manure and carbonate addition. The main reason for these patterns was that in the early stage of the experiment, Bacillaceae inhibited the release of Tl by secreting extracellular polymeric substances; with increasing time, Actinobacteriota became the dominant bacterium, which promoted the migration and release of Tl by mycelial disintegration of minerals. In addition, the exogenously added organic matter acted as an electron transport medium for reducing microorganisms and thus helped to reduce nitrate or As (Ⅴ) in the substrate, which reduced the redox potential of the waste slag and promoted As release. At the same time, the phylum Firmicutes, including specific dissimilatory As-reducing bacteria that are capable of converting As into a more soluble form, further promoted the release of As. Our findings provide a theoretical basis for guiding the ecological restoration of relevant heavy-metal (loid) mine waste dumps.


Assuntos
Mercúrio , Mineração , Tálio , Mercúrio/análise , Mercúrio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/química , Metais Pesados/análise , Microbiota/efeitos dos fármacos , Resíduos Industriais/análise , Recuperação e Remediação Ambiental/métodos , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA